JPS61266056A - Linear motor - Google Patents

Linear motor

Info

Publication number
JPS61266056A
JPS61266056A JP10867985A JP10867985A JPS61266056A JP S61266056 A JPS61266056 A JP S61266056A JP 10867985 A JP10867985 A JP 10867985A JP 10867985 A JP10867985 A JP 10867985A JP S61266056 A JPS61266056 A JP S61266056A
Authority
JP
Japan
Prior art keywords
rare earth
linear motor
permanent magnet
magnet
earth metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10867985A
Other languages
Japanese (ja)
Inventor
Michio Yanagisawa
通雄 柳澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP10867985A priority Critical patent/JPS61266056A/en
Publication of JPS61266056A publication Critical patent/JPS61266056A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/035DC motors; Unipolar motors
    • H02K41/0352Unipolar motors
    • H02K41/0354Lorentz force motors, e.g. voice coil motors
    • H02K41/0356Lorentz force motors, e.g. voice coil motors moving along a straight path
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/17Stator cores with permanent magnets

Abstract

PURPOSE:To produce a linear motor having small size and weight and high performance with an inexpensive material by using a rare earth metal permanent magnet made of rare earth metal, iron and boron as a basic composition in a magnetic circuit. CONSTITUTION:In a linear motor in which a permanent magnet 2 is used at a part of a magnetic circuit, a rare earth metal permanent magnet made of rare earth metal (R), iron (Fe) and boron (B) as a basic composition is used as the rare earth metal permanent magnet. As a representative example of such a permanent magnet there is an Nd-Fe-B magnet, and one or more types of various rare earth metals may be used as the R. Part of the Fe may be substituted by a transient metal such as Co. Since such a permanent magnet has a low price and excellent magnetic properties, a linear motor having small size and weight and high performance can be manufactured.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、基本組成が、R−F、−Bからなる希土類永
久磁石を用いたリニアモータに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a linear motor using rare earth permanent magnets whose basic composition is RF and -B.

〔発明の概要〕[Summary of the invention]

本発明は、磁気回路に永久磁石を用いたリニアモータに
おいて、基本組成がR−F、−Bからなる希土類永久磁
石を用いたことにより、小型軽量で高性能なリニアモー
タを低コストで実現するものである。
The present invention realizes a small, lightweight, high-performance linear motor at low cost by using rare earth permanent magnets whose basic composition is RF and -B in a linear motor using permanent magnets in the magnetic circuit. It is something.

〔従来の技術〕[Conventional technology]

従来モータに用いられている永久磁石としては、アルニ
コ磁石、フェライト磁石、希土類コバルト磁石が代表的
なものである。篤6図にこれらの磁石の特性比較図を示
す、各項目共、アルニコ、希土類コバルトの原に示しで
ある。各信号の意味は表1に示す。
Typical permanent magnets conventionally used in motors include alnico magnets, ferrite magnets, and rare earth cobalt magnets. Figure 6 shows a comparison diagram of the characteristics of these magnets.Each item is shown in the base of alnico and rare earth cobalt. The meaning of each signal is shown in Table 1.

表  1 モータ用永久磁石として要求される磁気特性としては、
残留磁束密度Bfが大きhこと、保磁力H。
Table 1 The magnetic properties required for permanent magnets for motors are as follows:
The residual magnetic flux density Bf is large h, and the coercive force H.

が大きいことが重要なものである。アルニコ磁石は、H
,が小さく、フエライ)16石はB、が小さいために、
希土類コバルト磁石が開発され、磁気特性の優れた永久
磁石として用いられている。
It is important that the value is large. Alnico magnets are H
, is small, and 16 stones are small, so B is small, so
Rare earth cobalt magnets have been developed and are used as permanent magnets with excellent magnetic properties.

〔発明が解決しようとする問題点及び目的〕しかし、前
述の希土類コバルト磁石は、奸6図に示したとおりコス
トが高り、これは、希土類元素としてサマリウム(Sm
)’i用iていることと。
[Problems and objects to be solved by the invention] However, the above-mentioned rare earth cobalt magnet is expensive as shown in Figure 6, and this is because samarium (Sm) is used as the rare earth element.
)'i for i and.

きわめて高価なコパル)(Go)を用いていることが原
因であり、モータ用永久磁石として使用すると、高性能
ではあるが、きわめて高価なものになってしまう、そこ
で2本発明は1以上の問題点と解決するもので、その目
的とするところは、低価格な原料で優れた磁気特性の得
られる。基本組成がR−7,−Bからなる希土類永久磁
石(以下R−Fg−B磁石)を用いて、小型軽量で高性
能な、リニアモータ?提供するところにある。
This is due to the use of extremely expensive Copal (Go), and when used as a permanent magnet for a motor, although it has high performance, it becomes extremely expensive.Therefore, the present invention solves one or more of the following problems. The purpose is to obtain excellent magnetic properties using low-cost raw materials. A small, lightweight, high-performance linear motor using rare earth permanent magnets (hereinafter referred to as R-Fg-B magnets) whose basic composition is R-7, -B? It's there to provide.

〔問題点を解決するための手段〕[Means for solving problems]

本発明のIJ ニアモータは、磁気回路VC1基本組成
が希土類金属(R)、鉄(Fe)、およびボロン(B)
からなる希土類永久磁石を用いたことを特徴とする。
In the IJ near motor of the present invention, the basic composition of the magnetic circuit VC1 is rare earth metal (R), iron (Fe), and boron (B).
It is characterized by using a rare earth permanent magnet consisting of.

なお、基本組成がR,?、およびBからなる希土類磁石
としては、Nd゛−p、、−B磁石が知られているがR
としては& ” e Ca e Pr s Ndeε 1’m、am、’Iru、Gd、Tb、Dy、Tlo。
Furthermore, the basic composition is R,? , and B are known as Nd-p, -B magnets, but R
As & ” e Ca e Pr s Ndeε 1'm, am, 'Iru, Gd, Tb, Dy, Tlo.

Kr、T’m、Y6.およびL−の希土類全金属の5ち
の1種または2穐μ上であれば良い。
Kr, T'm, Y6. It is sufficient if it is above one or two of the rare earth metals of L- and L-.

またF−の一部(2cmで置換することによりキュリ一
温度の向上が計られ、Brの温度係数も改善される。F
′#を他の遷移金属群で置換しても同様の改善がなされ
る。
Furthermore, by replacing a portion of F- (2 cm), the Curie temperature can be improved, and the temperature coefficient of Br can also be improved.
Similar improvements can be achieved by replacing '# with other transition metal groups.

〔実施列〕[Implementation row]

以下1本発明について実施的に基づいて詳細に説明する
EMBODIMENT OF THE INVENTION Below, one embodiment of the present invention will be described in detail.

第1図に、R−Pg−Be&石を用いたIJ ニアモー
タの構造を示す、磁石2は、厚さ方向に着磁されたもの
を用い、コイル1に電流を流すことによりてコイルが動
く構造となっている。磁石の基本組成のRとしてはkT
JcLを除く軽希土類元素を用いている。第8図に、軽
希土類元素を多く含むモナザイト鉱石(b)の組成例を
示す、従来の希土類コバルト磁石(以下Sm−co磁石
)に用いらルるBmは、鉱石に含まれる量が少ない、E
3tn−c。
Figure 1 shows the structure of an IJ near motor using R-Pg-Be & stone.The magnet 2 is magnetized in the thickness direction, and the coil moves when current is passed through the coil 1. It becomes. The basic composition R of the magnet is kT
Light rare earth elements other than JcL are used. Figure 8 shows an example of the composition of monazite ore (b) containing a large amount of light rare earth elements. E
3tn-c.

6石に比べてR−IPg−BIa石は、リニアモータの
永久磁石として供給面、価格面においてきわめて有効で
あることを示してbる。また磁気特性面においては、R
−F、−B磁石の中でも優れた特性を示すNd−F、−
B磁石と、13m−Co磁石の比較を第7図に示す、各
記号の意味は表に示す。
Compared to 6 stones, R-IPg-BIa stones are extremely effective as permanent magnets for linear motors in terms of supply and price. In terms of magnetic properties, R
-Nd-F, - exhibiting excellent characteristics among -F and -B magnets
A comparison between the B magnet and the 13m-Co magnet is shown in FIG. 7. The meaning of each symbol is shown in the table.

表  2 嘉7図は、Nd−The−B磁石の特性値を100とし
てE m −G o @石の特性値を示したものである
Table 2, Figure 7, shows the characteristic values of the E m -G o @ stone, with the characteristic value of the Nd-The-B magnet being 100.

リニアモータに用いる場合に望ましい条件の中で。Within the desired conditions when used in linear motors.

Brの温度係数が大きいことのみがR−F、−B磁石の
欠点であるが、常温での使用ではほとんど問題とならず
、不敗のcmの置換によってかなり改善されるため、リ
ニアモータの磁石としての問題点とはならない。
The only drawback of R-F and -B magnets is that the temperature coefficient of Br is large, but this is hardly a problem when used at room temperature, and it can be improved considerably by replacing the undefeated cm, so it is suitable as a magnet for linear motors. This is not a problem.

つぎに、第1図に示したリニアモータにおける磁石特性
と、リニアモータ特注の関係について説明を加える。一
般に、コイル電圧gjとコイル変位Xの関係は第2図に
示すようなブロック線図で表わされる。
Next, the relationship between the magnetic characteristics of the linear motor shown in FIG. 1 and the custom-made linear motor will be explained. Generally, the relationship between coil voltage gj and coil displacement X is represented by a block diagram as shown in FIG.

ここで、  K、=l/KF T□=L/R T2 =m e R/ K F” と1表わされ、各変数の意味は表3に示す。Here, K, = l/KF T□=L/R T2 = m e R / K F” The meaning of each variable is shown in Table 3.

表  3 第4図は、リニアモータの推力特性を表すパラメータで
ある力定数IFと、磁気回路の磁束密度Bmとの関係を
示したグラフであり、B等の増加に伴ってKFが増加す
る。磁石形状を同一とした場合には、R−Fg−B磁石
は、Bm−Co磁石に比べてBmが大きくとれるためK
Fが増加して推力特性が向上する。
Table 3 FIG. 4 is a graph showing the relationship between the force constant IF, which is a parameter representing the thrust characteristics of the linear motor, and the magnetic flux density Bm of the magnetic circuit, and KF increases as B, etc. increases. When the magnet shapes are the same, the R-Fg-B magnet has a larger Bm than the Bm-Co magnet, so the K
F increases and thrust characteristics improve.

また第3図に示すような位置決め!!構のアクチュエー
タとしてリニアモータを用いる場合、アンプ4のゲイン
には位置決め誤差を小さくするためになるべく大きく設
定したいが、制御系の安定性を確保するために上限が定
まる。lK5図は、Kの上限と、先に示した”1*Tl
の関係を示す図で、安定限界曲線の下側にTls TR
によりて決まる点Pが存在する必要があり、K(Q増加
によって安定限界曲線6は図中に示す矢印の方向へ移動
するために、Pが安定限界曲線上に存在する状態がKの
上限である。ここでBfnt−増加させるとT雪が減少
しKを大きく設定できる。つまり従来08m−C。
Also, position as shown in Figure 3! ! When a linear motor is used as the actuator of the system, the gain of the amplifier 4 should be set as large as possible in order to reduce positioning errors, but an upper limit is set to ensure the stability of the control system. The lK5 diagram shows the upper limit of K and the “1*Tl” shown earlier.
In this diagram, Tls TR is below the stability limit curve.
There must exist a point P determined by Here, if Bfnt- is increased, T snow will decrease and K can be set larger. In other words, conventional 08m-C.

磁石を、R−7,−Bl@5[変えて、Bmt大きくす
ると、推力特注が向上し、位置決め!1情のアクチェエ
ータとして、リニアモータを用^る場合に制御ゲインを
高く設定することが可能となる。
If you change the magnet to R-7, -Bl@5 and increase Bmt, the thrust customization will improve and positioning will be improved! When using a linear motor as an actuator, it is possible to set a high control gain.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、リニアモータの永久
磁石にR+yl+n磁石を用りたことにより、高い推力
特性が得らル、位置決め!!!噂のアクチェエータとし
て用りた場合、従来のam−C。
As described above, according to the present invention, by using R+yl+n magnets as the permanent magnets of the linear motor, high thrust characteristics can be obtained and positioning can be achieved! ! ! When used as the rumored actuator, the conventional am-C.

磁石を用いた場合よりも制御ゲインを高く設定できるた
めに5位置決め誤差を小さくすることができる。
Since the control gain can be set higher than when a magnet is used, the positioning error can be reduced.

またコスト的な問題としてFi、資源としてSrnやC
,に比べて豊富なN d ’P ’F gを用いるため
に。
In addition, Fi is a cost issue, and Srn and C are resources.
, to use N d ′P ′F g, which is abundant compared to .

現在すでにR−Fg−Be1石はEim−Co磁石より
も有利な状態にあるので、リニアモータのコストは低く
抑えることが可能で、きわめてコストパフォーマンスの
高いリニアモータを実現できる。
Since the R-Fg-Be1 stone is already in a more advantageous state than the Eim-Co magnet, the cost of the linear motor can be kept low, and a linear motor with extremely high cost performance can be realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明のリニアモータ構造図。 窮2図は、リニアモータブロック線図。 嬉3図は、位置決め機構ブロック線図。 第4図は、力定数変化特注図。 第5図は、安定限界説明図。 第6図は、従来の磁石特性比較図。 窮7図は、サマリウム・コパル)4石と、希土類−鉄一
ボロン磁石の特性比較図。 范8図は、主要鉱石中の希土類元累誉有詮グラフであり
、!8図(α>1iモナザイト鉱石、同<b> tit
パストネザイト鉱石を示す。 以上
FIG. 1 is a structural diagram of a linear motor of the present invention. Figure 2 is a linear motor block diagram. Figure 3 is a block diagram of the positioning mechanism. Figure 4 is a custom diagram of force constant changes. FIG. 5 is an explanatory diagram of stability limits. FIG. 6 is a comparison diagram of conventional magnet characteristics. Figure 7 is a comparison diagram of the characteristics of a samarium/copal (samarium/copal) 4-stone magnet and a rare earth-iron-boron magnet. Figure 8 is a graph of rare earth elements in major ores, and! Figure 8 (α>1i monazite ore, same <b> tit
Indicates pastonezite ore. that's all

Claims (2)

【特許請求の範囲】[Claims] (1)磁気回路に永久磁石を用いたリニアモータにおい
て、基本組成が希土類金属(R)、鉄(Fe)、および
ボロン(B)からなる希土類永久磁石を用いたことを特
徴とするリニアモータ。
(1) A linear motor using permanent magnets in a magnetic circuit, characterized in that a rare earth permanent magnet whose basic composition is a rare earth metal (R), iron (Fe), and boron (B) is used.
(2)前記Feの一部をコバルト(Co)等Fe以外の
少なくとも1種の遷移金属群で置換した特許請求の範囲
第1項記載のリニアモータ。
(2) The linear motor according to claim 1, wherein a part of the Fe is replaced with at least one transition metal group other than Fe, such as cobalt (Co).
JP10867985A 1985-05-21 1985-05-21 Linear motor Pending JPS61266056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10867985A JPS61266056A (en) 1985-05-21 1985-05-21 Linear motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10867985A JPS61266056A (en) 1985-05-21 1985-05-21 Linear motor

Publications (1)

Publication Number Publication Date
JPS61266056A true JPS61266056A (en) 1986-11-25

Family

ID=14490922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10867985A Pending JPS61266056A (en) 1985-05-21 1985-05-21 Linear motor

Country Status (1)

Country Link
JP (1) JPS61266056A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888506A (en) * 1987-07-09 1989-12-19 Hitachi Metals, Ltd. Voice coil-type linear motor
US5162063A (en) * 1989-11-14 1992-11-10 Hitachi Metals Ltd. Magnetically anisotropic r-t-b magnet
US5292380A (en) * 1987-09-11 1994-03-08 Hitachi Metals, Ltd. Permanent magnet for accelerating corpuscular beam
DE19804488A1 (en) * 1998-02-05 1999-08-19 Mannesmann Sachs Ag Electrical machine with stator and rotor

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4888506A (en) * 1987-07-09 1989-12-19 Hitachi Metals, Ltd. Voice coil-type linear motor
US5292380A (en) * 1987-09-11 1994-03-08 Hitachi Metals, Ltd. Permanent magnet for accelerating corpuscular beam
US5162063A (en) * 1989-11-14 1992-11-10 Hitachi Metals Ltd. Magnetically anisotropic r-t-b magnet
US5286308A (en) * 1989-11-14 1994-02-15 Hitachi Metals Ltd. Magnetically anisotropic R-T-B magnet
DE19804488A1 (en) * 1998-02-05 1999-08-19 Mannesmann Sachs Ag Electrical machine with stator and rotor

Similar Documents

Publication Publication Date Title
Strnat Modern permanent magnets for applications in electro-technology
Kirchmayr Permanent magnets and hard magnetic materials
Brown et al. Developments in the processing and properties of NdFeb-type permanent magnets
JPH04500300A (en) Small single phase electromagnetic actuator
JPH06942B2 (en) Rare earth permanent magnet
US3495147A (en) Magnetic positioning device for computer disc files and other uses
Livingston The history of permanent-magnet materials
JPS61266056A (en) Linear motor
Enz Magnetism and magnetic materials: Historical developments and present role in industry and technology
Coey Rare-earth magnets
JPS6076110A (en) Assembling and magnetizing method for magnetic circuit
Marcos The straight attraction
Gould Permanent magnets
Lee The future of rare earth‐transition metal magnets of type RE2TM17
Zijlstra Trends in permanent magnet material development
JPH066775B2 (en) Rare earth permanent magnet
Leupold et al. High‐coercivity 2: 17 cobalt rare‐earth magnets
JP3680648B2 (en) Permanent magnet type motor and other permanent magnet application equipment
JPH06244047A (en) Manufacture of resin bonded permanent magnet
Fiepke Permanent magnet materials
JP3023512B2 (en) Ferromagnetic material
Strnat A REVIEW OF RARE-EARTH PERMANENT MAGNETS, APPLICATIONS AND PROSPECTS
JP2929217B2 (en) Ferromagnetic material
Campbell et al. The effect of the magnetization distribution within anisotropic alnico magnets upon field calculation
JPS61281505A (en) Magnetizing method of rare earth magnet