JPS61264187A - Method for electrolyzing aqueous solution - Google Patents

Method for electrolyzing aqueous solution

Info

Publication number
JPS61264187A
JPS61264187A JP61009834A JP983486A JPS61264187A JP S61264187 A JPS61264187 A JP S61264187A JP 61009834 A JP61009834 A JP 61009834A JP 983486 A JP983486 A JP 983486A JP S61264187 A JPS61264187 A JP S61264187A
Authority
JP
Japan
Prior art keywords
cathode
plating
alloy
ions
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61009834A
Other languages
Japanese (ja)
Other versions
JPS6353273B2 (en
Inventor
Keiji Kawasaki
計二 川崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP61009834A priority Critical patent/JPS61264187A/en
Publication of JPS61264187A publication Critical patent/JPS61264187A/en
Publication of JPS6353273B2 publication Critical patent/JPS6353273B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To drop the hydrogen overvoltage in an electrolytic cell and to reduce the quantity of electric power used when an aqueous soln. of an alkali metallic halide is electrolyzed, by using an electrode obtd. by plating the surface of Ti or a Ti alloy with an Fe-Co alloy as the cathode. CONSTITUTION:An aqueous soln. of an alkali metallic halide such as NaCl is electrolyzed in an electrolytic cell to produce NaOH on the cathode and gaseous Cl on the anode. At this time, an electrode having an Fe-Co alloy film formed by plating on the surface of the substrate of Ti or a Ti alloy contg. Zr, Ta, Nb, Mo, Cr, Fe, V, Mn or the like is used as the cathode. The Fe-Co alloy film is formed by plating in a plating soln. of 2.5-6.0pH at 20-90 deg.C and 1-5A/dm<2> current density. The plating soln. contains 0.1-2mol/l in total of Fe ions from an Fe salt such as ferrous chloride and Co ions from a Co salt such as cobalt chloride in 0.01-0.5 ratio of Co/Fe ions and further contains starch, dextrin, poly-2-diethylaminoethyl methacrylate or polyaluminum chloride.

Description

【発明の詳細な説明】 本発明はアルカリ金属ハロゲン化物、水酸化アルカリ金
属等の水溶液電解方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for aqueous electrolysis of alkali metal halides, alkali metal hydroxides, etc.

更に詳しくは上記の電解において従来よりも水素過電圧
を著しく低減することのできる新しい陰極を用いる電解
方法を提供するものである。
More specifically, the present invention provides an electrolysis method using a new cathode that can significantly reduce hydrogen overvoltage compared to conventional electrolysis.

電解槽を用いて例えば水素、塩素及び苛性ソーダを製造
するための塩化ナトリウム水溶液の電解とか、水素、酸
素を製造するための水酸化アルカリ金属水溶液の電解を
行う場合、陰極における水素過電圧により生ずる電力効
率の損失は大きく、重大な問題である。この陰極におけ
る水素過電圧は陰極の素地2表面材質あるいは表面状態
等により著しく異なることが知られている。これら知見
からアルカリ金属ハロゲン化物とか水酸化アルカリ金属
の水溶液電解用陰極として水素過電圧の低い金属あるい
はその化合物で当該陰極基体表面を処理したものが提案
されている。例えば陰極基材に犠牲金属とニッケル等と
の合金をコーティングした陰極(特開昭5l−5487
7)、レニウムをコーティングした陰極(特開昭51−
55782.5l−83083)、陰極基材に金属粉末
溶射法にてニッケル、コバルト、白金、鉄等の粉末状金
属を密着させた陰極(特開昭52−32832)、金属
粉体溶射法にてコバルト、ジルコニア粉末混合物を被覆
させた陰極(特開昭52−36582)、同法にてニッ
ケル、コバルト粉末もしくはこれらとアルミニウム粉末
とからなる混合物で陰極基材を被覆させた陰極(特開昭
52−36583)、化学メッキ法にて陰極基材にニッ
ケル被覆させた陰極(特開昭52−110282)、同
様にニッケル、コバルト、タングステン系の合金を化学
メッキした陰極(特開昭52−133100)、あるい
は電気メツキ法にてニッケル、バナジウム、モリブデン
合金を被覆させたり(特開昭52−102888)、ハ
イドロサルファイド共存下でニッケルとモリブデンまた
はバナジウムとの合金を陰極基材に被覆させた陰極(特
許第203635号)鋼の研削粉末を基材上に焼結法に
て被覆した陰極(特開昭5l−147479)等が各種
開示されている。
When electrolyzing an aqueous sodium chloride solution to produce hydrogen, chlorine, and caustic soda, or electrolyzing an alkali metal hydroxide aqueous solution to produce hydrogen and oxygen using an electrolytic cell, the power efficiency caused by hydrogen overvoltage at the cathode The loss is large and is a serious problem. It is known that the hydrogen overvoltage at the cathode varies significantly depending on the surface material or surface condition of the cathode base 2. Based on these findings, a cathode for aqueous electrolysis of alkali metal halides or alkali metal hydroxides has been proposed in which the surface of the cathode substrate is treated with a metal or its compound having a low hydrogen overvoltage. For example, a cathode in which the cathode base material is coated with an alloy of sacrificial metal and nickel, etc.
7), Cathode coated with rhenium (Japanese Patent Application Laid-open No. 1983-
55782.5l-83083), a cathode in which powdered metals such as nickel, cobalt, platinum, iron, etc. are adhered to the cathode base material using a metal powder spraying method (Japanese Patent Laid-Open No. 52-32832), a cathode made by a metal powder spraying method. A cathode coated with a mixture of cobalt and zirconia powder (Japanese Unexamined Patent Publication No. 52-36582), a cathode whose cathode base material is coated with nickel, cobalt powder, or a mixture of these and aluminum powder using the same method (Japanese Unexamined Patent Publication No. 52-36582) -36583), a cathode in which the cathode base material is coated with nickel using a chemical plating method (JP-A-52-110282), a cathode in which a nickel, cobalt, and tungsten alloy is similarly plated chemically (JP-A-52-133100) Alternatively, a cathode in which a nickel, vanadium, or molybdenum alloy is coated by electroplating (Japanese Patent Application Laid-Open No. 52-102888), or a cathode base material is coated with an alloy of nickel and molybdenum or vanadium in the coexistence of hydrosulfide (patented patent application) No. 203635) Various cathodes have been disclosed, including a cathode in which ground steel powder is coated on a base material by a sintering method (Japanese Unexamined Patent Publication No. 51-147479).

しかしこれらの陰極はそれぞれ作成皮膜が弱い、あるい
は水素過電圧低減効果が少ない、あるいは使用金属又は
その粉末が高価であること、さらには複雑な形状の陰極
基体(例えば網状体)への均質な適用が困難等の欠点が
多い。
However, these cathodes each have weak coatings, low hydrogen overvoltage reduction effects, expensive metals or powders, and difficulty in homogeneous application to cathode substrates with complex shapes (e.g., mesh bodies). There are many drawbacks such as difficulty.

そこで本発明者は、特定の基体に種々の条件で鉄コバル
ト合金を電気メッキしてこれを陰極として使用しアルカ
リ金属ハロゲン化物、アルカリ金属水酸化物等の水溶液
の電解方法について検討した結果特定の条件下で得られ
る鉄コバルト合金メッキ物を陰極として用いることによ
り効果のあることを見出し、本発明を完成した。
Therefore, the present inventor has investigated a method for electrolyzing aqueous solutions of alkali metal halides, alkali metal hydroxides, etc. by electroplating an iron-cobalt alloy on a specific substrate under various conditions and using this as a cathode. They discovered that it is effective to use an iron-cobalt alloy plated product obtained under these conditions as a cathode, and completed the present invention.

即ち、本発明の要旨は、チタンまたはチタン合金からな
る基体の少なくとも一面に、澱粉、デキストリン、ポリ
−2−ジエチルアミノエチルメタクリレート及びポリ塩
化アルミニウムからなる群から選ばれる1つを第1鉄イ
オン及びコバルトイ    □オン濃度の合計が0.1
〜2 mol/j!、 2.5≦9H≦6.0である鉄
コバルト合金メッキ浴に添加して鉄コバルト合金を電気
メッキし、これを陰極として使用する水溶液電解方法に
ある。
That is, the gist of the present invention is to coat at least one surface of a substrate made of titanium or a titanium alloy with one selected from the group consisting of starch, dextrin, poly-2-diethylaminoethyl methacrylate, and polyaluminum chloride with ferrous ions and cobalt. □Total on concentration is 0.1
~2 mol/j! , an aqueous solution electrolysis method in which an iron-cobalt alloy is electroplated by adding it to an iron-cobalt alloy plating bath where 2.5≦9H≦6.0, and this is used as a cathode.

次に本発明において使用される陰極の製造方法を詳説す
る。
Next, the method for manufacturing the cathode used in the present invention will be explained in detail.

本発明における前記特定の基体としてはチタンまたはチ
タン合金が鉄、ニッケル、ステンレス鋼、白金族金属等
と同様に電気伝導性、機械的性質、電解液に対する耐薬
品性、メッキ層、コーティング層との接着性等の点で好
適であるが、電解槽用材料、陽極用基体としても同様に
好適で、適当なメッキまたはコーティングをすることに
より陽極にも陰極にも使用しうる。このことは単極式電
極の場合のみならず、複極式電極用基体としても有望な
ことを示すものである。
The specific substrate in the present invention is titanium or a titanium alloy, as well as iron, nickel, stainless steel, platinum group metals, etc., in terms of electrical conductivity, mechanical properties, chemical resistance to electrolytes, and compatibility with plating layers and coating layers. Although it is suitable in terms of adhesive properties, it is equally suitable as a material for electrolytic cells and a substrate for anodes, and can be used for both anodes and cathodes by applying appropriate plating or coating. This shows that it is promising not only as a substrate for monopolar electrodes but also as a substrate for bipolar electrodes.

チタンの他チタン合金も同様に用いられるが特にチタン
とジルコニウム、タンタル、ニオブ、モリブデン、クロ
ム、鉄、バナジウム、マンガン等との合金が好適である
。通常の組成はチタン以外の成分は一般に数重量%含有
されたものが適当である。
In addition to titanium, titanium alloys may also be used, but alloys of titanium with zirconium, tantalum, niobium, molybdenum, chromium, iron, vanadium, manganese, etc. are particularly suitable. In general, a suitable composition contains components other than titanium in an amount of several percent by weight.

チタンあるいはチタン合金は陰極として用いられる場合
平板型、箱型また網状体のものが一般的に用いられるが
、少くともその一面をメッキの前処理即ち、脱脂、ワイ
ヤホイル研磨、サンドブラスト等の機械的粗面化、エツ
チング等の化学的粗面化の他、金属のコーティング等の
適宜、単独または組合わせ処理をすることが本発明の構
成要件であるメッキ処理をしたメッキ層の接着性の点で
好ましい。
When titanium or titanium alloy is used as a cathode, it is generally in the form of a flat plate, a box, or a mesh.At least one surface of the titanium is subjected to pre-treatment for plating, i.e. mechanical roughening such as degreasing, wire foil polishing, sandblasting, etc. In addition to chemical roughening such as surface roughening and etching, it is preferable to perform appropriate treatments such as metal coating alone or in combination from the viewpoint of adhesion of the plated layer, which is a component of the present invention. .

電気メッキ浴への添加剤は一般にいわゆる水処理技術に
おいて、水中浮遊物の凝集剤としても用いられているも
のが好適に用いられることがわかり、澱粉、デキストリ
ン、ポリ−2−ジエチルアミノエチルメタクリレート又
はポリ塩化アルミニウムが使用されうる。これら添加剤
は通常は一種類でよいが、二種類以上併用しても悪影響
はない。
It has been found that additives to the electroplating bath are preferably those that are generally used as flocculants for suspended substances in water in so-called water treatment technology, such as starch, dextrin, poly-2-diethylaminoethyl methacrylate, or polyester. Aluminum chloride can be used. Usually one type of these additives is sufficient, but there is no adverse effect when two or more types are used in combination.

一方、これらの添加量については特に限定されるもので
はないが、多きにすぎるとメッキ層の耐剥離性、メッキ
表面の機械的強度に悪影響をもたらすので、陰極として
の使用条件に応じ添加量は決められなければならない。
On the other hand, there are no particular limitations on the amount of these additives, but if they are too large, it will have a negative effect on the peeling resistance of the plating layer and the mechanical strength of the plating surface, so the amount of addition should be determined depending on the conditions of use as a cathode. must be decided.

次に、本発明においてはメッキされる成分として鉄−コ
バルト合金が選ばれ、そのメッキ浴としては塩化第1鉄
あるいは硫酸第1鉄等の第1鉄塩と塩化コバルトあるい
は硫酸コバルト等のコバルト塩との混合溶液からなる浴
が用いられ得る。
Next, in the present invention, an iron-cobalt alloy is selected as the component to be plated, and the plating bath consists of a ferrous salt such as ferrous chloride or ferrous sulfate, and a cobalt salt such as cobalt chloride or cobalt sulfate. A bath consisting of a mixed solution of

メッキ浴のpHはメッキ皮膜に重大な影響を与える。メ
ッキ浴のpHの好適な範囲は浴の攪拌の強さの影響を受
けるがpH=2.5〜6.0である。
The pH of the plating bath has a significant effect on the plating film. The preferred pH range of the plating bath is 2.5 to 6.0, although it is influenced by the strength of bath agitation.

攪拌が弱い場合には更に低いpHにても可能であるが、
メッキ面の均質性に問題が生じる。
If the stirring is weak, it is possible to lower the pH, but
Problems arise with the uniformity of the plated surface.

メッキ浴中の第一鉄イオン及びコバルトイオンの濃度は
両者の含量が0.1 mol/ R〜2 mol/ 1
が良く、更に好ましくは0.4 n+ol/ 1〜1.
7 mol/!が良い。
The concentration of ferrous ions and cobalt ions in the plating bath is such that the content of both is 0.1 mol/R~2 mol/1
is good, more preferably 0.4 n+ol/1 to 1.
7 mol/! is good.

第一鉄イオンとコバルトイオンの比率は特に限定される
ものでは無いが、実用的にはCo / F e=0.0
1〜0.5が好ましい。
The ratio of ferrous ions and cobalt ions is not particularly limited, but practically Co/Fe=0.0
1 to 0.5 is preferred.

第一鉄イオンとコバルトイオンの濃度の合量が前記範囲
よりも大になると活性の無いメッキ表面を生成しやすく
なり陰極としての水素過電圧低減効果が著減する。濃度
をこの範囲よりも小にすると、メッキ皮膜の耐剥離性、
電流効率等の面で問題を生じる。また、特許第2067
43号ではメッキ浴に第二鉄塩の存在を必須条件とし、
生成メッキ層中に酸化鉄を含有させようとしているが、
本発明においては鉄−コバルト合金メッキ浴に前記の添
加剤を共存させることを構成要件の1つとして特に第二
鉄塩、酸化鉄の添加を必要とせず、一方pH条件によっ
ては第二鉄塩、酸化鉄は生成し易いが、生成してもまた
沈澱分離しても害とならないためpH条件をそれだけ広
くとりうるメリットは大きい。
If the total concentration of ferrous ions and cobalt ions exceeds the above range, an inactive plated surface is likely to be formed, and the effect of reducing hydrogen overvoltage as a cathode is significantly reduced. If the concentration is lower than this range, the peeling resistance of the plating film,
This causes problems in terms of current efficiency, etc. Also, Patent No. 2067
No. 43 requires the presence of ferric salt in the plating bath,
I am trying to include iron oxide in the generated plating layer, but
In the present invention, one of the constituent requirements is the coexistence of the above-mentioned additives in the iron-cobalt alloy plating bath, and there is no need to add ferric salts or iron oxides. Although iron oxide is easily produced, it does not cause any harm even if it is produced or separated by precipitation, so there is a great advantage that the pH conditions can be set as wide as possible.

メッキ浴の電導度を増大させる等の為に、慣用的に添加
される塩化カルシウム等の無機塩の添加は、必要に応じ
なし得る。但しアンモニウムイオンを含む塩は、当該メ
ッキの生成を妨害するので避けなければならない。
In order to increase the electrical conductivity of the plating bath, an inorganic salt such as calcium chloride, which is conventionally added, may be added as necessary. However, salts containing ammonium ions must be avoided because they interfere with the formation of the plating.

前記金属イオン濃度の比較的低いメッキ浴の場合にはメ
ッキ液の電導度が小さいので、上記の無機塩の添加は有
用である。但し多量に添加すると、メッキ陰極の水素過
電圧低減の効果が減じる。
In the case of a plating bath having a relatively low concentration of metal ions, the conductivity of the plating solution is low, so the addition of the above-mentioned inorganic salt is useful. However, if a large amount is added, the effect of reducing the hydrogen overvoltage of the plating cathode will be reduced.

メッキ浴の温度は、慣用のメッキ温度(約20〜90℃
)が採用され得、特に限定されるものではないが70℃
以上が好ましい。
The temperature of the plating bath is the conventional plating temperature (approximately 20 to 90 degrees Celsius).
) may be adopted, but is not particularly limited to 70°C.
The above is preferable.

メッキ時の電流密度は、慣用の条件(1〜5A/di”
)が適当である。更に大なる電流密度にても可能ではあ
るが、表面状態が荒れて来、また耐剥離性が悪化してく
る。また前記よりも小なる電流密度にても可能ではある
がメッキ皮膜の耐剥離性等が悪化して来る。
The current density during plating is under the conventional conditions (1 to 5 A/di"
) is appropriate. Even higher current densities are possible, but the surface condition becomes rough and the peeling resistance deteriorates. Although it is possible to use a current density lower than the above, the peeling resistance of the plating film deteriorates.

またメッキ浴は、慣用の電気メツキ操作にて行なう程度
の攪拌を行なう事が好ましい。但し空気攪拌すれば第一
鉄イオンが酸化され不要の第二鉄化しやす(、避けなけ
ればならない。そのために窒素ガス攪拌等非酸化性ガス
攪拌が上記の点で好ましい。
Further, it is preferable that the plating bath be stirred to the extent that it is used in conventional electroplating operations. However, if air agitation is used, ferrous ions are easily oxidized and converted to unnecessary ferric iron (this must be avoided. Therefore, agitation with a non-oxidizing gas such as nitrogen gas agitation is preferred from the above point of view).

以下実施例を用いて本発明の詳細な説明する。The present invention will be described in detail below using Examples.

実施例1〜5 第1表に示した条件でメッキ処理した陰極板をチタン板
に酸化ルテニウムを被覆した陽極と対置し、塩素酸ナト
リウム100 g/l、塩化ナトリウム240 g/l
、水酸化ナトリウム4g/lの水溶液中に浸漬し温度4
5℃で電解を行ない、電流密度10 A/dm” 、 
20 A/dm” 、 30 A/dm”の各条件にお
ける慣用の軟鋼板製陰極(研磨紙で研磨)に対する水素
過電圧の低減量を効果とじて同表下欄に示す。なお陰極
電位はルギン毛細管を通じて飽和カロメル電極により測
定した。
Examples 1 to 5 A cathode plate plated under the conditions shown in Table 1 was placed opposite an anode made of a titanium plate coated with ruthenium oxide, and sodium chlorate was 100 g/l and sodium chloride was 240 g/l.
, immersed in an aqueous solution of 4 g/l of sodium hydroxide at a temperature of 4.
Electrolysis was carried out at 5°C with a current density of 10 A/dm,
The lower column of the same table shows the reduction in hydrogen overvoltage compared to a conventional mild steel plate cathode (polished with abrasive paper) under conditions of 20 A/dm" and 30 A/dm". The cathode potential was measured using a saturated calomel electrode through a Luggin capillary.

実施例6〜14 第2表に示した条件で作成した陰極の、水電解における
軟鋼板陰極に対する水素過電圧の低下量を電流密度に対
応させて測定した結果を同表下欄に示す。
Examples 6 to 14 The lower column of the table shows the results of measuring the decrease in hydrogen overvoltage of the cathodes prepared under the conditions shown in Table 2 relative to the mild steel plate cathode in water electrolysis in response to current density.

陰極電位は前記メッキ処理した軟鋼板を45℃、10重
量%水酸化ナトリウム水溶液中に純ニツケル板の陽極に
対置し、浸漬し、ルギン毛細管を通じて飽和カロメル電
極により測定した。
The cathode potential was measured by immersing the plated mild steel plate in a 10% by weight aqueous sodium hydroxide solution at 45°C, opposite to a pure nickel plate anode, and using a saturated calomel electrode through a Luggin capillary tube.

また前記軟鋼板陰極としては、研磨紙#80にて研磨し
た軟鋼板を用いた。
Further, as the mild steel plate cathode, a mild steel plate polished with #80 abrasive paper was used.

実施例15 第3表に示した条件でメッキ処理した陰極金網上にアス
ベストを沈着させて、アスベスト隔膜用陰極とし、チタ
ン金網上に酸化ルテニウムを被覆した陽極と対置し、温
度70℃、電流密度20A/dm”にて水酸化ナトリウ
ム製造用の飽和食塩水のアスベスト隔膜法電解を行なっ
た。
Example 15 Asbestos was deposited on a cathode wire mesh plated under the conditions shown in Table 3 to serve as a cathode for an asbestos diaphragm, and placed opposite to an anode coated with ruthenium oxide on a titanium wire mesh at a temperature of 70°C and a current density. Asbestos diaphragm electrolysis of saturated saline solution for producing sodium hydroxide was carried out at 20 A/dm''.

慣用の軟鋼金網陰極(ワイヤブラシにて研磨)に対する
メッキ処理陰極の電解電圧の低減効果を同表下欄に示す
The lower column of the same table shows the electrolysis voltage reduction effect of the plated cathode compared to the conventional mild steel wire mesh cathode (polished with a wire brush).

実施例16 第4表に示した条件で作成した陰極板を65℃、30重
量%水酸化カリウム水溶液中に純ニッケルの陽極に対置
浸漬し電流密度20A/dm2にて水電解を行った。電
解の結果、電解電圧は同表に示すようにかなりの低下が
見られた。
Example 16 A cathode plate prepared under the conditions shown in Table 4 was immersed opposite a pure nickel anode in a 30% by weight potassium hydroxide aqueous solution at 65° C., and water electrolysis was performed at a current density of 20 A/dm 2 . As a result of electrolysis, the electrolytic voltage decreased considerably as shown in the same table.

比較例1〜5 第5表に示した条件でメッキ処理した陰極板を対象とし
て実施例1〜5と比較した。
Comparative Examples 1 to 5 Comparisons were made with Examples 1 to 5 using cathode plates plated under the conditions shown in Table 5.

比較例6〜11 第6表に示したメッキ浴条件で作成した陰極の水電解に
おいて軟鋼板に対する水素過電圧の低下量を各電流密度
条件に対応させて測定した結果を同表下欄に示した。陰
極電位測定法、軟鋼板陰極及びその表面処理は実施例6
〜14と同一とした。
Comparative Examples 6 to 11 The lower column of the table shows the results of measuring the reduction in hydrogen overvoltage for mild steel plates in water electrolysis using cathodes prepared under the plating bath conditions shown in Table 6, corresponding to each current density condition. . Cathode potential measurement method, mild steel plate cathode and its surface treatment are shown in Example 6
-14.

第   3   表 第   4   表Table 3 Table 4

Claims (1)

【特許請求の範囲】[Claims] チタンまたはチタン合金からなる基体の少なくとも一面
に、澱粉、デキストリン、ポリ−2−ジエチルアミノエ
チルメタクリレート及びポリ塩化アルミニウムからなる
群から選ばれる1つを第1鉄イオン及びコバルトイオン
濃度の合計が0.1〜2mol/l、2.5≦pH≦6
.0である鉄コバルト合金メッキ浴に添加して鉄コバル
ト合金を電気メッキし、これを陰極として使用する水溶
液電解方法。
At least one surface of a substrate made of titanium or a titanium alloy is coated with one selected from the group consisting of starch, dextrin, poly-2-diethylaminoethyl methacrylate, and polyaluminum chloride so that the total concentration of ferrous ions and cobalt ions is 0.1. ~2mol/l, 2.5≦pH≦6
.. An aqueous solution electrolysis method in which an iron-cobalt alloy is electroplated by adding it to an iron-cobalt alloy plating bath, and this is used as a cathode.
JP61009834A 1986-01-22 1986-01-22 Method for electrolyzing aqueous solution Granted JPS61264187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61009834A JPS61264187A (en) 1986-01-22 1986-01-22 Method for electrolyzing aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61009834A JPS61264187A (en) 1986-01-22 1986-01-22 Method for electrolyzing aqueous solution

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP9423079A Division JPS5620179A (en) 1979-07-26 1979-07-26 Preparation of cathode for electrolysis of aqueous solution of alkali metal halogenide

Publications (2)

Publication Number Publication Date
JPS61264187A true JPS61264187A (en) 1986-11-22
JPS6353273B2 JPS6353273B2 (en) 1988-10-21

Family

ID=11731156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61009834A Granted JPS61264187A (en) 1986-01-22 1986-01-22 Method for electrolyzing aqueous solution

Country Status (1)

Country Link
JP (1) JPS61264187A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174162A (en) * 2010-02-25 2011-09-08 Vantec:Kk Electrode for alkaline water electrolysis, method for manufacturing the same, and hydrogen generator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02286027A (en) * 1989-04-28 1990-11-26 Hamata Seibaku Kk Pest control and fungusproofing for grain and feed granule

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011174162A (en) * 2010-02-25 2011-09-08 Vantec:Kk Electrode for alkaline water electrolysis, method for manufacturing the same, and hydrogen generator

Also Published As

Publication number Publication date
JPS6353273B2 (en) 1988-10-21

Similar Documents

Publication Publication Date Title
US4543265A (en) Method for production of a cathode for use in electrolysis
JP3188361B2 (en) Chrome plating method
MXPA01003960A (en) Cathode for electrolysing aqueous solutions.
US4354915A (en) Low overvoltage hydrogen cathodes
US4589969A (en) Electrode for electrolysis of solutions of electrolytes and process for producing same
EP0129734B1 (en) Preparation and use of electrodes
US3977959A (en) Anodes for electrolysis
JP3430479B2 (en) Anode for oxygen generation
JPH0257159B2 (en)
JPS61264187A (en) Method for electrolyzing aqueous solution
JPH0774470B2 (en) Manufacturing method of anode for oxygen generation
US4230543A (en) Cathode for electrolysis of aqueous solution of alkali metal halide
JPH0499294A (en) Oxygen generating anode and its production
US5827413A (en) Low hydrogen over voltage cathode and process for production thereof
JPS61264188A (en) Method for electrolyzing aqueous solution
JP3658823B2 (en) Electrode for electrolysis and method for producing the same
JPS6124475B2 (en)
US4222842A (en) Electrode for electrolysis
US5066380A (en) Electrocatalytic cathodes and method of preparation
KR940010101B1 (en) Process for the preparation of electrolytic cell cathodes
JPS6017096A (en) Production of electrode
JPS6123276B2 (en)
JPS6211075B2 (en)
JPS6293389A (en) Electrode
WO1985000389A1 (en) An electrode, processes for the manufacture thereof and use thereof