JPS61264103A - Production of high melting point metallic sintered body - Google Patents

Production of high melting point metallic sintered body

Info

Publication number
JPS61264103A
JPS61264103A JP10595785A JP10595785A JPS61264103A JP S61264103 A JPS61264103 A JP S61264103A JP 10595785 A JP10595785 A JP 10595785A JP 10595785 A JP10595785 A JP 10595785A JP S61264103 A JPS61264103 A JP S61264103A
Authority
JP
Japan
Prior art keywords
powder
molding
sintered body
melting point
powder compact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10595785A
Other languages
Japanese (ja)
Inventor
Eiji Ito
伊藤 瑛二
Masataka Sugano
菅野 正崇
Hideaki Fukuyo
秀秋 福世
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Mining Co Ltd filed Critical Nippon Mining Co Ltd
Priority to JP10595785A priority Critical patent/JPS61264103A/en
Publication of JPS61264103A publication Critical patent/JPS61264103A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To suppress the reaction of a coating material and molding during hot pressurizing and to produce a sintered body having high purity by coating preliminarily titanium nitride powder to the molding in the stage of hot pressurizing the molding consisting of high melting point metallic powder in a vacuum atmosphere, etc. CONSTITUTION:The titanium nitride is coated on the powder molding formed of the high melting point metallic powder such as molybdenum or tungsten in the stage of hot pressurizing such powder molding in the vacuum atmosphere or inert atmosphere. The titanium nitride powder adjusted to 1-10mu average grain size is suspended into a volatile org. solvent such as acetone at about 2:8-3:7 by volume and such suspension is coated on the molding so that the coating layer has about 0.5-2.5mm thickness. The reaction between the coating material and the molding is thereby suppressed and the easy removal of the reaction layer is made possible. The product having the high purity is thus obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、タングステン、モリブデンなどの高融点金属
焼結体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for producing a sintered body of a high melting point metal such as tungsten or molybdenum.

災来匹挟権 タングステン等の高融点金属の焼結体を得る方法として
、これらの金属粉末で成形した粉末成形体を真空雰囲気
もしくは不活性ガス(N 2またはAr等)雰囲気中で
熱間にて加圧焼結する方法が実用化されている。
As a method of obtaining a sintered body of a high-melting point metal such as tungsten, a powder compact made of these metal powders is hot heated in a vacuum atmosphere or an inert gas (N2 or Ar, etc.) atmosphere. A method of pressure sintering has been put into practical use.

熱間加圧法は、従来の焼結法と比較して、比較的低温で
理論密度に近い焼結体が得られるが、タングステン等の
高融点金属は、熱間では酸化しやすく酸化すると脆くな
るため、粉末成形体の表面酸化等を防止する必要がある
Compared to conventional sintering methods, the hot pressing method allows a sintered body close to the theoretical density to be obtained at a relatively low temperature, but high melting point metals such as tungsten easily oxidize in hot conditions and become brittle when oxidized. Therefore, it is necessary to prevent surface oxidation of the powder compact.

例えば、ホットプレス法では、粉末成形体を直接モール
ド内に配設して熱間加圧する場合には、熱間加圧時に粉
末成形体とモールド等を形成するカーボンとが反応し、
焼結体表面に脆い炭化物が形成される。また、粉末成形
体に均一な圧力を施すことを目的としてモールド内の粉
末圧力伝達媒体を介して粉末成形体を熱間加圧する場合
には、粉末成形体とモールド等を形成するカーボンとの
反応は防止できるが、前記粉末圧力伝達媒体中に残留す
る空気により焼結体表面に酸化物が形成される。かかる
炭化物、酸化物等の形成を防止するため、従来、粉末成
形体の表面を窒化はう素の糊状物で被覆し、この粉末成
形体を熱間加圧用モールド内に配設して、もしくはモー
ルド内の粉末圧力伝達媒体である窒化はう素粉床中に埋
設して熱間加圧を行う方法が提案されている(特開昭5
3−62709号公報)。
For example, in the hot press method, when a powder compact is placed directly in a mold and hot pressurized, the powder compact and carbon forming the mold etc. react during the hot press.
Brittle carbides are formed on the surface of the sintered body. In addition, when hot pressing a powder compact through a powder pressure transmission medium in the mold for the purpose of applying uniform pressure to the powder compact, the reaction between the powder compact and the carbon forming the mold etc. Although this can be prevented, oxides are formed on the surface of the sintered body due to the air remaining in the powder pressure transmission medium. In order to prevent the formation of such carbides, oxides, etc., conventionally, the surface of a powder compact is coated with a paste-like substance of boron nitride, and this powder compact is placed in a hot pressing mold. Alternatively, a method has been proposed in which nitride, which is the powder pressure transmission medium in the mold, is buried in a bed of boron powder and hot pressurized (Japanese Patent Laid-Open No. 5
3-62709).

日が ゛ しようとするい  1、 上述した窒化はう素を被覆する方法は、粉末成形体と当
該窒化はう素が熱間加圧時に反応し、焼結体表面に非常
にち密で硬いほう化物が形成される問題があり、熱間加
圧後、この反応層を切削や研削で除去することは困難で
あった。
1. In the method of coating the boron nitride described above, the powder compact and the boron nitride react during hot pressing, and a very dense and hard coating is formed on the surface of the sintered compact. There is a problem in that a compound is formed, and it is difficult to remove this reaction layer by cutting or grinding after hot pressing.

本発明者は、上記の問題を解決すべく鋭意検討した結果
、粉末成形体の被覆材として窒化はう素より熱的に安定
で、且つ粉末成形体との反応性が小さい窒化チタンを用
いることによって、熱間加圧時における被覆材と粉末成
形体との反応を極小に押さえ、熱間加圧終了時に焼結体
をカーボン製モールド等から取り出す場合、窒化チタン
粉末が優れた離型材の役目をなすことを見出した。
As a result of intensive studies to solve the above problems, the inventor of the present invention found that titanium nitride, which is more thermally stable than boron nitride and has less reactivity with the powder compact, should be used as a coating material for the powder compact. By minimizing the reaction between the coating material and the powder compact during hot pressurization, titanium nitride powder serves as an excellent mold release material when removing the sintered compact from a carbon mold etc. after hot pressurization. I discovered that it can be done.

本発明は、かかる知見に基づいてなされたもので、本発
明の目的は、熱間加圧時における粉末成形体と被覆材と
の反応を極小に押さえ、且つカーボン、酸素、窒素等に
よる焼結体の汚染を防止し。
The present invention was made based on such knowledge, and an object of the present invention is to minimize the reaction between the powder compact and the coating material during hot pressing, and to prevent sintering with carbon, oxygen, nitrogen, etc. Prevent body pollution.

高純度の製品を得る高融点金属焼結体の製造方法を提供
することにある。
An object of the present invention is to provide a method for producing a high-melting point metal sintered body that yields a product of high purity.

ジ 占を   るための 本発明は、高融点金属粉末で成形した粉末成形体を真空
雰囲気あるいは不活性雰囲気中にて熱間加圧する際に、
窒化チタン粉末を当該粉末成形体に塗布することからな
る高融点金属焼結体の製造方法である。
The present invention for determining the temperature is achieved by hot pressing a powder compact made of high melting point metal powder in a vacuum atmosphere or an inert atmosphere.
This is a method for producing a high melting point metal sintered body, which comprises applying titanium nitride powder to the powder compact.

本発明における高融点金属とは、タングステン、モリブ
デン、タンタル、ニオブ、レニウムおよびこれらを主体
とする合金である。
The high melting point metals in the present invention are tungsten, molybdenum, tantalum, niobium, rhenium, and alloys mainly composed of these.

本発明での粉末成形体としては、高融点金属粉末を、金
型プレス、ラバープレス等のプレスにより所定形状の粉
末成形体に成形したもの、もしくはこの成形体の強度を
高めるために、水素雰囲気中、比較的低温で仮焼結した
ものを用いても良く、さらには、前記粉末成形体または
仮焼結体を予め切削加工等で仮住上げしたものを用いて
も良い。
The powder compact in the present invention is a powder compact formed by molding high-melting point metal powder into a predetermined shape by pressing such as a mold press or a rubber press, or a powder compact formed in a hydrogen atmosphere to increase the strength of this compact. A material pre-sintered at a medium to relatively low temperature may be used, and furthermore, a powder compact or a pre-sintered material may be used that has been temporarily assembled by cutting or the like.

前記粉末成形体の熱間加圧の方法としては、例えばホッ
トプレス法や熱間静圧プレス法が用いられる。
As a method for hot pressing the powder compact, for example, a hot pressing method or a hot static pressing method is used.

本発明で用いられる粉末圧力伝達媒体とは、粉末成形体
に圧力を伝達させる媒体であり、例えば粉末状窒化はう
素や本出願人が新たに見い出した粉末状窒化チタン等が
用いられる。具体的には、例えば、上下パンチおよびモ
ールド内にこの粉末媒体を充填し、圧縮しようとする粉
末成形体を当該粉末媒体中に埋設して、圧縮する。した
がって、粉末成形体への圧力がこの粉末媒体を介してか
けられるので、圧力を上下パンチによって直接に施した
場合よりも粉末成形体への圧力は一層均一となる。
The powder pressure transmission medium used in the present invention is a medium that transmits pressure to the powder compact, and includes, for example, powdered boron nitride, powdered titanium nitride newly discovered by the applicant, and the like. Specifically, for example, upper and lower punches and a mold are filled with this powder medium, and the powder compact to be compressed is embedded in the powder medium and compressed. Therefore, since pressure is applied to the powder compact through this powder medium, the pressure on the powder compact becomes more uniform than when pressure is applied directly by upper and lower punches.

粉末成形体表面に窒化チタン粉末を塗布する方法につい
て以下に述べる。まず窒化チタン粉末を揮発性有機溶剤
中に懸濁させて懸濁液とし、次にこの懸濁液を粉末成形
体表面の全域に刷毛等で塗布するか、もしくは懸濁液中
に粉末成形体を1回あるいはそれ以上浸漬する。塗布後
、前記溶剤を大気中で揮発させて一様な窒化チタン粉末
の被覆層を得る。被覆層の厚さは、例えば0.5〜2゜
5mである。本発明で用いられる窒化チタン粉末の平均
粒径は、1〜10μmが好ましい。また。
A method for applying titanium nitride powder to the surface of a powder compact will be described below. First, titanium nitride powder is suspended in a volatile organic solvent to form a suspension, and then this suspension is applied to the entire surface of the powder compact with a brush, or the powder compact is placed in the suspension. Soak one or more times. After coating, the solvent is evaporated in the atmosphere to obtain a uniform coating layer of titanium nitride powder. The thickness of the coating layer is, for example, 0.5 to 2.5 m. The average particle size of the titanium nitride powder used in the present invention is preferably 1 to 10 μm. Also.

ここで用いられる揮発性有機溶剤としては、焼結時での
当該溶剤に起因するカーボンによる焼結体の汚拳を避け
るため、例えば、アセトン、メタノール、エタノール、
プロパツール、イソプロパツールが好ましい。さらに、
懸濁液の窒化チタン粉末と溶剤との混合割合としては、
容量比で2:8〜3ニアが好ましい。
The volatile organic solvents used here include, for example, acetone, methanol, ethanol,
Propatool and isopropatool are preferred. moreover,
The mixing ratio of titanium nitride powder and solvent in the suspension is as follows:
A capacity ratio of 2:8 to 3 is preferred.

なお、上述する方法の他の例として、窒化チタン粉末の
糊状物でもって塗布してもよいが、この場合の糊剤等と
しては、当該糊剤に起因するカーボンによる焼結体の汚
染が極力少ないものが好ましい。
In addition, as another example of the above-mentioned method, coating may be performed using a paste-like material of titanium nitride powder, but in this case, the paste etc. may be used to prevent contamination of the sintered body by carbon caused by the paste. It is preferable to have as little as possible.

以下に、発明の一実施態様としてホットプレス法の場合
について説明する。
Below, a hot press method will be described as an embodiment of the invention.

高融点金属粉末を金型プレス、ラバープレス等のプレス
により、例えば500〜3000 kg/cdの成形圧
を加え、所定形状の粉末成形体に成形する。必要あれば
、さらに成形体の成形強度を高めるために、水素雰囲気
中、比較的低温で仮焼結してもよい。
The high melting point metal powder is molded into a powder compact of a predetermined shape by applying a molding pressure of, for example, 500 to 3000 kg/cd using a press such as a mold press or a rubber press. If necessary, the molded body may be pre-sintered at a relatively low temperature in a hydrogen atmosphere in order to further increase the molding strength of the molded body.

次に、熱間加圧の前段階として、前記粉末成形体の表面
に窒化チタン粉末を塗布し、この粉末成形体をカーボン
製上下パンチおよびモールド内に配設するか、もしくは
当該モールド内に充填された粉末圧力伝達媒体中に埋設
する。
Next, as a preliminary step to hot pressing, titanium nitride powder is applied to the surface of the powder compact, and the powder compact is placed in upper and lower carbon punches and a mold, or is filled into the mold. embedded in a powder pressure transmission medium.

次いで、通電による抵抗加熱体により、1800〜20
00℃の温度で加熱するとともに、カーボン製上下パン
チにより、300〜500kg/aIのプレス圧で加圧
して不活性ガス(N tまたはAr等)、もしくは真空
雰囲気中で熱間加圧を行い、所定形状で理論密度に近い
焼結体を得る。
Next, a resistance heating element is heated to 1800 to 20
While heating at a temperature of 00°C, pressurize with a press pressure of 300 to 500 kg/aI using carbon upper and lower punches, and perform hot pressing in an inert gas (Nt or Ar, etc.) or vacuum atmosphere. A sintered body having a predetermined shape and close to theoretical density is obtained.

また、他の実施態様として、熱間静圧プレス法の場合に
ついて説明する。
Further, as another embodiment, a case of hot static pressing method will be described.

前記の実施態様と同様にして成形された粉末成形体の表
面に窒化チタン粉末を塗布し、この粉末成形体を密閉金
属容器(カプセル)内の粉末圧力伝達媒体中に埋設し、
脱気封入して、これを焼結炉に置いて、温度1300〜
2000℃、圧カフ00〜2000kg/dの不活性ガ
スにより焼結を行い、所定形状で理論密度に近い焼結体
を得る。
Applying titanium nitride powder to the surface of a powder compact formed in the same manner as in the above embodiment, embedding this powder compact in a powder pressure transmission medium in a closed metal container (capsule),
After deaerating and sealing, place it in a sintering furnace and heat it to a temperature of 1300~
Sintering is performed at 2000° C. with an inert gas at a cuff pressure of 00 to 2000 kg/d to obtain a sintered body having a predetermined shape and close to theoretical density.

叉凰叢 (実施例1) 原料粉末として、粒径が1μmであるタングステン粉末
を用い、これを金型プレスにより、1700kg/aJ
の成形圧を加えて所定形状の粉末成形体に成形した後、
さらに水素雰囲気中1700℃で仮焼結し、密度比が約
90%の粉末成形体を成形した。
Chimpanzee (Example 1) Tungsten powder with a particle size of 1 μm was used as the raw material powder, and it was pressed into a mold at a rate of 1700 kg/aJ.
After applying the molding pressure to form a powder compact into a predetermined shape,
Further, it was pre-sintered at 1700° C. in a hydrogen atmosphere to form a powder compact having a density ratio of about 90%.

次に、前記粉末成形体の表面に窒化チタン粉末を塗布し
、カーボン製上下パンチおよびモールド内に配設した。
Next, titanium nitride powder was applied to the surface of the powder compact, and the powder compact was placed in upper and lower carbon punches and a mold.

次いで窒素雰囲気中、加熱温度1800℃、プレス圧5
00kg/atおよびプレス時間120分の条件で熱間
加圧を行った。熱間加圧後、焼結体をカーボン製モール
ドから容易に取り出すことができた。また、焼結体表面
の被覆材と粉末成形体との反応層は、軽い切削や研削で
除去でき、焼結体内部まで拡散侵入等の反応は観察され
なかった。
Next, in a nitrogen atmosphere, heating temperature was 1800°C and pressing pressure was 5.
Hot pressing was carried out under the conditions of 00 kg/at and 120 minutes of press time. After hot pressing, the sintered body could be easily taken out from the carbon mold. Further, the reaction layer between the coating material and the powder compact on the surface of the sintered body could be removed by light cutting or grinding, and no reactions such as diffusion and penetration into the interior of the sintered body were observed.

なお、反応層の厚さは約10μmであった。Note that the thickness of the reaction layer was about 10 μm.

この様にして得られたタングステン粉末の焼結体は、表
面酸化および内部酸化が共になく、且つカーボン、窒素
による汚染も見られず約95%の理論密度比をもつ均質
な焼結体であった。
The tungsten powder sintered body thus obtained was a homogeneous sintered body with no surface oxidation or internal oxidation, no contamination by carbon or nitrogen, and a theoretical density ratio of about 95%. Ta.

(比較例1) 実施例1と同様にして得た粉末成形体に窒化はう素粉末
を塗布し、実施例1と同じ熱間加圧条件およびプレス時
間で熱間加圧を行った。焼結体表面の反応層の厚さは約
50μmであった。この反応層を切削や研削で除去する
ことは困難であった。
(Comparative Example 1) Boron nitride powder was applied to a powder compact obtained in the same manner as in Example 1, and hot pressing was performed under the same hot pressing conditions and pressing time as in Example 1. The thickness of the reaction layer on the surface of the sintered body was about 50 μm. It was difficult to remove this reaction layer by cutting or grinding.

(実施例2) 原料粉末として、粒径が1μmであるタングステン粉末
およびモリブデン粉末を1重量比で9=1になるように
混合した後、これを金型プレスにより約2000 kg
/aJの成形圧を加えて、所定形状の粒末成形体に成形
した後、さらに水素雰囲気中1700℃で仮焼結し、密
度比が約93%の粉末成形体を成形した。
(Example 2) As raw material powders, tungsten powder and molybdenum powder with a particle size of 1 μm were mixed at a weight ratio of 9=1, and then about 2000 kg of this was mixed with a die press.
After applying a molding pressure of /aJ to form a powder compact of a predetermined shape, the powder was further pre-sintered at 1700° C. in a hydrogen atmosphere to form a powder compact with a density ratio of about 93%.

次に、前記粉末成形体の表面に窒化チタン粉末を塗布し
、カーボン製上下パンチおよびモールド内部に充填され
た粉末圧力伝達媒体である窒化チタン粉末中に埋設した
Next, titanium nitride powder was applied to the surface of the powder compact, and the powder compact was embedded in titanium nitride powder, which was a powder pressure transmission medium filled in upper and lower carbon punches and the inside of the mold.

次いで、窒素雰囲気中、加熱温度1800℃、プレス圧
500 kg/cdおよびプレス時間120分の条件で
熱間加圧を行った。熱間加圧後、焼結体表面の反応層は
、容易に切削、研削でき、焼結体内部まで拡散侵入等の
反応はi察されなかった。
Next, hot pressing was performed in a nitrogen atmosphere at a heating temperature of 1800° C., a pressing pressure of 500 kg/cd, and a pressing time of 120 minutes. After hot pressing, the reaction layer on the surface of the sintered body could be easily cut and ground, and no reaction such as diffusion into the interior of the sintered body was observed.

なお、反応層の厚さは約10μmであった。得られた焼
結体は汚染も見られず、約97%の理論密度比をもつ均
質なものであ−りた。
Note that the thickness of the reaction layer was about 10 μm. The obtained sintered body showed no contamination and was homogeneous with a theoretical density ratio of about 97%.

(比較例2) 実施例2と同様にして得た粉末成形体に窒化はう素粉末
を塗布し、実施例2と同じ熱間加圧条件およびプレス時
間で熱間加圧を行った。焼結体表面の反応層の厚さは約
50μmであった。この反応層を切削や研削で容易に除
去することはできなかった。
(Comparative Example 2) Boron nitride powder was applied to a powder compact obtained in the same manner as in Example 2, and hot pressing was performed under the same hot pressing conditions and pressing time as in Example 2. The thickness of the reaction layer on the surface of the sintered body was about 50 μm. This reaction layer could not be easily removed by cutting or grinding.

叉1長 以上のように、本発明によれば、熱間加圧時に粉末成形
体の表面が窒化チタン粉の被覆材で覆われているため、
熱間加圧用モールドと粉末成形体とが反応せず、またカ
ーボン、酸素、窒素による焼結体の汚染もなく、且つ熱
間加圧終了時に、焼結体を熱間加圧用モールドから取り
出す場合、窒化チタン粉末が離型材の役目をなして離型
性が良好となる。
According to the present invention, since the surface of the powder compact is covered with a coating material of titanium nitride powder during hot pressing,
When there is no reaction between the hot pressing mold and the powder compact, and there is no contamination of the sintered body with carbon, oxygen, or nitrogen, and when the sintered body is taken out from the hot pressing mold at the end of hot pressing. The titanium nitride powder acts as a mold release agent, resulting in good mold release properties.

また、被覆材と粉末成形体との反応層の厚さは、被覆材
として窒化はう素を用いた場合の約115以下であり、
且つその反応層自体も脆いため、熱間加圧後この反応層
を切削や研削で容易に除去することがセきると言う格別
の効果を奏する。
Further, the thickness of the reaction layer between the coating material and the powder compact is about 115 or less when boron nitride is used as the coating material,
Moreover, since the reaction layer itself is brittle, this reaction layer can be easily removed by cutting or grinding after hot pressing, which is a special effect.

この様にして得られる焼結体は、高融点金属の高純度焼
結体として実用的価値がきわめて大である。
The sintered body thus obtained has extremely high practical value as a high purity sintered body of a high melting point metal.

Claims (1)

【特許請求の範囲】[Claims] 高融点金属粉末で成形した粉末成形体を真空雰囲気ある
いは不活性雰囲気中にて熱間加圧する際に、窒化チタン
粉末を当該粉末成形体に塗布することを特徴とする高融
点金属焼結体の製造方法。
A high melting point metal sintered body characterized in that titanium nitride powder is applied to the powder compact formed from the high melting point metal powder when the powder compact is hot pressed in a vacuum atmosphere or an inert atmosphere. Production method.
JP10595785A 1985-05-20 1985-05-20 Production of high melting point metallic sintered body Pending JPS61264103A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10595785A JPS61264103A (en) 1985-05-20 1985-05-20 Production of high melting point metallic sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10595785A JPS61264103A (en) 1985-05-20 1985-05-20 Production of high melting point metallic sintered body

Publications (1)

Publication Number Publication Date
JPS61264103A true JPS61264103A (en) 1986-11-22

Family

ID=14421293

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10595785A Pending JPS61264103A (en) 1985-05-20 1985-05-20 Production of high melting point metallic sintered body

Country Status (1)

Country Link
JP (1) JPS61264103A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107470625A (en) * 2017-08-15 2017-12-15 唐山国丰钢铁有限公司 A kind of powder metallurgy process for preparing high-purity material
JP2020002434A (en) * 2018-06-28 2020-01-09 東邦チタニウム株式会社 Manufacturing method of metallic reduction reaction vessel including diffusion layer, manufacturing method of high melting point metal, and coating material for metallic reduction reaction vessel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107470625A (en) * 2017-08-15 2017-12-15 唐山国丰钢铁有限公司 A kind of powder metallurgy process for preparing high-purity material
JP2020002434A (en) * 2018-06-28 2020-01-09 東邦チタニウム株式会社 Manufacturing method of metallic reduction reaction vessel including diffusion layer, manufacturing method of high melting point metal, and coating material for metallic reduction reaction vessel

Similar Documents

Publication Publication Date Title
JP5456949B2 (en) Method for producing polycrystalline cubic boron nitride cutting tool insert
AU2011244998B2 (en) Method for the manufacture of a shaped body as well as green compact
US4339271A (en) Method of manufacturing a sintered powder body
EP0345045A1 (en) Method of making tungsten-titanium sputtering targets
US4564601A (en) Shaped polycrystalline silicon carbide articles and isostatic hot-pressing process
JPS6190735A (en) Method and apparatus for manufacturing green compact
JPS61264103A (en) Production of high melting point metallic sintered body
Parr et al. Structural aspects of silicon nitride
JPS6337072B2 (en)
JPH0515367Y2 (en)
JPH03122059A (en) Preparation of powdered ceramic product
JPS63222075A (en) Manufacture of high density sintered body
JP2004250725A (en) Boride ceramics for electrode, electrode obtained by using the same, and method of producing boride ceramics for electrode
JP3270798B2 (en) Method for producing silicon carbide sintered body
JPS5867804A (en) Method and apparatus for forming anti-wear film
JP3121400B2 (en) Manufacturing method of tungsten sintered body
JPS61264104A (en) Production of high melting point metallic sintered body
JPH08175871A (en) Silicon carbide-based sintered body and its production
JPH062011A (en) Production of powder compact
JP4566296B2 (en) Method for producing titanium nitride sintered body
JPS59217675A (en) Silicon nitride reaction sintered body composite material and manufacture
JPS5935974B2 (en) Manufacturing method for tungsten carbide tool materials
JPH0348253B2 (en)
JPH0641615A (en) Production of aluminum sintered porous material
JPH05263177A (en) Manufacture of nb3al intermetallic compound base alloy having a15 type crystalline structure