JPS5867804A - Method and apparatus for forming anti-wear film - Google Patents

Method and apparatus for forming anti-wear film

Info

Publication number
JPS5867804A
JPS5867804A JP16646881A JP16646881A JPS5867804A JP S5867804 A JPS5867804 A JP S5867804A JP 16646881 A JP16646881 A JP 16646881A JP 16646881 A JP16646881 A JP 16646881A JP S5867804 A JPS5867804 A JP S5867804A
Authority
JP
Japan
Prior art keywords
powder layer
metal
metal powder
layer
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16646881A
Other languages
Japanese (ja)
Inventor
Michio Sato
道雄 佐藤
Tetsuo Fujiwara
藤原 鉄雄
Katsuhiko Kawakita
川北 勝彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Tokyo Shibaura Electric Co Ltd filed Critical Toshiba Corp
Priority to JP16646881A priority Critical patent/JPS5867804A/en
Publication of JPS5867804A publication Critical patent/JPS5867804A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/08Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools with one or more parts not made from powder

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To form an anti-wear film with high density easily in the thickness control thereof, by a method wherein the layer of a metal powder prepared by containing B, Si, Fe and C in Ni-Cr or Cr-Co-Ni is formed on the surface of a metal and this powder layer is sintered under pressure. CONSTITUTION:A recessed part 3 is formed to the inside surface 2 of a cylindrical metal body 1 and a metal powder prepared by containing B, Si, Fe and C in a Ni-Cr base alloy or a Cr-Co-Ni base alloy as essential components is coated to the formed recessed part by using a binder to form a metal powder layer 4. To the entire periphery of the inside surface 2, a cylinder 5 comprising a thin plate is fixed to hold the metal powder layer 4 in a gastight state. This metal body 1 is contained in a container 8 and the metal powder layer 4 is subjected to compression treatment by supplying a high pressure gas such as an Ar gas from a bomb 10 by using a pressure increasing device 11. In this case, the metal body 1 is heated by a high frequency induction coil 9 and the gas contained in the powder layer 4 is degassed through an exhaust orifice 7 by operating vacuum pump 12. After cooling, the exhaust orifice 7, the cylinder 5 and a protruded part are removed by cutting.

Description

【発明の詳細な説明】 本発明は耐摩性被覆の形成方法及びそれに用いる装置に
係り、更に詳しくは、金属体の表面に、厚さの制御が容
易である、高密度の被覆層を形成し得ると共に1処理工
程が短かく、製品歩留りの高い耐摩耗性被覆の形成方法
及びそれに用いる装置に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for forming a wear-resistant coating and an apparatus used therefor, and more particularly, the present invention relates to a method for forming a wear-resistant coating and an apparatus used therefor. The present invention relates to a method for forming an abrasion-resistant coating that is easy to obtain, requires a short processing step, and has a high product yield, and an apparatus used therefor.

各種の機械、機構などにおいては、その動作の榊静上互
いに摺動することが余儀なくされる構成部品が数多く存
在するが、それらを構成する金一体表面は、当然高度の
耐摩耗性が要求される0沸−水彩原子炉(BWR)の制
御棒駆動機構もその一例であり、制御棒を炉心に出し入
れする際に、スペーサ、ロックプラグ、ソケット、ピス
トンヘッド、マグネットハウジング、ストップピストン
、ナツト、スパッドなどの部品が摺動するためすぐtま
た耐摩耗性を有することが望まれる。
In various machines and mechanisms, there are many component parts that are forced to slide against each other during their operation, and the solid metal surfaces that make up these parts naturally require a high degree of wear resistance. One example of this is the control rod drive mechanism of a zero-boiling watercolor reactor (BWR). Since the parts such as these slide, it is also desirable that they have wear resistance.

そこで、BWRの制御棒駆動機構部品の摺動向、例えば
スペーサの内側表面などは、表面の耐摩耗性を高めるぺ
く、シかるべき被覆処理を施すことが行われている。従
来、かかる方法としては、溶射法又は溶射溶着法を用い
て金属体表面に耐摩耗性金属被覆を形成することが行わ
れていた。しかし1、溶射法は、被処理表面のサンドブ
ラスト処理、溶射による耐摩耗性金属粉末のvKきつけ
、溶着処理などの工程が必要で、処理工程が長く被覆層
厚さの制御が困難でその上、被覆金属層に空孔が生じ易
いために歩留りが低いという欠点があった。
Therefore, the sliding surfaces of the control rod drive mechanism parts of the BWR, such as the inner surface of the spacer, are coated with a coating to increase the wear resistance of the surface. Conventionally, such a method involves forming a wear-resistant metal coating on the surface of a metal body using a thermal spraying method or a thermal spray welding method. However, 1. Thermal spraying requires steps such as sandblasting the surface to be treated, applying VK of wear-resistant metal powder by thermal spraying, and welding, making it difficult to control the coating layer thickness. There was a drawback that the yield was low because voids were likely to be formed in the coating metal layer.

溶射溶着法は、自溶性合金を用いて、金属粉末の吹きつ
け一溶着を1工程で行うため若干工程が簡単にIkるが
処理に長時間を要するため極めて処理効率が低く、被覆
金属層に空孔が生じ易く歩留りが低い(高々80%)と
いう欠点があった。
Thermal spray welding uses a self-fluxing alloy and performs spraying and welding of metal powder in one step, making the process a little simpler, but it takes a long time to process, resulting in extremely low processing efficiency, and the coating metal layer It has the disadvantage that voids are easily formed and the yield is low (80% at most).

本発明の目的は、従来の耐摩耗性被覆の形成方法が有し
ていた上述の欠点を解消して、厚さの制御が容易である
、高密度の被覆層を形成し得ると共に1処理工程が短か
く、製品歩留りの高い耐摩耗性被覆の形成方法及びそれ
に用いる装置を提供することにある。
It is an object of the present invention to overcome the above-mentioned drawbacks of conventional methods for forming wear-resistant coatings, to form a high-density coating layer whose thickness is easy to control, and to form a coating layer in one processing step. The object of the present invention is to provide a method for forming a wear-resistant coating that has a short time and a high product yield, and an apparatus used therefor.

即ち、本発明の耐摩耗性被覆の形成方法は、金属体の表
面に耐摩耗性被覆を形成する方法であって、金属体の表
面上に、ニッケル(Ni)とクロム(Cr)、又はクロ
ム(Cr)とコバルト(Co)とニッケル(Ni)を主
成分とし、ホウ素(B)、ケイ素(Si)、鉄(Fe)
及び炭素(C)を含む金属粉末層を形成した後、該粉末
層を加圧焼結することを特徴とするものである。
That is, the method for forming a wear-resistant coating of the present invention is a method for forming a wear-resistant coating on the surface of a metal body, and the method includes forming a wear-resistant coating on the surface of a metal body. (Cr), cobalt (Co) and nickel (Ni) as main components, boron (B), silicon (Si), iron (Fe)
After forming a metal powder layer containing carbon (C) and carbon (C), the powder layer is pressure sintered.

本発明に使用される金属粉末は、上記の如く、Ni −
Cr基(Ni : 70〜90 lit%、Cr r 
10〜30重量%)又はCr −Co −Ni基(Cr
:15〜25重量%、Co : 45〜65重ffi外
、Ni : 20〜30重it%)で33. 3i、 
 Fe及びCを必須成分とlて含むものである。主成分
として含まれるNi −Cr又はCr −Co −Ni
 F!約80〜90重1it%か好ましい。また、Bは
1〜4重蓋%、Slは3〜5′vNh1%、Feは4〜
5重1%そしてCは0,6〜0.9申m%含まれること
が好ましい。金属粉末には、に記の成分のほかに、fj
A(Cu)が5まれてもよく、こねらを添tillする
と被処理表面と被覆金属〜との接合強度が向上する。ま
た、モリブデン(Vo) 、タングステン(W)、炭化
タングステン(WC)を沁加してもよく、これらは耐摩
耗性を一層関める効果がある。
As mentioned above, the metal powder used in the present invention is Ni-
Cr group (Ni: 70-90 lit%, Cr
10 to 30% by weight) or Cr-Co-Ni groups (Cr
: 15-25% by weight, Co: 45-65% by weight, Ni: 20-30% by weight). 3i,
It contains Fe and C as essential components. Ni-Cr or Cr-Co-Ni contained as main components
F! About 80-90% by weight or 1 it% is preferred. In addition, B is 1-4%, Sl is 3-5'vNh1%, and Fe is 4-4%.
Preferably, the content is 1% by weight and C is 0.6 to 0.9 m%. In addition to the ingredients listed below, the metal powder contains fj
A(Cu) may be added to the coating, and adding kneading improves the bonding strength between the surface to be treated and the coating metal. Furthermore, molybdenum (Vo), tungsten (W), and tungsten carbide (WC) may be added, and these have the effect of further improving wear resistance.

使用する金属粉末は上記の各成分金属の粉末を混合した
ものでもよく、一部又は全部を合金化したものの粉末で
もよい。
The metal powder used may be a mixture of powders of the above-mentioned component metals, or may be a powder obtained by alloying some or all of the component metals.

なお、金属体がBWRの制御棒駆動機構のごとく原子炉
の構成部M、である場合には、コノマルトを含むことは
好ましくないので、Ni −Cr基の金属粉末を用いる
ことが望ましい。その他、特殊な事情がない限り、Ni
 −Cr基でもCr−Co−Ni  基でも使用可能で
、十分な耐摩耗性被覆を形成することができる。
In addition, when the metal body is a component M of a nuclear reactor such as a control rod drive mechanism of a BWR, it is not preferable to include conomalt, so it is preferable to use a Ni-Cr based metal powder. Unless there are other special circumstances, Ni
Either a -Cr group or a Cr-Co-Ni group can be used to form a sufficiently wear-resistant coating.

金属粉末の粒径祉100〜325メツシュが好ましく、
均一な被覆層を得るために粒径分布の幅は111Iφ方
が望ましい。
The particle size of the metal powder is preferably 100 to 325 mesh,
In order to obtain a uniform coating layer, the width of the particle size distribution is preferably 111Iφ.

本発明方法を適用して、例えば、板状、柱状等の単純な
形吠を有する金属体の平面部に耐摩耗性被覆を形成する
場合においては、例えば、金属体の表面上に、前記金属
粉末の薄層状もしくは根状の圧粉体を当接し、又は前記
金属粉末に適宜の結合剤を加えて得られる混合粉末を塗
着して、金属体の表面上に金属粉末層を形成し、該粉末
〜をホツF−プレスを用いて加圧焼結する方法が適用可
能である。この場合、焼結を真空中又はアルゴン、ヘリ
ウム略の不活性ガス中で行なうのが好ましい。
When applying the method of the present invention to form a wear-resistant coating on a flat surface of a metal body having a simple shape such as a plate or a column, for example, the metal Forming a metal powder layer on the surface of the metal body by contacting a powder compact in the form of a thin layer or root shape, or by applying a mixed powder obtained by adding an appropriate binder to the metal powder, A method of pressure sintering the powder using a hot F-press is applicable. In this case, sintering is preferably carried out in vacuum or in an inert gas such as argon or helium.

また、前述した、板状、柱状等の金属体の平面部をはじ
めとして、例えば、円筒状金属体の内側表−1等、比較
的初雑な形状を有する被処理表面にも個用iJ能な本発
明方法としては、金属体の表面−1−vこ前記金属粉末
に適宜の結合剤を加えて得られる混合粉末を塗着するな
どして、金属粉末層を形成L7た後、該粉末層に高圧気
体を作用させながら加熱[7て、該粉末層を加圧焼結す
る方法が挙げらfする。
In addition to the above-mentioned planar parts of metal bodies such as plates and columns, the individual iJ function can also be applied to surfaces to be treated that have relatively rough shapes, such as the inner surface of a cylindrical metal body. In the method of the present invention, a metal powder layer is formed by applying a mixed powder obtained by adding an appropriate binder to the metal powder on the surface of the metal body. Examples include a method in which the layer is heated while applying high-pressure gas, and then the powder layer is sintered under pressure.

この場合、前記金属粉末層上に、軟鋼等の薄肉板を冠着
して、該薄肉板を介して高圧気体を作用させると、金属
粉末層の全体が等圧圧縮される為に好ましい。また前記
薄肉板により前記金属粉末層を気密状態としておくと、
加圧焼結による金属粉末層の緻密化か良好に達成される
In this case, it is preferable to cap the metal powder layer with a thin plate made of mild steel or the like and apply high pressure gas through the thin plate because the entire metal powder layer is compressed under equal pressure. Further, if the metal powder layer is kept in an airtight state by the thin plate,
Densification of the metal powder layer by pressure sintering is well achieved.

この方法においては、前記金掬粉末層に、常温で高UE
気体を作用させるなどして、加圧焼結工程のMitに、
予め1、該粉末層を圧縮処理すると、金属粉末間の接触
面積か増加し熱伝導性が向上して金属粉末層の焼結性が
高まる。更には、気密状態とされた前記金属粉末層に含
まれる気体を、加圧焼結工程の前及び/又は加圧焼結時
に脱気処理すると、讃化物等の不純物の形成原因となる
、空気、もしくは結合剤等の気体成分を、粉末層から除
去でき、  ゛       加圧焼結に際して、金属
粉末層内が真空状態となると共に、高圧気体による加圧
が効率良く行なえる為に好ましい。
In this method, the powder layer has high UE at room temperature.
Mit in the pressure sintering process by applying gas, etc.
1. When the powder layer is compressed in advance, the contact area between the metal powders increases, the thermal conductivity improves, and the sinterability of the metal powder layer increases. Furthermore, if the gas contained in the metal powder layer made into an airtight state is degassed before and/or during the pressure sintering process, air will be removed, which causes the formation of impurities such as sulfides. Alternatively, a gaseous component such as a binder can be removed from the powder layer. ``During pressure sintering, the inside of the metal powder layer becomes a vacuum state, and pressurization with high-pressure gas can be performed efficiently, which is preferable.

前記高圧気体は、アルゴン、ヘリウム等の不活性ガスで
あることが好ましい。焼結温度は、前記金属粉末の結晶
粒が成長を起す温度より低温度、即ち、1020〜10
80℃、更には、1025〜1050℃であることが好
ましい。
The high pressure gas is preferably an inert gas such as argon or helium. The sintering temperature is lower than the temperature at which crystal grains of the metal powder grow, that is, 1020 to 10
The temperature is preferably 80°C, more preferably 1025 to 1050°C.

次に、被処理表面が、例えば、BWRの制御棒駆動機構
に用いられるスペーサの如き、円筒状金属体の内側表面
である場合について、添付した図面に即して1本発明方
法の一実施態様を詳細に説明する。
Next, in the case where the surface to be treated is the inner surface of a cylindrical metal body, such as a spacer used in a control rod drive mechanism of a BWR, an embodiment of the method of the present invention will be described below in accordance with the attached drawings. will be explained in detail.

第1図は、本発明方法を適用して、円筒成金一体の内側
表面上に金属粉末層を形成した状態を示した、模式図で
ある。
FIG. 1 is a schematic diagram showing a state in which a metal powder layer is formed on the inner surface of a cylindrical metal forming unit by applying the method of the present invention.

第2図は、本発明の耐摩耗性被覆の形成装置1゛■の構
成、及び該製電を用いて、金属粉末層を加圧焼結処理す
る状態を円クシた模式図である。
FIG. 2 is a schematic diagram illustrating the configuration of the wear-resistant coating forming apparatus 1'' of the present invention and the state in which a metal powder layer is subjected to pressure sintering using the electric generator.

第1図の例では、円筒状全編体1の内側表面2の全1r
、lに亘って四部3が形成されており、該四部3内に、
前記金属粉末に例えばカルがキシメチル十ルロース塩(
CMC)等適宜の結合剤を加えて得らt]た混合粉末を
植着・充填して、金属粉末層4が形ハyされている。
In the example of FIG. 1, the entire 1r of the inner surface 2 of the cylindrical whole body
, l, a four part 3 is formed, and within the four part 3,
For example, if Cal is added to the metal powder, oxymethyl tenululose salt (
A mixed powder obtained by adding an appropriate binder such as CMC) is implanted and filled to form a metal powder layer 4.

前記内側表面2上の全周に亘って軟鋼等の薄肉板から成
る円筒5か、内側表面上端及び下端の各凸部6,6′に
溶接により固定して取付けられており、該円115によ
り、前記金属粉末層4が気密状態とされている。該粉末
層4の気密性を、例えばフロン又はヘリウム漏洩検知器
で検査すると良−8上端の凸部6には、該粉末層に含ま
れる気体な脱気するための排気孔7が設けられている。
A cylinder 5 made of a thin plate of mild steel or the like is fixedly attached by welding to each of the convex parts 6 and 6' at the upper and lower ends of the inner surface over the entire circumference of the inner surface 2, and by the circle 115. , the metal powder layer 4 is in an airtight state. When the airtightness of the powder layer 4 is inspected using, for example, a Freon or helium leak detector, it is found that the protrusion 6 at the upper end of the powder layer 4 is provided with an exhaust hole 7 for degassing the gas contained in the powder layer. There is.

かくして、金一体の表面上に形成した金属粉末層を加圧
焼結する、本発明の装置は、 表向上に金属粉末層を形成した金一体を内部に収容する
気密容器と、 該容器内にあって、収容される金属体を加熱する加熱器
と、 前記容器内に高圧気体を供給するガス供組源と、から基
本的には構成される。
Thus, the apparatus of the present invention for pressurizing and sintering the metal powder layer formed on the surface of the gold body includes: an airtight container that houses the gold body with a metal powder layer formed on the surface thereof; It basically consists of a heater that heats the metal body contained therein, and a gas supply source that supplies high-pressure gas into the container.

第1図と同一要素を同一符号で表わすと、第2図の例で
は、高温高圧力容器用鋼材および合金鋼材等から成る気
密容器8内に、高周波誘導コイル9が設けられており、
収容される、金属粉末層4を形成した金属体IK周設す
る様疋配置されている。前記容器9の外部Kld、アル
ゴンガスがンベ10が配置されており、増圧器11を介
して容器内に高圧気体を供給する。12IIi、前記容
器内に収容された金属体の排気孔と接続して、金属粉末
層4内の気体を脱気する為の真空ポンプである。
The same elements as in FIG. 1 are represented by the same symbols. In the example of FIG. 2, a high-frequency induction coil 9 is provided in an airtight container 8 made of steel for high-temperature, high-pressure vessels, alloy steel, etc.
The metal body IK on which the metal powder layer 4 is formed is arranged so as to surround the metal body IK. An argon gas tank 10 is placed outside Kld of the container 9, and supplies high pressure gas into the container via a pressure intensifier 11. 12IIi, a vacuum pump connected to the exhaust hole of the metal body housed in the container to evacuate the gas in the metal powder layer 4;

第2図に示した装置を用いて耐摩耗性被覆を形成するk
あたっては、金属粉末層4を形成した金属体1を、容器
8内の所定の位置に収容して、排気孔7を真空ボンデ1
2と接続した後、ボンベ1゜及び増圧器11を用−て、
常温で容器8内に高圧気体を供給して、金属粉末層4を
圧縮処理する。
Forming a wear-resistant coating using the apparatus shown in Figure 2
In this case, the metal body 1 on which the metal powder layer 4 has been formed is housed in a predetermined position in the container 8, and the exhaust hole 7 is connected to the vacuum bonder 1.
After connecting with 2, using cylinder 1° and pressure intensifier 11,
High-pressure gas is supplied into the container 8 at room temperature to compress the metal powder layer 4.

次いで、真空ボンダ12を作動させて、前記粉末層4に
含まれる気体な脱気する。このときに、前記コイル9を
用い°(、金属体を400〜500℃に加熱すると、粉
末層に含まれる酸素、結合剤等の排出が容易となる為に
好ましい。脱気処理は、金属粉末層内の真空度をI X
 10−” torr以下とすべく行うのが好ましく、
処理後に排気孔を圧接溶接して密封しても良い。
Next, the vacuum bonder 12 is operated to remove the gas contained in the powder layer 4. At this time, it is preferable to use the coil 9 and heat the metal body to 400 to 500 degrees Celsius because oxygen, binder, etc. contained in the powder layer can be easily discharged. The degree of vacuum in the layer is I
It is preferable to carry out the process at a temperature of 10-” torr or less,
After the treatment, the exhaust hole may be sealed by pressure welding.

かくして常温圧縮処理及び脱気処理を施した後、前記+
Rンペ10から容器8内に高圧気体を供給すると共に、
前記コイル9により加熱して、金属粉末層4を加圧焼結
する。この加圧焼結に際しては、前記真空ボンノ12を
作動させて、粉末層4を脱気処i、:lq していても
良い。
After performing the room temperature compression treatment and deaeration treatment, the +
While supplying high pressure gas from the R pump 10 into the container 8,
The metal powder layer 4 is heated by the coil 9 and sintered under pressure. During this pressure sintering, the powder layer 4 may be deaerated by operating the vacuum bonnet 12.

第2図の例は、被処理金一体1個の場合について例示し
たのであるが、例えば、同一の気密容器内に複数の加熱
器を設けて、同時に2個以上の金属体を加圧焼結処理す
ることもできる。
The example in Fig. 2 is for the case of one piece of metal to be processed, but for example, if multiple heaters are provided in the same airtight container, two or more metal pieces can be pressure sintered at the same time. It can also be processed.

次いで、かくして金属粉末層を加圧焼結処理した金属体
を、冷却後、容器内から取り出し、切削力ILL等によ
り、排気孔、円筒、或ψけ凸部略を取除いて、内側表面
に耐摩耗性被覆を形成した円筒状金属体を得る。
Next, after cooling, the metal body with the metal powder layer subjected to pressure sintering treatment is taken out from the container, and the exhaust hole, cylinder, and convex portion are removed by cutting force ILL, etc., and the inner surface is A cylindrical metal body provided with a wear-resistant coating is obtained.

本発明の耐摩耗性被覆の形成方法及びそれに用いる装置
によれば、金属体の表面上に、通常け1〜S諺の範Hで
厚さの制御が容易であり一且っ高密度の被覆層を形成す
ることができる。また、加圧焼結を、粉末層に高圧気体
を作用させながらjn」熱して行なう方法によれば、高
密度で偏析の少ない被覆層が得られる。
According to the method for forming a wear-resistant coating of the present invention and the apparatus used therefor, the thickness can be easily controlled and a high-density coating can be formed on the surface of a metal body, usually in the range of 1 to layers can be formed. Further, according to a method in which pressure sintering is performed by heating the powder layer while applying high-pressure gas, a coating layer with high density and less segregation can be obtained.

且つ、サンドブラスト処理といった工程が省略され、粉
末層の厚さ及び焼結時の加圧力等を調節することにより
、−回の処理で所望厚さの被覆層を得ることができる為
に、処理工程が簡便であると共に、形成される被覆層中
で炭化物が微細で均一に分布し、全断面に亘って均一な
性能を有するに至り、被覆層に空孔を生ずるきいった不
都合も解消されて為製品歩留りも高いものとなる。
In addition, the process of sandblasting is omitted, and by adjusting the thickness of the powder layer and the pressing force during sintering, it is possible to obtain a coating layer with a desired thickness in just one process. In addition to being simple, the carbide is fine and uniformly distributed in the coating layer that is formed, resulting in uniform performance over the entire cross section, and the inconvenience of creating pores in the coating layer is eliminated. Therefore, the product yield is also high.

従って、本発明方法は1、BWRの制御棒駆動機構に用
いられる前記のスペーサをはじめとする各種部品等、耐
摩耗性を必要とされる摺動部品に耐摩耗性被覆を形J2
しする方法とし゛(極めて有用なものである。
Therefore, the method of the present invention is as follows: 1. Applying a wear-resistant coating to sliding parts that require wear resistance, such as the above-mentioned spacers and other parts used in the control rod drive mechanism of the BWR.
This is an extremely useful method.

実kij例 大略、第1図及び第2図で小した、本発明方法及び装置
を用いて、スペーサの内側表面に耐摩耗性被覆を形成し
た。
EXAMPLE A wear-resistant coating was formed on the inner surface of a spacer using the method and apparatus of the present invention, illustrated schematically in FIGS. 1 and 2.

il)、1図及び第2図と同一要素を同一符号で表わす
と、5US304から成り、外径1061Jl’s内?
¥87朋、長さ130龍のスペーサlの内側表面2に形
成された四部3に、Ni74%(重it%、以下同じ)
 、Cr 13.5%、B3.0%、St 4.25 
%、CO,75%、p’e4.0%から成り、平均粒径
3f1mの混合粉末に、史にmm比で4.0%のカルが
キシメチルセルロース塩(CMC)を加えて得られた混
合粉末を塗着、充填して金属粉末層4を得た。
il), the same elements as in Figures 1 and 2 are represented by the same symbols, and are made of 5US304 and have an outer diameter of 1061Jl's.
87 yen, 74% Ni (weight it%, the same applies hereinafter) to the four parts 3 formed on the inner surface 2 of the spacer l with a length of 130 mm
, Cr 13.5%, B 3.0%, St 4.25
%, CO, 75%, and p'e 4.0%, and the average particle size is 3f1m. A metal powder layer 4 was obtained by applying and filling powder.

次いで、前記内側表面2上の全周に亘って薄肉の面一板
から成る円筒5を冠着し、(!1部6,6′に溶接して
取付けると共に、前記臼&6に排気孔7を股“りた。
Next, a cylinder 5 made of a thin flat plate is attached over the entire circumference of the inner surface 2, and is attached by welding to the (!1 parts 6 and 6'), and an exhaust hole 7 is made in the mortar &6. Crotch "Rita."

かくして、金−粉末層4を形成した金属体1を気密客器
8内に収容し、アルゴンガスデンペ10及び増圧器11
を用いて、室温にて、容器内にFF力300 kliJ
/aIのアルゴンガスを供給して、該粉末層4を円筒5
を介して等圧圧縮した後、高1.!1・波誘導コイル9
を用いて、450℃に加熱し、真空−ン7’12により
粉末層を脱気して、該粉末層をI X 10−4 to
rrの真空度とした。次いで、かくして常温圧縮゛及び
脱気、処理された金属粉末層を1025’C1aML、
圧力1ooky/alのアルゴンガスを容器内に供給し
て30分間保持し、該粉末層を加圧焼結した。
Thus, the metal body 1 with the gold powder layer 4 formed thereon is housed in an airtight chamber 8, and the argon gas pump 10 and the pressure intensifier 11 are placed inside the airtight chamber 8.
Apply an FF force of 300 kliJ to the container at room temperature using
/aI of argon gas is supplied to transfer the powder layer 4 to the cylinder 5.
After isobaric compression via high 1. ! 1. Wave induction coil 9
The powder layer was heated to 450° C. using a vacuum tube 7'12, and the powder layer was heated to
The degree of vacuum was set to rr. Next, the thus cold-pressed and degassed metal powder layer was made into 1025'C1aML,
Argon gas at a pressure of 1ooky/al was supplied into the container and maintained for 30 minutes to sinter the powder layer under pressure.

かくして金属粉末層に加圧焼結を施されたスペーサを冷
却後、容器から取出し、切削加工により、排気孔、円筒
、凸部等を取除いて、内側表面に耐摩耗性被覆を形成し
たスペーサ20個を得た。
After the spacer with the metal powder layer subjected to pressure sintering is cooled, it is taken out from the container, and the exhaust hole, cylinder, protrusion, etc. are removed by cutting, and a wear-resistant coating is formed on the inner surface of the spacer. I got 20 pieces.

次に、得られたスペーサ20個を切断し、被覆層断面を
顕微鏡にて観察したところ、ステンレス鋼と強固に接合
し、偏析の少ないものであり、被覆層の全体に亘って均
一に、微細な炭化物が分布していた。製品歩留りは95
%以上であった。
Next, we cut 20 of the obtained spacers and observed the cross section of the coating layer under a microscope. It was found that the coating layer was firmly bonded to stainless steel, had little segregation, and was uniformly distributed over the entire coating layer. Carbide was distributed. Product yield is 95
% or more.

かくして本発明方法により耐拳耗性被櫃層を形J& L
 fQスペーサ20個と、比較例として、従来の石刷法
により厚さ1.5〜211mの耐摩耗外被M層をル、b
yシたスペーサを、切断後、機械加工によりアムスラ一
式摩耗試験用固定試験片を作製し、該試し・片をアムス
ラー貼耗試験様に懸け、次に示す条刺下で、耐摩に試験
を行った。知行距離(m)と馳耗鰍の関係を第3図に示
した。
Thus, by the method of the present invention, a wear-resistant layer can be formed into J&L.
20 fQ spacers and, as a comparative example, a wear-resistant outer covering M layer with a thickness of 1.5 to 211 m was made using the conventional stone printing method.
After cutting the spacer, a fixed test piece for the Amsler set wear test was prepared by machining, and the test piece was hung in the Amsler adhesion test, and the wear resistance was tested under the following stripes. Ta. Figure 3 shows the relationship between the travel distance (m) and the number of ejaculations.

〈I耗試ト条件〉 相手材ニステライト 何重:4ゆ/d 林i=2.5 m/ sec 第3図からル」らかな様に、本発明方法により得らhる
被曹層は、従来の溶射法により得られた被−にノに比べ
、耐箪糺性に優れたものである。
<Abrasion test conditions> Counterpart material Nysterite weight: 4 Yu/d Lin i = 2.5 m/sec From Figure 3, it is clear that the carbonate layer obtained by the method of the present invention is It has superior stain resistance compared to coatings obtained by conventional thermal spraying methods.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明方法を適用して、円筒状金属体の内側
表面上Vこ金属粉末層をか成した状紬を示した、模式図
であイ)。 81′32図は、本仇、明の耐摩耗性被覆の形成鉄製の
結処理する状態を示した模式図である。 第3図は、本発明に係る被覆金属層(曲mA)と従来の
溶射法による被覆金属層(曲線B)について耐摩耗性を
比較して示した曲線図である。 1・・・円筒状金属体S2・・・内側表面、3・・・凹
部、4・・・金属粉末層、5・・・円筒、6・・・凸部
、7・・・排気孔、8・・・気密答器、9・・・高周波
誘導コイル、1゜・・・ガスがンベ、11・・・増圧器
、12・・・真空ボンダ。 肩 擦翻酢(xlo’in)
FIG. 1 is a schematic diagram showing a pongee in which a metal powder layer is formed on the inner surface of a cylindrical metal body by applying the method of the present invention. Figures 81' and 32 are schematic diagrams illustrating the state in which the wear-resistant coating of the present invention is formed on iron. FIG. 3 is a curve diagram comparing the wear resistance of the coated metal layer according to the present invention (curve mA) and the coated metal layer formed by the conventional thermal spraying method (curve B). DESCRIPTION OF SYMBOLS 1... Cylindrical metal body S2... Inner surface, 3... Recessed part, 4... Metal powder layer, 5... Cylinder, 6... Convex part, 7... Exhaust hole, 8 ... Airtight reactor, 9 ... High frequency induction coil, 1° ... Gas tank, 11 ... Pressure intensifier, 12 ... Vacuum bonder. Shoulder rubbing vinegar (xlo'in)

Claims (1)

【特許請求の範囲】 1 金属体の表面に耐摩耗性被覆を形成する方法であっ
て、金属体の表面上に、ニッケルとノrロム、又ハクロ
ムとコバルトとニッケルを主成分とし、ホウ素、ケイ素
、鉄及び炭素をaむ金属粉末層を形成した後、該粉末層
を加圧焼結することを特徴とする耐JIl耗性被覆の形
成方法。 2 加圧焼結を、金属粉末層上に冠着した薄肉性を介し
て、該粉末層に高圧気体を作用させながら加熱して行な
う特許請求の範囲11JIJf記載の方法1 3 金属粉末層を、加圧焼結工程の前に、予め、祁温で
圧縮処理する特許請求の範囲第1項記載の方法。 4、加圧焼結工程の前及び/又は加圧焼結時に、金属粉
末層に含まれる気体を特徴とする特許請求の範囲第1項
記載の方法。 5、金属体の表面に耐摩耗性被覆を形成する装置であっ
て、 表面上に金属粉末層を形成した金属体を内部に収容する
気密容器と、 該容器内にあって、収容される金属体を加熱する加熱器
と、         も前記容器内に高圧気体を供給
するガス供給源と、 から成り、前記金属体の表面上に形成した金属粉末層を
加圧焼結する装置。
[Claims] 1. A method of forming a wear-resistant coating on the surface of a metal body, which coats the surface of the metal body with nickel, norrom, or hachrome, cobalt, and nickel as main components, boron, A method for forming a JIl wear-resistant coating, which comprises forming a metal powder layer containing silicon, iron, and carbon, and then pressure-sintering the powder layer. 2. Method 1 according to claim 11 JIJf, in which pressure sintering is performed by heating the powder layer through a thin layer capped on the metal powder layer while applying high-pressure gas to the powder layer. 2. The method according to claim 1, wherein a compression treatment is performed at a high temperature before the pressure sintering step. 4. The method according to claim 1, characterized in that gas is contained in the metal powder layer before and/or during the pressure sintering step. 5. An apparatus for forming a wear-resistant coating on the surface of a metal body, comprising: an airtight container that houses the metal body with a metal powder layer formed on the surface thereof; and a metal housed in the container. An apparatus for pressurizing and sintering a metal powder layer formed on the surface of the metal body, comprising: a heater for heating the body; and a gas supply source for supplying high-pressure gas into the container.
JP16646881A 1981-10-20 1981-10-20 Method and apparatus for forming anti-wear film Pending JPS5867804A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16646881A JPS5867804A (en) 1981-10-20 1981-10-20 Method and apparatus for forming anti-wear film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16646881A JPS5867804A (en) 1981-10-20 1981-10-20 Method and apparatus for forming anti-wear film

Publications (1)

Publication Number Publication Date
JPS5867804A true JPS5867804A (en) 1983-04-22

Family

ID=15831950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16646881A Pending JPS5867804A (en) 1981-10-20 1981-10-20 Method and apparatus for forming anti-wear film

Country Status (1)

Country Link
JP (1) JPS5867804A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174805A (en) * 1983-10-21 1985-09-09 ヨツト.ビゼマン ベルバルツングス− ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Manufacture of metal composite matter
JPS61218869A (en) * 1985-03-22 1986-09-29 Kubota Ltd Construction and manufacture for cylinder with high resistance to abrasion and erosion
JPH01177304A (en) * 1988-01-08 1989-07-13 Sumitomo Heavy Ind Ltd Manufacture of member having porous layer
JPH02163306A (en) * 1988-12-15 1990-06-22 Nippon Steel Corp Manufacture of surface coating metal
JPH02173237A (en) * 1988-12-27 1990-07-04 Kazuo Ichii Sintered alloy for surface hardening
JP2008303408A (en) * 2007-06-05 2008-12-18 Hitachi Metals Ltd Cylinder for molding machine
CN103966595A (en) * 2014-05-23 2014-08-06 中北大学 Device and method for preparing wear-resistant and rust-proof coatings on inner walls of large-diameter pipes

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60174805A (en) * 1983-10-21 1985-09-09 ヨツト.ビゼマン ベルバルツングス− ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Manufacture of metal composite matter
JPS61218869A (en) * 1985-03-22 1986-09-29 Kubota Ltd Construction and manufacture for cylinder with high resistance to abrasion and erosion
JPH01177304A (en) * 1988-01-08 1989-07-13 Sumitomo Heavy Ind Ltd Manufacture of member having porous layer
JPH02163306A (en) * 1988-12-15 1990-06-22 Nippon Steel Corp Manufacture of surface coating metal
JPH0730364B2 (en) * 1988-12-15 1995-04-05 新日本製鐵株式会社 Method for producing surface-coated metal
JPH02173237A (en) * 1988-12-27 1990-07-04 Kazuo Ichii Sintered alloy for surface hardening
JP2560816B2 (en) * 1988-12-27 1996-12-04 一男 市井 Method for producing reaction-bonded gold for surface hardening
JP2008303408A (en) * 2007-06-05 2008-12-18 Hitachi Metals Ltd Cylinder for molding machine
CN103966595A (en) * 2014-05-23 2014-08-06 中北大学 Device and method for preparing wear-resistant and rust-proof coatings on inner walls of large-diameter pipes

Similar Documents

Publication Publication Date Title
US6183690B1 (en) Method of bonding a particle material to near theoretical density
EP0517460B1 (en) Method for producing chemically bonded adherent coatings on abrasive compacts
US4810289A (en) Hot isostatic pressing of high performance electrical components
US4673549A (en) Method for preparing fully dense, near-net-shaped objects by powder metallurgy
US4339271A (en) Method of manufacturing a sintered powder body
US4108652A (en) Method for producing a sintered body of high density
JPH11504074A (en) Composite material and method for producing the same
CN108165859A (en) A kind of SPS sintering methods of large scale soap-free emulsion polymeization phase pure WC hard alloy
CN105441881B (en) The manufacturing method of chromium target and combinations thereof
JPS5867804A (en) Method and apparatus for forming anti-wear film
US4478871A (en) Method for hardfacing a ferrous base material
US6187087B1 (en) Method of bonding a particle material to near theoretical density
US2714556A (en) Powder metallurgical method of shaping articles from high melting metals
JPH0193474A (en) Bonding of ceramic
CA2440130C (en) Corrosion resistant component and method for fabricating same
García et al. Spark plasma sintering and characterization of NiCoCrAlY-Ta superalloy powder
JP7242344B2 (en) Method for producing austenitic iron alloy
Carreño-Morelli et al. 3D printing of titanium parts from titanium hydride powder by solvent jetting on granule beds
JPS6126705A (en) Formation of metallic coating surface onto metallic product by hip treatment
JPH03136846A (en) Preparation of heat-resistant and abrasion-resistant member
JPH04304A (en) Spring seat having intermetallic compound as essential body and manufacture thereof
JP4566296B2 (en) Method for producing titanium nitride sintered body
CN107999759A (en) The high temperature insostatic pressing (HIP) manufacturing process of CoCrMo powder based on PREP techniques
JP2006131952A (en) METHOD FOR PRODUCING Fe-Ti SINTERED ALLOY
JPS58199804A (en) Formation of abrasion resistant coating layer