JPS61263125A - Dry etching apparatus - Google Patents

Dry etching apparatus

Info

Publication number
JPS61263125A
JPS61263125A JP10341285A JP10341285A JPS61263125A JP S61263125 A JPS61263125 A JP S61263125A JP 10341285 A JP10341285 A JP 10341285A JP 10341285 A JP10341285 A JP 10341285A JP S61263125 A JPS61263125 A JP S61263125A
Authority
JP
Japan
Prior art keywords
gas
etching
reaction vessel
etching gas
pulse
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10341285A
Other languages
Japanese (ja)
Inventor
Noboru Kuriyama
昇 栗山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokuda Seisakusho Co Ltd
Original Assignee
Tokuda Seisakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokuda Seisakusho Co Ltd filed Critical Tokuda Seisakusho Co Ltd
Priority to JP10341285A priority Critical patent/JPS61263125A/en
Publication of JPS61263125A publication Critical patent/JPS61263125A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To etch uniformly a large number of workpieces, by supplying an etching gas of high concentration to a reaction vessel intermittently, and by applying a high-output microwave to said etching gas synchronously with the timing of introduction. CONSTITUTION:A mixed gas of CF4 and O2 from a gas source is introduced into a gas vessel 2 through a flow control valve 1 and accumulated therein in the state of high pressure. A solenoid valve 3 puts a gas flow channel in an opened state in synchronization with a pulse signal from a pulse controller 22, and the mixed gas accumulated in the gas vessel 2 is supplied as a gas pulse of high pressure to a plasma generator 4. Since a microwave power source 6 outputs a microwave synchronously with the pulse signal, the gas pulse is turned into plasma by the irradiation of the high-output microwave from a waveguide 7, and it is introduced as an active gas of high concentration into a reaction vessel 9. The active gas introduced into the reaction vessel 9 is dispersed and straightened by a dispersion plate 11 and a straightening plate 13 and then is supplied for etching of each wafer 18.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明はドライエツチング装置に係わり、特に複数の被
処理物の均一なエツチングを図れるようにしたドライエ
ツチング装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a dry etching apparatus, and more particularly to a dry etching apparatus capable of uniformly etching a plurality of objects to be processed.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来よりマイクロ波放電型のケミカルドライエツチング
(CDE)装置が知られている。CDE装置は、反応性
ガスをプラズマ発生装置でのマイクロ波を照射によって
活性化させた後、得られた活性ガスを反応容器の内部に
導くもので、エツチング室とプラズマ室とが分離されて
いるため、プラズマによるウェハへのダメージが少ない
という利点を有している。
Microwave discharge type chemical dry etching (CDE) apparatuses have been known for some time. A CDE device activates a reactive gas by irradiating it with microwaves from a plasma generator, and then introduces the resulting active gas into a reaction container, and the etching chamber and plasma chamber are separated. Therefore, it has the advantage that damage to the wafer due to plasma is small.

ところで、従来のCDE装置にあっては、エツチングガ
スを反応容器の内部に連続的に供給するとともに゛、エ
ツチングによって生成された反応生成物を連続的に排気
するようにしていた。
Incidentally, in conventional CDE apparatuses, etching gas is continuously supplied into the reaction vessel, and reaction products produced by etching are continuously exhausted.

しかしながら、近年、生産効率の向上化の要請に応える
べく、1回のエツチングで処理される被処理物の枚数を
増加させたりその被処理物の大形化が進むと、従来のガ
ス連続供給方式では次のような問題を生じるに至った。
However, in recent years, in order to meet the demand for improved production efficiency, the number of objects to be processed in one etching process has increased, and the size of the objects to be processed has become larger. This led to the following problems.

すなわち、多量のウェハを処理する場合にはウェハの設
置空間も広がるため、反応容器内部に供給されたエツチ
ングガスの濃度をウェハの設置空間の全域に亙って均一
にするのが困難になる。このため、ウェハの設置場所に
よってエツチングレートが異なってしまうという問題が
あった。このようなガス濃度の空間的な不均一性の原因
の一つに、真空下における反応生成物の挙動があげられ
る。すなわち、エツチング時においては、反応容器の内
部に活性ガスを導入すると同時にエツチングにより生じ
た反応生成物の排気を行なっているが、真空下において
は上記反応生成物が完全に排気されずに反応容器の壁面
に付着していることがある。このような付着ガスが反応
容器内の気流の変化で活性ガス中に混合され、ガス濃度
を部分的に低下させていることが考えられる。
That is, when processing a large number of wafers, the space in which the wafers are placed becomes larger, making it difficult to make the concentration of the etching gas supplied into the reaction vessel uniform over the entire space in which the wafers are placed. For this reason, there is a problem in that the etching rate varies depending on the location where the wafer is installed. One of the causes of such spatial non-uniformity in gas concentration is the behavior of reaction products under vacuum. In other words, during etching, an active gas is introduced into the reaction vessel and at the same time the reaction products generated by etching are exhausted, but under vacuum, the reaction products are not completely exhausted and the reaction products are removed from the reaction vessel. It may be attached to the wall. It is conceivable that such adhered gas is mixed into the active gas due to changes in the air flow within the reaction vessel, partially reducing the gas concentration.

〔発明の目的〕 本発明は、かかる問題に基づきなされたもので、その目
的とするところは、多数の被処理物を均一にエツチング
することができるドライエツチング装置を提供すること
にある。
[Object of the Invention] The present invention was made based on the above problem, and its object is to provide a dry etching apparatus that can uniformly etch a large number of objects to be processed.

〔発明の概要) 本発明は、従来の連続処理方式に変えてバッチ処理方式
にしたことを特徴としている。
[Summary of the Invention] The present invention is characterized by using a batch processing method instead of the conventional continuous processing method.

すなわち、本発明は、被処理物を収容する反応容器と、
この反応容器にエツチングガスを供給するエツチングガ
ス供給源との間のガス流路に、前記エツチングガスを活
性化させるプラズマ発生装置を介設してなるドライエツ
チング装置において、前記エツチングガス供給源が高濃
度エツチングガスを間欠的に前記反応容器に供給するも
のであり、かつ前記プラズマ発生装置が前記高濃度エツ
チングガスの導入タイミングに同期して前記高濃度エツ
チングガスに高出力マイクロ波を照射するものであるこ
とを特徴している。
That is, the present invention includes a reaction container that accommodates the object to be processed;
In a dry etching apparatus in which a plasma generator for activating the etching gas is interposed in a gas flow path between the etching gas supply source and the etching gas supply source that supplies the etching gas to the reaction vessel, the etching gas supply source is A concentrated etching gas is intermittently supplied to the reaction vessel, and the plasma generator irradiates the high concentration etching gas with high-power microwaves in synchronization with the introduction timing of the high concentration etching gas. It is characterized by certain things.

なお、高濃度エツチングガスは、従来の連続動作方式で
採用したガスの10〜100倍の濃度であることが望ま
しく、またマイクロ波出力も従来の10〜100倍であ
ることが望ましい。
The high concentration etching gas is preferably 10 to 100 times more concentrated than the gas used in the conventional continuous operation method, and the microwave output is also preferably 10 to 100 times the conventional one.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、高濃度のエツチングガスを間欠的に反
応容器の内部に導くようにしているので、エツチングレ
ートがエツチングガスの流量ではなくエツチングガスと
被処理物との間の反応速度にのみ依存することになる。
According to the present invention, since a highly concentrated etching gas is intermittently introduced into the reaction vessel, the etching rate is determined not by the flow rate of the etching gas but by the reaction rate between the etching gas and the object to be processed. It becomes dependent.

したがって、この場合には、空間的に多少の濃度のばら
つきを生じていても、全ての被処理物は反応速度で決ま
る均一な速度でエツチングされることになる。
Therefore, in this case, all the objects to be processed will be etched at a uniform rate determined by the reaction rate, even if there is some spatial variation in concentration.

また、この場合には高濃度のエツチングガスを用いるた
め、反応速度が極めて速く、ガスを連続供給しないこと
による反応速度の遅れを十分に吸収することができる。
Furthermore, since a highly concentrated etching gas is used in this case, the reaction rate is extremely fast, and a delay in the reaction rate due to not continuously supplying the gas can be sufficiently absorbed.

しかも、本発明は所定期間においてはガスの供給および
マイクロ波の照射を停止しているので、全体的なエツチ
ングガスの消費量および電力消費量の増大を招くことも
ない。
Moreover, since the present invention stops the gas supply and microwave irradiation for a predetermined period, the overall etching gas consumption and power consumption do not increase.

なお、反応に寄与しない反応生成物は、動作パルスのデ
ユーティ−を適当な値に選択することによってエツチン
グガスの非供給時に十分排出可能である。
Incidentally, reaction products that do not contribute to the reaction can be sufficiently discharged when the etching gas is not supplied by selecting an appropriate duty of the operation pulse.

(発明の実施例) 以下、図面を参照し、本発明の一実施例について説明す
る。
(Embodiment of the Invention) Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

第1図は本実施例に係るCDE装置を示す図である。す
なわち、図示しないガス源は、流量調整弁1を介してガ
ス容器2の導入側に接続されている。ガス容器2は、混
合ガスを一定量蓄えるものである。このガス容器2の排
出側は、電磁弁3を介してプラズマ発生装置4に接続さ
れている。そして、上記ガス源、流m!!l整弁1、ガ
ス容器2および電磁弁3によってエツチングガス供給源
が構成される。
FIG. 1 is a diagram showing a CDE device according to this embodiment. That is, a gas source (not shown) is connected to the introduction side of the gas container 2 via the flow rate regulating valve 1. The gas container 2 stores a certain amount of mixed gas. The discharge side of this gas container 2 is connected to a plasma generator 4 via a solenoid valve 3. And the above gas source, flow m! ! An etching gas supply source is constituted by the regulating valve 1, the gas container 2, and the electromagnetic valve 3.

プラズマ発生装置4は、ガス容器2から供給された混゛
合ガスを内部に導く石英管からなる放電管5と、例えば
2.45GHz、出力20kwのマイクロ波電源6と、
このマイクロ波電源6からのマイクロ波出力を上記放電
管5に伝える導波管7とで構成されている。このプラズ
マ発生装置4はプラズマ輸送管8を介して反応容器9に
接続されている。
The plasma generator 4 includes a discharge tube 5 made of a quartz tube that guides the mixed gas supplied from the gas container 2 into the inside, and a microwave power source 6 with a frequency of, for example, 2.45 GHz and an output of 20 kW.
It is comprised of a waveguide 7 that transmits the microwave output from the microwave power source 6 to the discharge tube 5. This plasma generator 4 is connected to a reaction vessel 9 via a plasma transport pipe 8.

反応容器9は、例えば全体がAQで形成されており、ガ
スの導入口および排出口近傍位置に導入ガスを分散させ
る分散板11.12と、分散されたガスを整流する整流
板13.14とを配置したものである。反応容器9の内
部にはターンテーブル15が配置されている。このター
ンテーブル15は、反応容器9の底部を気密に貫通して
設けられた回転軸16を介してモータ17に連結されて
いる。そして、ターンテーブル15の上に、被処理物と
なるウェハ18を水平に多段に載置するカセット19が
装着されている。この反応容器9の排出側は、排出1!
’20.排出弁27を介して図示しない排出系に接続さ
れている。
The reaction vessel 9 is made entirely of AQ, for example, and includes a dispersion plate 11.12 that disperses the introduced gas near the gas inlet and outlet, and a rectifier plate 13.14 that rectifies the dispersed gas. is arranged. A turntable 15 is arranged inside the reaction container 9. This turntable 15 is connected to a motor 17 via a rotating shaft 16 that is provided to pass through the bottom of the reaction container 9 in an airtight manner. A cassette 19 is mounted on the turntable 15 for horizontally placing wafers 18 to be processed in multiple stages. The discharge side of this reaction vessel 9 is discharge 1!
'20. It is connected to a discharge system (not shown) via a discharge valve 27.

一方、この装置には、パルスコントローラ22が備えら
れている。このパルスコントローラ22からのパルス信
号は、前記電磁弁3とマイクロ波電源6とに与えらてお
り、これらを上記パルス信号に同期させて駆動させるも
のとなっている。
On the other hand, this device is equipped with a pulse controller 22. The pulse signal from the pulse controller 22 is given to the electromagnetic valve 3 and the microwave power source 6, and these are driven in synchronization with the pulse signal.

このように構成されたCDE装置において、いまポリシ
リコンのエツチングを例にとると、ガス源からのCF4
および02の混合ガスは、流量弁1を介してガス容器2
に導入され、ここに高圧状態で蓄えられる。電磁弁3は
、第2図に示すようなパルスコントローラ22からのパ
ルス信号に同期してガス流路を開状態にする。したがっ
て、ガス容器2に蓄えられた混合ガスは、^圧のガスパ
ルスとしてプラズマ発生装置4に供給される。マイクロ
波電源6は、上記パルス信号に同期してマイクロ波を出
力するので、上記ガスパルスは、導波管7からの高出力
マイクロ波照射によってプラズマ化し、高濃度の活性ガ
スとなって反応容器9の内部に導入される。反応容器9
の内部に導入された活性ガスは、分散板11および整流
板13で分散・整流された後、各ウェハ18のエツチン
グに供される。
In the CDE apparatus configured in this way, taking polysilicon etching as an example, CF4 from the gas source is
The mixed gas of
and stored there under high pressure. The solenoid valve 3 opens the gas flow path in synchronization with a pulse signal from a pulse controller 22 as shown in FIG. Therefore, the mixed gas stored in the gas container 2 is supplied to the plasma generator 4 as a gas pulse at ^ pressure. Since the microwave power source 6 outputs microwaves in synchronization with the pulse signal, the gas pulse is turned into plasma by high-power microwave irradiation from the waveguide 7, becomes a highly concentrated active gas, and enters the reaction vessel 9. be introduced inside. Reaction container 9
The active gas introduced into the inside of the wafer 18 is dispersed and rectified by a dispersion plate 11 and a rectifying plate 13, and then used for etching each wafer 18.

反応容器9に導入された活性ガスは、極めて濃度が高い
ので、各ウェハ18のエツチングレートは、ガス濃度で
はなく、反応速度によって決定さ・れる。したがって、
各ウェハ18に供給される活性ガスの濃度が多少ばらつ
いてもエツチングは均一に進行する。反応生成物は、排
出管20および排出弁2)を介して連続的に、あるいは
前記ガスパルスが導入されていない期間に排出される。
Since the active gas introduced into the reaction vessel 9 has an extremely high concentration, the etching rate of each wafer 18 is determined not by the gas concentration but by the reaction rate. therefore,
Etching progresses uniformly even if the concentration of the active gas supplied to each wafer 18 varies somewhat. The reaction products are discharged via the discharge pipe 20 and discharge valve 2) continuously or during periods when said gas pulses are not introduced.

かくして、上記のようなバッチ処理を複数回繰返すこと
によってエツチングは完了する。
Thus, etching is completed by repeating the above batch process multiple times.

このように、本実施例によれば、大量のウェハを均一に
エツチングできるという効果を奏する。
Thus, according to this embodiment, a large number of wafers can be uniformly etched.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係るドライエツチング装置
の構成を示す図、第2図は同装置の動作を説明するため
の波形図である。 1・・・流量調整弁、2・・・ガス容器、3・・・電磁
弁、4・・・プラズマ発生装置、5・・・放電管、7・
・・導波管、8・・・プラズマ輸送管、9・・・反応容
器、11.12・・・分散板、13.14・・・整流板
、15・・・ターンテーブル、16・・・回転軸、17
・・・モータ、18・・・ウェハ、19・・・カセット
、20・・・排出管、2)・・・排出弁。 出願人代理人 弁理士 鈴江式彦 第1図    。 第2 図 、p−i童イ。 N
FIG. 1 is a diagram showing the configuration of a dry etching apparatus according to an embodiment of the present invention, and FIG. 2 is a waveform diagram for explaining the operation of the same apparatus. DESCRIPTION OF SYMBOLS 1... Flow rate adjustment valve, 2... Gas container, 3... Solenoid valve, 4... Plasma generator, 5... Discharge tube, 7...
... Waveguide, 8... Plasma transport tube, 9... Reaction vessel, 11.12... Dispersion plate, 13.14... Rectifier plate, 15... Turntable, 16... Rotating axis, 17
...Motor, 18...Wafer, 19...Cassette, 20...Discharge pipe, 2)...Discharge valve. Applicant's representative Patent attorney Shikihiko Suzue Figure 1. Figure 2, p-i child. N

Claims (2)

【特許請求の範囲】[Claims] (1)被処理物を収容する反応容器と、この反応容器に
エッチングガスを供給するエッチングガス供給源との間
のガス流路に、前記エッチングガスを活性化させるプラ
ズマ発生装置を介設してなるドライエツチング装置にお
いて、前記エッチングガス供給源は高濃度エッチングガ
スを間欠的に前記反応容器に供給するものであり、かつ
前記プラズマ発生装置は前記高濃度エッチングガスの導
入タイミングに同期して前記高濃度エッチングガスに高
出力マイクロ波を照射するものであることを特徴とする
ドライエッチング装置。
(1) A plasma generator for activating the etching gas is interposed in a gas flow path between a reaction container that accommodates the object to be processed and an etching gas supply source that supplies etching gas to the reaction container. In the dry etching apparatus, the etching gas supply source intermittently supplies a high concentration etching gas to the reaction vessel, and the plasma generator supplies the high concentration etching gas in synchronization with the introduction timing of the high concentration etching gas. A dry etching apparatus characterized in that it irradiates a concentrated etching gas with high-power microwaves.
(2)前記被処理物は、前記反応容器の内部に多段に配
置されたものであることを特徴とする特許請求の範囲第
1項記載のドライエッチング装置。
(2) The dry etching apparatus according to claim 1, wherein the objects to be processed are arranged in multiple stages inside the reaction vessel.
JP10341285A 1985-05-15 1985-05-15 Dry etching apparatus Pending JPS61263125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10341285A JPS61263125A (en) 1985-05-15 1985-05-15 Dry etching apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10341285A JPS61263125A (en) 1985-05-15 1985-05-15 Dry etching apparatus

Publications (1)

Publication Number Publication Date
JPS61263125A true JPS61263125A (en) 1986-11-21

Family

ID=14353333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10341285A Pending JPS61263125A (en) 1985-05-15 1985-05-15 Dry etching apparatus

Country Status (1)

Country Link
JP (1) JPS61263125A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897171A (en) * 1985-11-26 1990-01-30 Tadahiro Ohmi Wafer susceptor
US6156152A (en) * 1997-06-05 2000-12-05 Mitsubishi Denki Kabushiki Kaisha Plasma processing apparatus
US6942813B2 (en) 2003-03-05 2005-09-13 Applied Materials, Inc. Method of etching magnetic and ferroelectric materials using a pulsed bias source
US7682518B2 (en) 2003-08-28 2010-03-23 Applied Materials, Inc. Process for etching a metal layer suitable for use in photomask fabrication
US7786019B2 (en) 2006-12-18 2010-08-31 Applied Materials, Inc. Multi-step photomask etching with chlorine for uniformity control
US7790334B2 (en) 2005-01-27 2010-09-07 Applied Materials, Inc. Method for photomask plasma etching using a protected mask
US7829243B2 (en) 2005-01-27 2010-11-09 Applied Materials, Inc. Method for plasma etching a chromium layer suitable for photomask fabrication
US7879510B2 (en) 2005-01-08 2011-02-01 Applied Materials, Inc. Method for quartz photomask plasma etching
CN104975351A (en) * 2015-07-09 2015-10-14 江苏德尔森传感器科技有限公司 Sensor monocrystalline silicon etching apparatus capable of improving processing precision

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122236A (en) * 1976-04-07 1977-10-14 Tokyo Shibaura Electric Co Etching device
JPS6050923A (en) * 1983-08-31 1985-03-22 Hitachi Ltd Method of plasma surface treatment and device therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52122236A (en) * 1976-04-07 1977-10-14 Tokyo Shibaura Electric Co Etching device
JPS6050923A (en) * 1983-08-31 1985-03-22 Hitachi Ltd Method of plasma surface treatment and device therefor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4897171A (en) * 1985-11-26 1990-01-30 Tadahiro Ohmi Wafer susceptor
US6156152A (en) * 1997-06-05 2000-12-05 Mitsubishi Denki Kabushiki Kaisha Plasma processing apparatus
US6942813B2 (en) 2003-03-05 2005-09-13 Applied Materials, Inc. Method of etching magnetic and ferroelectric materials using a pulsed bias source
US7682518B2 (en) 2003-08-28 2010-03-23 Applied Materials, Inc. Process for etching a metal layer suitable for use in photomask fabrication
US7879510B2 (en) 2005-01-08 2011-02-01 Applied Materials, Inc. Method for quartz photomask plasma etching
US7790334B2 (en) 2005-01-27 2010-09-07 Applied Materials, Inc. Method for photomask plasma etching using a protected mask
US7829243B2 (en) 2005-01-27 2010-11-09 Applied Materials, Inc. Method for plasma etching a chromium layer suitable for photomask fabrication
US7786019B2 (en) 2006-12-18 2010-08-31 Applied Materials, Inc. Multi-step photomask etching with chlorine for uniformity control
CN104975351A (en) * 2015-07-09 2015-10-14 江苏德尔森传感器科技有限公司 Sensor monocrystalline silicon etching apparatus capable of improving processing precision

Similar Documents

Publication Publication Date Title
EP1401014A4 (en) Plasma processing device, and method of cleaning the same
GR3018156T3 (en) Cluster tool soft etch module and ecr plasma generator therefor.
KR102319181B1 (en) Gas supply system, gas supply control method and gas replacement method
JPS61263125A (en) Dry etching apparatus
KR101764767B1 (en) Method and apparatus for plasma processing
US11315793B2 (en) Etching method and plasma processing apparatus
JPS56102577A (en) Method and device for forming thin film
JP2005532694A5 (en)
JPH02312231A (en) Dryetching device
JPS5696841A (en) Microwave plasma treating apparatus
TWI645440B (en) Plasma processing device, thermal electron generator, plasma ignition device and method
JPS58113377A (en) Plasma treating device by microwave
JPH09330913A (en) Method and device for generating plasma
CN211016999U (en) Plasma processing system
JPH0586654B2 (en)
JP2010077489A (en) Substrate treatment apparatus
JPS5855561A (en) Carburization apparatus
JP2006318806A (en) Plasma treatment device
JPS6362325A (en) Dryetching device
JP2002100620A (en) Plasma-producing apparatus
KR960013500B1 (en) Dry etcher of semiconductor device using microwave
JPS61124125A (en) Plasma treating apparatus
JPH0521392A (en) Plasma processor
JPS61166131A (en) Plasma treatment apparatus
JP2001049439A (en) Vacuum treating device and vacuum treating method