JP2002100620A - Plasma-producing apparatus - Google Patents

Plasma-producing apparatus

Info

Publication number
JP2002100620A
JP2002100620A JP2001211529A JP2001211529A JP2002100620A JP 2002100620 A JP2002100620 A JP 2002100620A JP 2001211529 A JP2001211529 A JP 2001211529A JP 2001211529 A JP2001211529 A JP 2001211529A JP 2002100620 A JP2002100620 A JP 2002100620A
Authority
JP
Japan
Prior art keywords
vacuum vessel
processing gas
wafer
supply port
discharge chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001211529A
Other languages
Japanese (ja)
Inventor
Masato Ikegawa
正人 池川
Junichi Tanaka
潤一 田中
Yutaka Kakehi
豊 掛樋
Naoyuki Tamura
直行 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2001211529A priority Critical patent/JP2002100620A/en
Publication of JP2002100620A publication Critical patent/JP2002100620A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a plasma-producing apparatus capable of processing a wafer at a high speed without contamination. SOLUTION: A gas is jetted onto a surface of the wafer by means of a discharge chamber 7, a magnetron 1 to produce plasma inside of the discharge chamber, a wave guide, solenoids 10, 11, a quartz plate 9 to supply microwave to the discharge chamber 7, a space to reserve a gas inside of the quartz plate 9, and a quartz plate 18 having a gas-supplying outlet 17 of the one fourth of a maximum diameter of the discharge chamber or smaller.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、マイクロ波プラズ
マ生成装置に係り、特に、半導体素子基板等の試料に対
しマイクロ波プラズマを利用して処理の高速化を図るの
に好適なマイクロ波プラズマ生成装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a microwave plasma generating apparatus, and more particularly to a microwave plasma generating apparatus suitable for speeding up processing of a sample such as a semiconductor element substrate by utilizing microwave plasma. Related to the device.

【0002】[0002]

【従来の技術】従来のマイクロ波生成技術は、例えば、
ニッケイ マイクロデバイセス (NIKKEI MICRODEVICE
S)1990年8月号,88頁,図5に記載のように、マ
イクロ波を伝播する導波管内にプラズマ生成室を有し、
外部磁場とマイクロ波電界の作用によりこの導波管内に
プラズマを生成するようになっている。そして、このプ
ラズマを利用して、半導体ウエハ基板は処理される。
2. Description of the Related Art Conventional microwave generation techniques include, for example,
NIKKEI MICRODEVICE
S) August 1990, page 88, as shown in FIG. 5, having a plasma generation chamber in a microwave-propagating waveguide,
Plasma is generated in the waveguide by the action of an external magnetic field and a microwave electric field. Then, the semiconductor wafer substrate is processed using the plasma.

【0003】[0003]

【発明が解決しようとする課題】上記従来技術では、プ
ロセスガスの導入を反応副生成物の排気と無関係に設定
しているため、反応副生成物のウエハへの再付着が多
く、ウエハの汚染や処理速度の低下が問題となってい
た。
In the above prior art, since the introduction of the process gas is set independently of the exhaustion of the reaction by-products, the reaction by-products often adhere to the wafer, and the wafer is contaminated. And a reduction in processing speed has been a problem.

【0004】本発明の目的は、無汚染で高速度のウエハ
処理ができるプラズマ生成装置を提供することにある。
An object of the present invention is to provide a plasma generation apparatus capable of performing high-speed wafer processing without contamination.

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明はマイクロ波生成ガスの供給口をウエハに対
向させ、中心部に集中させた。
In order to achieve the above object, according to the present invention, the supply port of the microwave generating gas is opposed to the wafer and is concentrated at the center.

【0006】ウエハのすぐ上に形成される反応副生成物
の溜った領域を生成ガスが流れるため、反応副生成物が
排気されやすくなる。
[0006] Since the generated gas flows through the region where the reaction by-products are formed just above the wafer, the reaction by-products are easily exhausted.

【0007】[0007]

【発明の実施の形態】本発明の一実施例を図1,図2,
図3で説明する。図1は有磁場型のマイクロ波プラズマ
処理装置のブロック図である。図2,図3は発明の断面
図および平面図である。放電室1はマグネトロンであ
り、マイクロ波の発振源である。3〜6は、導波管であ
る。ここで、3は、矩形導波管であり、4は円形導波
管、6はテーパ管である。放電室7は、例えば、純度の
高いアルミ等で作られており、導波管の役目もしてい
る。8は、真空室である。9は放電室7にマイクロ波を
供給するための石英板である。10,11はソレノイド
コイルであり、放電室7内に磁場を与える。12は、半
導体素子基板(以下、ウエハ)14を載置する試料台で
あり、バイアス用電源、例えば、RF電源13が接続で
きるようになっている。16は放電室7内,真空室8内
を減圧排気するための真空ポンプ系である。15は放電
室7内にエッチング,成膜等の処理を行うガスを供給す
るガス供給系である。放電室7の石英板9の内側には、
ガス供給口17を持つ石英板18が設置され、石英板9
と石英板18との間にはガスを溜めるための空間19が
設けられている。石英板9と石英18との距離は、プラ
ズマが侵入しないように微小距離に設定される。放電室
7の側壁7′の中には通路20が設置され、通路20は
空間19とガス供給系15と連通している。放電室7に
は、ガスの排出口21が設けられ、真空室8に連通して
いる。ガス供給口17の大きさは、最大放電室の直径の
1/4以下に設定されている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention is shown in FIGS.
This will be described with reference to FIG. FIG. 1 is a block diagram of a magnetic field type microwave plasma processing apparatus. 2 and 3 are a sectional view and a plan view of the invention. The discharge chamber 1 is a magnetron, and is a microwave oscillation source. 3 to 6 are waveguides. Here, 3 is a rectangular waveguide, 4 is a circular waveguide, and 6 is a tapered tube. The discharge chamber 7 is made of, for example, high-purity aluminum or the like, and also serves as a waveguide. 8 is a vacuum chamber. Reference numeral 9 denotes a quartz plate for supplying microwaves to the discharge chamber 7. Reference numerals 10 and 11 denote solenoid coils, which apply a magnetic field to the discharge chamber 7. Reference numeral 12 denotes a sample stage on which a semiconductor element substrate (hereinafter, wafer) 14 is mounted, to which a bias power supply, for example, an RF power supply 13 can be connected. Reference numeral 16 denotes a vacuum pump system for depressurizing and exhausting the inside of the discharge chamber 7 and the inside of the vacuum chamber 8. Reference numeral 15 denotes a gas supply system for supplying a gas for performing processes such as etching and film formation into the discharge chamber 7. Inside the quartz plate 9 of the discharge chamber 7,
A quartz plate 18 having a gas supply port 17 is provided, and the quartz plate 9 is provided.
A space 19 for storing gas is provided between the quartz plate 18 and the space. The distance between the quartz plate 9 and the quartz 18 is set to a small distance so that plasma does not enter. A passage 20 is provided in the side wall 7 ′ of the discharge chamber 7, and the passage 20 communicates with the space 19 and the gas supply system 15. The discharge chamber 7 is provided with a gas outlet 21 and communicates with the vacuum chamber 8. The size of the gas supply port 17 is set to 1/4 or less of the diameter of the maximum discharge chamber.

【0008】尚、図1で、円形導波管5,テーパ管6,
石英板9,試料台12の試料設置面は同軸の中心軸(図
示省略)を有している。また、試料台12の試料設置面
でのウエハ14の設置は、例えば、機械的押しつけ力や
静電吸着力等を利用して実施される。また、試料台12
は、例えば、温度制御手段(図示省略)を備え、この手
段により試料台12の試料設置面に設置されたウエハ1
2の温度は所定の温度に調節される。
In FIG. 1, circular waveguide 5, tapered tube 6,
The sample mounting surfaces of the quartz plate 9 and the sample stage 12 have a coaxial central axis (not shown). The placement of the wafer 14 on the sample placement surface of the sample stage 12 is performed using, for example, a mechanical pressing force or an electrostatic attraction force. In addition, the sample table 12
Includes, for example, a temperature control unit (not shown), and the wafer 1 mounted on the sample mounting surface of the sample stage 12 by this unit.
The temperature of 2 is adjusted to a predetermined temperature.

【0009】マグネトロンは、従来と同様に矩形導波管
3に取り付けられており、例えば、2.45GHz のマ
イクロ波を発振する。一方、放電室7内にはソレノイド
コイル10,11により磁場分布が図1(b)に示すよ
うに与えられており、ECR点(875ガウス)となる
ところが放電室の中央付近に設定されている。
The magnetron is attached to the rectangular waveguide 3 as in the prior art, and oscillates, for example, a microwave of 2.45 GHz. On the other hand, a magnetic field distribution is given to the inside of the discharge chamber 7 by the solenoid coils 10 and 11 as shown in FIG. 1 (b), and an ECR point (875 gauss) is set near the center of the discharge chamber. .

【0010】処理ガスは、供給系15から通路20を通
り、空間19に溜り、ガス供給口17から放電室の内に
導入される。ガスは、放電室7内のプラズマ中で解離さ
れて一部ラジカルとなり、ウエハ12の表面を処理す
る。この表面の処理により、反応副生成物が放電室7内
に飛散する。放電室7のガスの流れは、ガス供給口17
から排出口21に向かうように形成されている。従っ
て、その流れに入った反応副生成物はガスの流れに乗っ
て、排出口21から廃棄される。しかし、反応副生成物
は発生源のウエハ12の上に溜りやすい。本実施例によ
れば、ガス供給口が放電室7の中心に絞られているた
め、ガスが、上方から中心軸に沿って下降し、ウエハ1
2に衝突してからウエハ12の面を通って排出口に向か
うので、反応副生成物が効率的にウエハ12の面から排
出口へ排気される。
The processing gas passes through the passage 20 from the supply system 15, accumulates in the space 19, and is introduced into the discharge chamber from the gas supply port 17. The gas is dissociated in the plasma in the discharge chamber 7 and partially becomes a radical, and processes the surface of the wafer 12. By this surface treatment, reaction by-products scatter in the discharge chamber 7. The gas flow in the discharge chamber 7 is
To the outlet 21. Therefore, the reaction by-products that have entered the stream ride on the gas stream and are discarded from the outlet 21. However, reaction by-products tend to accumulate on the source wafer 12. According to this embodiment, since the gas supply port is narrowed to the center of the discharge chamber 7, the gas descends from above along the central axis, and the wafer 1
After colliding with 2, the reaction by-products are efficiently exhausted from the surface of the wafer 12 to the discharge port because the reaction by-products are directed to the discharge port through the surface of the wafer 12.

【0011】図4に本発明のもう一つの実施例の平面図
を示す。石英板18に設けられたガス供給口17が複数
の小さい孔17aからなっている。その孔のあいている
領域は、放電室の最大直径の1/4以下に設定されてい
る。このように構成することにより、ガス供給口17か
らのガスの速度が各供給口に一様になる効果がある。
FIG. 4 is a plan view showing another embodiment of the present invention. The gas supply port 17 provided in the quartz plate 18 is composed of a plurality of small holes 17a. The area where the holes are formed is set to be 1/4 or less of the maximum diameter of the discharge chamber. With such a configuration, there is an effect that the speed of the gas from the gas supply port 17 becomes uniform at each supply port.

【0012】[0012]

【発明の効果】本発明によれば、ウエハ処理によって発
生する反応副生成物を効率的に排気することができ、処
理の高速化を達成できる。
According to the present invention, reaction by-products generated by wafer processing can be efficiently exhausted, and the processing can be speeded up.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例を示す有磁場型マイクロ波プ
ラズマ処理装置の構成と磁場分布を示すブロック図。
FIG. 1 is a block diagram showing a configuration and a magnetic field distribution of a magnetic field type microwave plasma processing apparatus according to an embodiment of the present invention.

【図2】本発明の一実施例の断面図。FIG. 2 is a sectional view of one embodiment of the present invention.

【図3】本発明の一実施例の平面図。FIG. 3 is a plan view of one embodiment of the present invention.

【図4】本発明の他の実施例の平面図。FIG. 4 is a plan view of another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

7…放電室、9…石英板、12…試料台、14…ウエ
ハ、17…ガス供給口、18…石英板、19…空間、2
0…通路、21…排出口。
Reference numeral 7: discharge chamber, 9: quartz plate, 12: sample stage, 14: wafer, 17: gas supply port, 18: quartz plate, 19: space, 2
0: passage, 21: outlet.

フロントページの続き (72)発明者 掛樋 豊 茨城県土浦市神立町502番地 株式会社日 立製作所機械研究所内 (72)発明者 田村 直行 山口県下松市東豊井794番地 株式会社日 立製作所笠戸工場内 Fターム(参考) 4K030 CA04 CA12 EA05 FA02 KA30 5F004 AA14 BA14 BB14 BB28 BC03 BD04 5F045 AA08 BB15 DP03 DQ10 EB02 EE20 EF05 EF20 EH17 Continued on the front page (72) Inventor Yutaka Kakehi 502 Kandachi-cho, Tsuchiura-shi, Ibaraki Pref. Machinery Research Laboratories, Hitachi, Ltd. (72) Inventor Naoyuki Tamura 794 Higashi-Toyoi, Kudamatsu-shi, Yamaguchi Pref. F term (reference) 4K030 CA04 CA12 EA05 FA02 KA30 5F004 AA14 BA14 BB14 BB28 BC03 BD04 5F045 AA08 BB15 DP03 DQ10 EB02 EE20 EF05 EF20 EH17

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】容器内を減圧する手段を備えた真空容器
と、前記真空容器に処理ガスを供給する処理ガス供給手
段と、前記真空容器内にウエハを設置する資料台と、プ
ラズマを発生するためのコイルとを有し、前記処理ガス
供給手段から供給された処理ガスを容器に噴射する処理
ガス路はコイルの形成する電磁界を避けて容器上部に横
方向に形成されており、供給口を前記ウエハと直接対向
する前記真空容器壁面に配置し、前記供給口から前記資
料台方向の前記供給口近傍における前記真空容器内壁を
略一定の径に形成し、前記供給口の径を前記真空容器の
中心軸付近に絞ったことを特徴とするプラズマ生成装
置。
A vacuum vessel provided with a means for reducing the pressure in the vessel; a processing gas supply means for supplying a processing gas to the vacuum vessel; a data base for placing a wafer in the vacuum vessel; and a plasma generator. And a processing gas path for injecting the processing gas supplied from the processing gas supply means into the container is formed in a lateral direction in an upper portion of the container avoiding an electromagnetic field formed by the coil, and a supply port is provided. Is disposed on the vacuum vessel wall directly facing the wafer, and the inner wall of the vacuum vessel in the vicinity of the supply port in the direction of the data base from the supply port is formed to have a substantially constant diameter. A plasma generator characterized in that it is narrowed to a position near a central axis of a container.
【請求項2】容器内を減圧する手段を備えた真空容器
と、前記真空容器に処理ガスを供給する処理ガス供給手
段と、前記真空容器内にウエハを設置する資料台と、プ
ラズマを発生するためのコイルとを有し、このコイルの
下部に前記処理ガス供給手段から供給された処理ガスが
通る流路が形成されており、この処理ガスの真空容器へ
の供給口を前記ウエハと直接対向する前記真空容器壁面
に配置し、前記供給口から前記資料台方向の前記供給口
近傍における前記真空容器内壁を略一定の径に形成し、
前記供給口の径を前記真空容器の中心軸に絞ったことを
特徴とするプラズマ生成装置。
2. A vacuum vessel provided with means for reducing the pressure inside the vessel, a processing gas supply means for supplying a processing gas to the vacuum vessel, a data base on which a wafer is placed in the vacuum vessel, and a plasma generator. A flow path through which the processing gas supplied from the processing gas supply means passes, and a supply port of the processing gas to the vacuum container is directly opposed to the wafer. Disposed on the wall surface of the vacuum vessel, the inner wall of the vacuum vessel in the vicinity of the supply port in the direction of the data base from the supply port is formed to have a substantially constant diameter,
The diameter of the supply port is narrowed to the central axis of the vacuum vessel.
JP2001211529A 2001-07-12 2001-07-12 Plasma-producing apparatus Pending JP2002100620A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2001211529A JP2002100620A (en) 2001-07-12 2001-07-12 Plasma-producing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2001211529A JP2002100620A (en) 2001-07-12 2001-07-12 Plasma-producing apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP14028592A Division JP3314409B2 (en) 1992-06-01 1992-06-01 Plasma generator

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004061529A Division JP2004241783A (en) 2004-03-05 2004-03-05 Plasma generator

Publications (1)

Publication Number Publication Date
JP2002100620A true JP2002100620A (en) 2002-04-05

Family

ID=19046828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001211529A Pending JP2002100620A (en) 2001-07-12 2001-07-12 Plasma-producing apparatus

Country Status (1)

Country Link
JP (1) JP2002100620A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333091A (en) * 2004-05-21 2005-12-02 Nec Electronics Corp Semiconductor producing system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005333091A (en) * 2004-05-21 2005-12-02 Nec Electronics Corp Semiconductor producing system
JP4673578B2 (en) * 2004-05-21 2011-04-20 ルネサスエレクトロニクス株式会社 Semiconductor manufacturing equipment

Similar Documents

Publication Publication Date Title
US5851600A (en) Plasma process method and apparatus
JPH03218627A (en) Method and device for plasma etching
JP2002093776A (en) HIGH SPEED ETCHING METHOD OF Si
JP2002289585A (en) Neutral particle beam treatment device
JP3881307B2 (en) Plasma processing equipment
JP2002100620A (en) Plasma-producing apparatus
JP3314409B2 (en) Plasma generator
JP2001015297A (en) Plasma device
JPH02312231A (en) Dryetching device
JPH10308297A (en) Plasma treatment device
JP3732210B2 (en) Plasma etching equipment
JP2000012294A (en) Plasma treatment device
JP4139833B2 (en) Etching method
JP2004241783A (en) Plasma generator
JPH0722389A (en) Plasma treatment equipment
JPH0963792A (en) Magnetic neutral beam discharging plasma source
KR100354967B1 (en) Large area and high density plasma generating apparatus
JPH09321030A (en) Microwave plasma treatment apparatus
JPH11340200A (en) Plasma treatment device
JPH0562796A (en) Microwave plasma device
JPH05129237A (en) Plasma generating apparatus
JPH10163173A (en) Semiconductor treatment equipment
JPH07105385B2 (en) Semiconductor manufacturing equipment
JP2002033307A (en) Plasma generator and plasma treatment equipment provided with the generator
KR200240816Y1 (en) plasma processing apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040330

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040526

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040603

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20040625

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041224