JP2004241783A - Plasma generator - Google Patents

Plasma generator Download PDF

Info

Publication number
JP2004241783A
JP2004241783A JP2004061529A JP2004061529A JP2004241783A JP 2004241783 A JP2004241783 A JP 2004241783A JP 2004061529 A JP2004061529 A JP 2004061529A JP 2004061529 A JP2004061529 A JP 2004061529A JP 2004241783 A JP2004241783 A JP 2004241783A
Authority
JP
Japan
Prior art keywords
discharge chamber
gas
wafer
quartz plate
supply port
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004061529A
Other languages
Japanese (ja)
Inventor
Masato Ikegawa
正人 池川
Junichi Tanaka
潤一 田中
Yutaka Kakehi
豊 掛樋
Naoyuki Tamura
直行 田村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2004061529A priority Critical patent/JP2004241783A/en
Publication of JP2004241783A publication Critical patent/JP2004241783A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a plasma generator capable of high-speed wafer processing with no contamination. <P>SOLUTION: A gas is jetted onto a wafer surface by a discharge chamber 7, a magnetron 1 for generating plasma in the discharge chamber, a waveguide, solenoid coils 10 and 11, a quartz plate 9 for supplying microwaves to the discharge chamber 7, a space for storing gas in the quartz plate 9, and a quartz plate 18 having a gas supply port 17 which is smaller than or equal to a quarter of the maximum diameter of the discharge chamber. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、マイクロ波プラズマ生成装置に係り、特に、半導体素子基板等の試料に対しマイクロ波プラズマを利用して処理の高速化を図るのに好適なマイクロ波プラズマ生成装置に関する。   The present invention relates to a microwave plasma generation apparatus, and more particularly to a microwave plasma generation apparatus suitable for speeding up processing of a sample such as a semiconductor element substrate by using microwave plasma.

従来のマイクロ波生成技術は、例えば、ニッケイ マイクロデバイセス(NIKKEI MICRODEVICES)1990年8月号,88頁,図5に記載のように、マイクロ波を伝播する導波管内にプラズマ生成室を有し、外部磁場とマイクロ波電界の作用によりこの導波管内にプラズマを生成するようになっている。そして、このプラズマを利用して、半導体ウエハ基板は処理される。   Conventional microwave generation techniques include, for example, a plasma generation chamber in a microwave-propagating waveguide, as described in NIKKEI MICRODEVICES, August 1990, page 88, FIG. The plasma is generated in the waveguide by the action of an external magnetic field and a microwave electric field. Then, the semiconductor wafer substrate is processed using the plasma.

ニッケイ マイクロデバイセス(NIKKEI MICRODEVICES)1990年8月号,88頁NIKKEI MICRODEVICES, August 1990, p.88

上記従来技術では、プロセスガスの導入を反応副生成物の排気と無関係に設定しているため、反応副生成物のウエハへの再付着が多く、ウエハの汚染や処理速度の低下が問題となっていた。   In the above prior art, since the introduction of the process gas is set independently of the exhaust of the reaction by-product, the reaction by-product often adheres to the wafer, and the contamination of the wafer and the reduction of the processing speed become problems. I was

本発明の目的は、無汚染で高速度のウエハ処理ができるプラズマ生成装置を提供することにある。   An object of the present invention is to provide a plasma generation apparatus capable of performing high-speed wafer processing without contamination.

上記目的を達成するために、本発明はマイクロ波生成ガスの供給口をウエハに対向させ、中心部に集中させた。   In order to achieve the above object, in the present invention, the supply port of the microwave generating gas is opposed to the wafer and concentrated at the center.

ウエハのすぐ上に形成される反応副生成物の溜った領域を生成ガスが流れるため、反応副生成物が排気されやすくなる。   Since the generated gas flows through the region of the reaction by-product formed just above the wafer, the reaction by-product is easily exhausted.

本発明によれば、ウエハ処理によって発生する反応副生成物を効率的に排気することができ、処理の高速化を達成できる。   According to the present invention, reaction by-products generated by wafer processing can be efficiently exhausted, and processing can be speeded up.

本発明の一実施例を図1,図2,図3で説明する。図1は有磁場型のマイクロ波プラズマ処理装置のブロック図である。図2,図3は発明の断面図および平面図である。放電室1はマグネトロンであり、マイクロ波の発振源である。3〜6は、導波管である。ここで、3は、矩形導波管であり、4は円形導波管、6はテーパ管である。放電室7は、例えば、純度の高いアルミ等で作られており、導波管の役目もしている。8は、真空室である。9は放電室7にマイクロ波を供給するための石英板である。10,11はソレノイドコイルであり、放電室7内に磁場を与える。12は、半導体素子基板(以下、ウエハ)14を載置する試料台であり、バイアス用電源、例えば、RF電源13が接続できるようになっている。
16は放電室7内,真空室8内を減圧排気するための真空ポンプ系である。15は放電室7内にエッチング,成膜等の処理を行うガスを供給するガス供給系である。放電室7の石英板9の内側には、ガス供給口17を持つ石英板18が設置され、石英板9と石英板18との間にはガスを溜めるための空間19が設けられている。石英板9と石英18との距離は、プラズマが侵入しないように微小距離に設定される。放電室7の側壁7´の中には通路20が設置され、通路20は空間19とガス供給系15と連通している。放電室7には、ガスの排出口21が設けられ、真空室8に連通している。ガス供給口17の大きさは、最大放電室の直径の1/4以下に設定されている。
One embodiment of the present invention will be described with reference to FIGS. FIG. 1 is a block diagram of a magnetic field type microwave plasma processing apparatus. 2 and 3 are a sectional view and a plan view of the invention. The discharge chamber 1 is a magnetron, which is a microwave oscillation source. 3 to 6 are waveguides. Here, 3 is a rectangular waveguide, 4 is a circular waveguide, and 6 is a tapered tube. The discharge chamber 7 is made of, for example, high-purity aluminum or the like, and also serves as a waveguide. 8 is a vacuum chamber. Reference numeral 9 denotes a quartz plate for supplying microwaves to the discharge chamber 7. Reference numerals 10 and 11 denote solenoid coils that apply a magnetic field to the discharge chamber 7. Reference numeral 12 denotes a sample stage on which a semiconductor element substrate (hereinafter, referred to as a wafer) 14 is mounted, to which a bias power supply, for example, an RF power supply 13 can be connected.
Reference numeral 16 denotes a vacuum pump system for depressurizing and exhausting the inside of the discharge chamber 7 and the inside of the vacuum chamber 8. Reference numeral 15 denotes a gas supply system for supplying a gas for performing processes such as etching and film formation into the discharge chamber 7. A quartz plate 18 having a gas supply port 17 is provided inside the quartz plate 9 of the discharge chamber 7, and a space 19 for storing gas is provided between the quartz plates 9. The distance between the quartz plate 9 and the quartz 18 is set to a small distance so that plasma does not enter. A passage 20 is provided in the side wall 7 ′ of the discharge chamber 7, and the passage 20 communicates with the space 19 and the gas supply system 15. The discharge chamber 7 is provided with a gas outlet 21 and communicates with the vacuum chamber 8. The size of the gas supply port 17 is set to 1/4 or less of the diameter of the maximum discharge chamber.

尚、図1で、円形導波管5,テーパ管6,石英板9,試料台12の試料設置面は同軸の中心軸(図示省略)を有している。また、試料台12の試料設置面でのウエハ14の設置は、例えば、機械的押しつけ力や静電吸着力等を利用して実施される。また、試料台12は、例えば、温度制御手段(図示省略)を備え、この手段により試料台12の試料設置面に設置されたウエハ12の温度は所定の温度に調節される。   In FIG. 1, the sample setting surfaces of the circular waveguide 5, the tapered tube 6, the quartz plate 9, and the sample stage 12 have a coaxial central axis (not shown). The placement of the wafer 14 on the sample placement surface of the sample stage 12 is performed using, for example, a mechanical pressing force or an electrostatic attraction force. The sample stage 12 includes, for example, a temperature control unit (not shown), and the temperature of the wafer 12 installed on the sample installation surface of the sample stage 12 is adjusted to a predetermined temperature by this unit.

マグネトロンは、従来と同様に矩形導波管3に取り付けられており、例えば、2.45GHz のマイクロ波を発振する。一方、放電室7内にはソレノイドコイル10,11により磁場分布が図1(b)に示すように与えられており、ECR点(875ガウス)となるところが放電室の中央付近に設定されている。   The magnetron is attached to the rectangular waveguide 3 as in the related art, and oscillates, for example, a microwave of 2.45 GHz. On the other hand, the magnetic field distribution is given to the inside of the discharge chamber 7 by the solenoid coils 10 and 11 as shown in FIG. 1B. .

処理ガスは、供給系15から通路20を通り、空間19に溜り、ガス供給口17から放電室の内に導入される。ガスは、放電室7内のプラズマ中で解離されて一部ラジカルとなり、ウエハ12の表面を処理する。この表面の処理により、反応副生成物が放電室7内に飛散する。放電室7のガスの流れは、ガス供給口17から排出口21に向かうように形成されている。従って、その流れに入った反応副生成物はガスの流れに乗って、排出口21から廃棄される。しかし、反応
副生成物は発生源のウエハ12の上に溜りやすい。本実施例によれば、ガス供給口が放電室7の中心に絞られているため、ガスが、上方から中心軸に沿って下降し、ウエハ12に衝突してからウエハ12の面を通って排出口に向かうので、反応副生成物が効率的にウエハ12の面から排出口へ排気される。
The processing gas passes through the passage 20 from the supply system 15, accumulates in the space 19, and is introduced from the gas supply port 17 into the discharge chamber. The gas is dissociated in the plasma in the discharge chamber 7 to partially become a radical, and processes the surface of the wafer 12. By this surface treatment, reaction by-products scatter into the discharge chamber 7. The gas flow in the discharge chamber 7 is formed so as to go from the gas supply port 17 to the discharge port 21. Therefore, the reaction by-products that have entered the stream flow along with the gas stream and are discarded from the outlet 21. However, reaction by-products tend to accumulate on the source wafer 12. According to this embodiment, since the gas supply port is narrowed to the center of the discharge chamber 7, the gas descends from above along the central axis, collides with the wafer 12, and then passes through the surface of the wafer 12. Since the flow goes to the outlet, the reaction by-product is efficiently exhausted from the surface of the wafer 12 to the outlet.

図4に本発明のもう一つの実施例の平面図を示す。石英板18に設けられたガス供給口17が複数の小さい孔17aからなっている。その孔のあいている領域は、放電室の最大直径の1/4以下に設定されている。このように構成することにより、ガス供給口17からのガスの速度が各供給口に一様になる効果がある。   FIG. 4 shows a plan view of another embodiment of the present invention. The gas supply port 17 provided in the quartz plate 18 is composed of a plurality of small holes 17a. The area where the holes are formed is set to 1/4 or less of the maximum diameter of the discharge chamber. With this configuration, the velocity of the gas from the gas supply port 17 is uniform at each supply port.

本発明の一実施例を示す有磁場型マイクロ波プラズマ処理装置の構成と磁場分布を示すブロック図。FIG. 1 is a block diagram showing a configuration and a magnetic field distribution of a magnetic field type microwave plasma processing apparatus according to an embodiment of the present invention. 本発明の一実施例の断面図。1 is a cross-sectional view of one embodiment of the present invention. 本発明の他の実施例の平面図。FIG. 6 is a plan view of another embodiment of the present invention.

符号の説明Explanation of reference numerals

7…放電室、9…石英板、12…試料台、14…ウエハ、17…ガス供給口、18…石英板、19…空間、20…通路、21…排出口。
7: discharge chamber, 9: quartz plate, 12: sample table, 14: wafer, 17: gas supply port, 18: quartz plate, 19: space, 20: passage, 21: discharge port.

Claims (1)

有磁場マイクロ波プラズマ生成装置において、プラズマ生成ガスの供給口をウエハと対向するチャンバ壁面に配置したことを特徴とするプラズマ生成装置。
A plasma generating apparatus having a magnetic field microwave plasma, wherein a supply port of a plasma generating gas is arranged on a wall surface of a chamber facing a wafer.
JP2004061529A 2004-03-05 2004-03-05 Plasma generator Withdrawn JP2004241783A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004061529A JP2004241783A (en) 2004-03-05 2004-03-05 Plasma generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004061529A JP2004241783A (en) 2004-03-05 2004-03-05 Plasma generator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2001211529A Division JP2002100620A (en) 2001-07-12 2001-07-12 Plasma-producing apparatus

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2004359313A Division JP3732210B2 (en) 2004-12-13 2004-12-13 Plasma etching equipment

Publications (1)

Publication Number Publication Date
JP2004241783A true JP2004241783A (en) 2004-08-26

Family

ID=32959802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004061529A Withdrawn JP2004241783A (en) 2004-03-05 2004-03-05 Plasma generator

Country Status (1)

Country Link
JP (1) JP2004241783A (en)

Similar Documents

Publication Publication Date Title
JP5185251B2 (en) Gas injection system with reduced contamination and method of use thereof
JP4388020B2 (en) Semiconductor plasma processing apparatus and method
JP4550507B2 (en) Plasma processing equipment
US5593539A (en) Plasma source for etching
EP2479781B1 (en) Plasma etching method
JP7374362B2 (en) Plasma treatment method and plasma treatment device
JP2003303810A (en) Equipment for plasma process
US20090181526A1 (en) Plasma Doping Method and Apparatus
CN111048389A (en) Plasma processing method and plasma processing apparatus
JP2004200429A (en) Plasma treatment apparatus
JP2004241783A (en) Plasma generator
JP2005079416A (en) Plasma processing device
JPH09171900A (en) Plasma generating device
JPS63263725A (en) Plasma treatment apparatus
JP3732210B2 (en) Plasma etching equipment
JP4139833B2 (en) Etching method
JP3314409B2 (en) Plasma generator
JP4963694B2 (en) Plasma processing equipment
JPH02312231A (en) Dryetching device
JP2007266522A (en) Plasma treatment device and processing method employing it
JP2002100620A (en) Plasma-producing apparatus
JP2001326216A (en) Plasma processing device
JP2008166844A (en) Plasma processing apparatus
JPH07335633A (en) Plasma treating device
JP2000012294A (en) Plasma treatment device

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041012

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20041213

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041224

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20050825