JPS61262553A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPS61262553A
JPS61262553A JP10261785A JP10261785A JPS61262553A JP S61262553 A JPS61262553 A JP S61262553A JP 10261785 A JP10261785 A JP 10261785A JP 10261785 A JP10261785 A JP 10261785A JP S61262553 A JPS61262553 A JP S61262553A
Authority
JP
Japan
Prior art keywords
heat pump
heat exchanger
refrigerant
temperature
pump device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10261785A
Other languages
Japanese (ja)
Inventor
和田 裕夫
眞田 誠司
田村 陸男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Shimizu Construction Co Ltd
Original Assignee
Ebara Corp
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp, Shimizu Construction Co Ltd filed Critical Ebara Corp
Priority to JP10261785A priority Critical patent/JPS61262553A/en
Publication of JPS61262553A publication Critical patent/JPS61262553A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Central Heating Systems (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は空気熱源式のヒートポンプ装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an air heat source type heat pump device.

〔従来の技術〕[Conventional technology]

ビルの暖冷房などには、屋上に外気側熱交換器を備え、
地下に圧縮機を配備し、その間を長い冷媒配管で接続し
て形成したヒートポンプ装置が用いられる。
For heating and cooling buildings, we have an outdoor heat exchanger installed on the roof.
A heat pump device is used, which is formed by installing compressors underground and connecting them with long refrigerant piping.

例えば第2図に示すヒートポンプ装置ゞおい7は、ジル
の屋上に外気側熱交換器ユニッ)Aが設けられ・地下に
圧縮機ユニットBが設けられ、その間の大きなヘッド差
を冷媒経路としての管路17゜18で接続している。
For example, in the heat pump device 7 shown in Figure 2, an outside air heat exchanger unit (A) is installed on the roof of the building, and a compressor unit (B) is installed underground, and the large head difference between them is used as a refrigerant path. They are connected by roads 17 and 18.

圧縮機ユニットBは、圧縮機1、負荷側熱交換器2、レ
シーバ4、四方弁5、アキュムレータ6を備え、それら
の機器を冷媒経路で接続している。
Compressor unit B includes a compressor 1, a load-side heat exchanger 2, a receiver 4, a four-way valve 5, and an accumulator 6, and these devices are connected through a refrigerant path.

負荷側熱交換器2とレシーバ4との間には、電磁弁7′
と膨張弁8′とが逆止弁9′と並列に配備されている。
A solenoid valve 7' is provided between the load side heat exchanger 2 and the receiver 4.
and an expansion valve 8' are arranged in parallel with the check valve 9'.

外気側熱交換器ユニッ)Aは、外気側熱交換器3が備え
られ、その入口側に膨張弁8と電磁弁7とが、逆止弁9
と並列に配備されている。膨張弁8は温度式自動膨張弁
であり、外気側熱交換器3の出口側の管路と外部均圧管
11により連通し、かつ同管路に設けられた感温筒lO
と連絡管15により連通している。
The outside air side heat exchanger unit) A is equipped with an outside air side heat exchanger 3, and has an expansion valve 8 and a solenoid valve 7 on its inlet side, and a check valve 9.
are deployed in parallel. The expansion valve 8 is a temperature-type automatic expansion valve, and communicates with a pipeline on the outlet side of the outside air side heat exchanger 3 through an external pressure equalizing pipe 11, and a temperature-sensing tube lO provided in the pipeline.
It is communicated with by a communication pipe 15.

この温度式自動膨張弁である膨張弁8の詳細を第3図に
示す、膨張弁8には、弁14が備えられ、ダイアフラム
12により操作されるようになっている。
The expansion valve 8, which is a thermostatic automatic expansion valve, is shown in detail in FIG. 3. The expansion valve 8 is equipped with a valve 14 and is operated by a diaphragm 12.

ダイアフラム12の上側の室は連絡管15により、外気
側熱交換器3の出口の管路に接して設けられた感温筒1
0と連通している。感温筒10の中には、ヒートポンプ
サイクルに用いるのと同じ冷媒が封入されており、設置
されている管路の内部の温度TI  (冷媒の過熱蒸気
の温度)の冷媒に゛ より熱せられてほぼ同じ温度Tl
の二相平衡の飽和状態となり、その飽和圧力plが連絡
管15によりダイアフラム12の上側の室に導かれる。
The upper chamber of the diaphragm 12 is connected to a temperature sensing tube 1 provided in contact with the outlet pipe of the outside air side heat exchanger 3 through a connecting pipe 15.
It communicates with 0. The temperature sensing cylinder 10 is filled with the same refrigerant used in the heat pump cycle, and is heated by the refrigerant at the temperature TI (the temperature of superheated vapor of the refrigerant) inside the installed pipe line. Almost the same temperature Tl
The saturation pressure pl is introduced into the chamber above the diaphragm 12 through the connecting pipe 15.

ダイアフラム12の下側の室にはバネ16が設けられて
いるほか、外部均圧管11により、外気側熱交換器3の
出口の管路に連通し、その管路内の圧力pz  (即ち
蒸気圧力)がダイアフラム12の上側の室に導かれる。
A spring 16 is provided in the lower chamber of the diaphragm 12, and the external pressure equalizing pipe 11 communicates with the outlet pipe line of the outside air side heat exchanger 3, and the pressure pz (i.e. steam pressure ) is introduced into the upper chamber of the diaphragm 12.

従ってダイアフラム12は過熱蒸気の温度T1における
飽和圧力p+に基づ(力P、により下向きに押され、バ
ネ16の力P、及び蒸発圧力p1に基づく力P、により
下向きに押され、弁14は、P、−P2>  P3 のときに開き、 p+ −pg <  P3 のときに閉じるようになっている。
Therefore, the diaphragm 12 is pushed downward by the force P based on the saturation pressure p+ at the temperature T1 of the superheated steam, the force P of the spring 16 and the force P based on the evaporation pressure p1, and the valve 14 is , P, -P2>P3, and closes when p+ -pg<P3.

ここにP+   Pzは過熱度T’+  Tz  (T
zは飽和温度)に対応する値であり、上式により、過熱
度が大となると弁14を開いて冷媒液を供給し、過熱度
が小となると弁14を閉じて冷媒液を遮断し、この作動
により過熱度をほぼ一定の値に保つ作用を有する。この
一定の値はバネ16の特性及び初期条件により定まるの
で、過熱度調節ネジ13により例えばバネ16の一部を
固定してバネ定数を変える、などの操作により過熱度を
調節することができる。そしてこの過熱度を所定の値に
保つことにより、通常運転時に液バ・7りを生ずるのを
防いでいる。
Here, P+ Pz is the degree of superheating T'+ Tz (T
z is a value corresponding to the saturation temperature), and according to the above equation, when the degree of superheating becomes large, the valve 14 is opened to supply the refrigerant liquid, and when the degree of superheating is small, the valve 14 is closed to cut off the refrigerant liquid, This operation has the effect of keeping the degree of superheat at a substantially constant value. Since this constant value is determined by the characteristics and initial conditions of the spring 16, the degree of superheat can be adjusted by, for example, fixing a part of the spring 16 using the degree of superheat adjustment screw 13 and changing the spring constant. By keeping this degree of superheat at a predetermined value, it is possible to prevent liquid leakage from occurring during normal operation.

この圧力と過熱度との関係を第4図に示す、冷媒の飽和
蒸気圧線は高温領域では立っており(傾斜が急)、低温
領域では寝ている(傾斜が緩やか)であるため、第4図
の冷媒の飽和状態における圧力と温度の特性曲線に示す
如く、同じ圧力差P。
The relationship between this pressure and the degree of superheat is shown in Figure 4.The saturated vapor pressure line of the refrigerant is upright (steep slope) in the high temperature region and flat (gentle slope) in the low temperature region. As shown in the characteristic curve of pressure and temperature in the saturated state of the refrigerant in Figure 4, the same pressure difference P.

に対して温度差(過熱度SH)は圧力が高い程小さくな
る。即ち、ヒートポンプサイクル起動時のように蒸発圧
力が下がっておらず、まだ比較的高い値Pi  ′を示
しているときには、同じ圧力差P。
On the other hand, the temperature difference (degree of superheating SH) becomes smaller as the pressure becomes higher. That is, when the evaporation pressure has not decreased and still shows a relatively high value Pi' as at the time of starting the heat pump cycle, the same pressure difference P is maintained.

(バネ16のカ一定)に対しての過熱度SH゛は、蒸発
圧力が下がってP、になったときの過熱度SHに比べて
小さい、過熱度が小さい、ということば液相の状態の冷
媒が外気側熱交換器3の出口にまで接近している、とい
うことを示している。
(The force of the spring 16 is constant) The degree of superheating SH is smaller than the degree of superheating SH when the evaporation pressure decreases to P. This indicates that the temperature is close to the outlet of the outside air side heat exchanger 3.

また、外気側熱交換器3の出口の管路において、内部の
冷媒の温度と圧力が変化したときに、圧力p2は外部均
圧管11により直ちに伝達されるが、温度は感温筒10
の応答性が悪いので、温度変化に対応する飽和圧力pl
の変化は遅れて伝達される。従って起動後に冷媒の圧力
、温度が下がったときに圧力ptの減少により、ダイア
フラム12を上向きに押す力P、は直ちに減少するが、
温度T、が減少しても感温筒10内の冷媒の温度は急に
は下降せず、飽和圧力plは遅れて減少し、従ってダイ
アフラム12を下向きに押す力P、は起動後直ちには減
少せずに遅れて減少する。
In addition, when the temperature and pressure of the internal refrigerant change in the outlet pipe line of the outside air side heat exchanger 3, the pressure p2 is immediately transmitted by the external pressure equalizing pipe 11, but the temperature is transferred to the temperature sensing tube 10.
Since the response of is poor, the saturation pressure pl corresponding to temperature change
changes are transmitted with a delay. Therefore, when the pressure and temperature of the refrigerant decreases after startup, the force P pushing the diaphragm 12 upward immediately decreases due to the decrease in pressure pt.
Even if the temperature T decreases, the temperature of the refrigerant in the temperature sensing tube 10 does not drop suddenly, and the saturation pressure pl decreases with a delay, so the force P pushing the diaphragm 12 downward decreases immediately after startup. Decreases without delay.

従って起動直後は弁14は閉じるべき時期より遅れて閉
じるので、全開動作が必要以上に長くなる。
Therefore, immediately after startup, the valve 14 closes later than it should, so the full opening operation takes longer than necessary.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

起動時には圧縮機1を起動し、電磁弁7を開いて冷媒を
供給するが、起動時等の如く冷媒の圧力が高い場合には
、液冷媒が外気側熱交換器3の出口にまで近付いている
こと、及び温度式自動膨張弁の特性から、冷媒量制御が
間に合わず、冷媒液の供給過大を招き、液状の冷媒が外
気側熱交換器3より出て管路18に入りアキュムレータ
6を経て圧縮機1に流入する液バツクが大量に起こるこ
とがあり、これを防ぐためにアキュムレータ6は過大な
容量のものを必要とした。
At startup, the compressor 1 is started and the solenoid valve 7 is opened to supply refrigerant, but when the pressure of the refrigerant is high, such as at startup, the liquid refrigerant approaches the outlet of the outside air side heat exchanger 3. Due to the temperature-type automatic expansion valve and the characteristics of the temperature-type automatic expansion valve, the refrigerant amount control cannot be done in time, leading to an excessive supply of refrigerant liquid, and the liquid refrigerant exits the outside air side heat exchanger 3 and enters the pipe line 18 via the accumulator 6. A large amount of liquid may flow into the compressor 1, and in order to prevent this, the accumulator 6 needs to have an excessively large capacity.

特に圧縮機ユニットBと外気側熱交換器ユニットAとが
地下と屋上に配備されているセパレート型のヒートポン
プにおいては、管路17,18が長く、また、特に管路
17は、夏季の冷凍サイクル運転時に冷媒液を自然流下
せしめるために太いサイズの管が用いられているので管
路17に収容されている冷媒液の量は多量となる。冬期
は、起動待前に膨張弁8の入口までの管路17に収容さ
れているこの多量の冷媒液が起動時に供給されるので、
冷媒量制御遅れによる過大供給量は極めて大となり液バ
ツクの問題が一層大きい。
In particular, in a separate type heat pump in which the compressor unit B and the outside air side heat exchanger unit A are installed underground and on the roof, the pipes 17 and 18 are long, and the pipe 17 in particular is used for the summer refrigeration cycle. Since a large pipe is used to allow the refrigerant liquid to flow down naturally during operation, the amount of refrigerant liquid accommodated in the pipe line 17 is large. In the winter, this large amount of refrigerant liquid stored in the pipe 17 up to the inlet of the expansion valve 8 is supplied at the time of startup before waiting for startup.
The excessive supply amount due to the delay in refrigerant amount control becomes extremely large, and the problem of liquid back up becomes even more serious.

本発明は、従来のものの上記の問題点を解決し、ヒート
ポンプにおける起動時などの液バツクを防止し、アキエ
ムレータの容量の増大を抑制することができるヒートポ
ンプ装置を提供することを目的とする。
SUMMARY OF THE INVENTION An object of the present invention is to provide a heat pump device that can solve the above-mentioned problems of the conventional heat pump, prevent liquid back-up during startup of the heat pump, and suppress an increase in the capacity of the achievator.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は、上記の問題点を解決するための手段として、
圧縮機、負荷側熱交換器、外気側熱交換器、膨張弁及び
これらの機器を接続する冷媒経路を備えたヒートポンプ
装置において、前記外気側熱交換器へ冷媒液を供給する
複数の開閉弁を並列に設け、起動時に該複数の開閉弁の
開閉動作を操作して、流量を小流量から大流量に変化せ
しめるようにしたことを特徴とするヒートポンプ装置を
提供せんとするものである。
The present invention, as a means for solving the above problems,
In a heat pump device comprising a compressor, a load side heat exchanger, an outside air side heat exchanger, an expansion valve, and a refrigerant path connecting these devices, a plurality of on-off valves for supplying refrigerant liquid to the outside air side heat exchanger are provided. It is an object of the present invention to provide a heat pump device characterized in that the heat pump device is arranged in parallel and the flow rate is changed from a small flow rate to a large flow rate by operating the opening and closing operations of the plurality of on-off valves at the time of startup.

〔実施例〕〔Example〕

本発明の実施例を図面を用いて説明する。 Embodiments of the present invention will be described using the drawings.

第1図において、第2図と同一符号の部分は同様な構造
、作用を有する。
In FIG. 1, parts having the same reference numerals as in FIG. 2 have similar structures and functions.

膨張弁8の、暖房サイクル時の入口側には複数の開閉弁
として、大容量電磁弁22と小容量電磁弁23が並列に
配備されている。20は制御装置、21はモータである
On the inlet side of the expansion valve 8 during the heating cycle, a large capacity solenoid valve 22 and a small capacity solenoid valve 23 are arranged in parallel as a plurality of on-off valves. 20 is a control device, and 21 is a motor.

起動時には、制御装置20の信号によりモータ21を起
動し、先ず小容量電磁弁23を開き、次ぎに所定の時間
間隔後、大容量電磁弁22を開いて定常の容量を確保し
た運転を行う。
At startup, the motor 21 is started by a signal from the control device 20, first the small capacity electromagnetic valve 23 is opened, and then, after a predetermined time interval, the large capacity electromagnetic valve 22 is opened to ensure steady capacity operation.

このように、起動直後には、流量を小流量に抑制するこ
とによって、最初のオーバーシュートを抑え、液バンク
量を僅かな量に抑制し、アキュームレータ6の容量を小
とすることができる。 。
In this way, by suppressing the flow rate to a small flow rate immediately after startup, the initial overshoot can be suppressed, the liquid bank amount can be suppressed to a small amount, and the capacity of the accumulator 6 can be made small. .

電磁弁の数は3個以上の複数でもよく、相互に同一容量
であってもよい。
The number of solenoid valves may be three or more, and they may have the same capacity.

以上は温度式自動膨張弁を用いた場合について述べたが
、他の方式を用いる場合においても液バツクを起こし易
い状態のときに通用すれば液バツクの防止をはかること
ができる。
Although the case where a thermostatic automatic expansion valve is used has been described above, liquid backflow can be prevented even when other systems are used if they are used in conditions where liquid backflow is likely to occur.

〔発明の効果〕〔Effect of the invention〕

本発明により、空気熱源ヒートポンプにおける液バツク
を防止し、かつアキュムレータの容量の増大を抑制する
ヒートポンプ装置を提供することができ、実用上極めて
大なる効果を奏する。
According to the present invention, it is possible to provide a heat pump device that prevents liquid back up in an air source heat pump and suppresses an increase in the capacity of an accumulator, and has extremely great practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例のフロー図、第2図は従来例の
フロー図、第3図は温度式自動膨張弁の例のフロー図、
第4図は冷媒の飽和状態における圧力と温度の関係を示
すグラフである。 1・・・圧縮機、2・・・負荷側熱交換器、3・・・外
気側熱交換器、4・・・レシーバ、5・・・四方弁、6
・・・アキエムレータ、7,7゛・・・電磁弁、8.8
′・・・膨張弁、9.9′・・・逆止弁、10・・・感
温筒、11・・・外部均圧管、12・・・ダイアフラム
に13・・・過熱度調節ネジ、14・・・弁、15・・
・連絡管、16・・・バネ、17.18・・・管路、2
0・・・制御装置、21・・・モータ、22・・・大容
量電磁弁、23・・・小容量電磁弁。 特許出願人   清水建設   株式会社特許出願人 
  株式会社  荏原製作所代理人弁理士  高  木
  正   行代理人弁理士  薬  師      
稔代理人弁理士  依  1) 孝 次 部第2図 温  度
FIG. 1 is a flow diagram of an embodiment of the present invention, FIG. 2 is a flow diagram of a conventional example, and FIG. 3 is a flow diagram of an example of a thermostatic automatic expansion valve.
FIG. 4 is a graph showing the relationship between pressure and temperature when the refrigerant is saturated. DESCRIPTION OF SYMBOLS 1...Compressor, 2...Load side heat exchanger, 3...Outside air side heat exchanger, 4...Receiver, 5...Four-way valve, 6
...Akiemureta, 7,7゛...Solenoid valve, 8.8
'...Expansion valve, 9.9'...Check valve, 10...Temperature sensing cylinder, 11...External pressure equalization pipe, 12...Diaphragm 13...Superheat degree adjustment screw, 14 ...Valve, 15...
・Communication pipe, 16... Spring, 17.18... Conduit, 2
0...Control device, 21...Motor, 22...Large capacity solenoid valve, 23...Small capacity solenoid valve. Patent applicant Shimizu Corporation Patent applicant Co., Ltd.
Ebara Corporation Representative Patent Attorney Masayuki Takagi Representative Patent Attorney Pharmacist
Minoru Patent Attorney Yori 1) Takatsugu Department Figure 2 Temperature

Claims (1)

【特許請求の範囲】[Claims] 1.圧縮機、負荷側熱交換器、外気側熱交換器、膨張弁
及びこれらの機器を接続する冷媒経路を備えたヒートポ
ンプ装置において、前記外気側熱交換器へ冷媒液を供給
する複数の開閉弁を並列に設け、起動時に該複数の開閉
弁の開閉動作を操作して、流量を小流量から大流量に変
化せしめるようにしたことを特徴とするヒートポンプ装
置。
1. In a heat pump device comprising a compressor, a load side heat exchanger, an outside air side heat exchanger, an expansion valve, and a refrigerant path connecting these devices, a plurality of on-off valves for supplying refrigerant liquid to the outside air side heat exchanger are provided. A heat pump device, characterized in that the heat pump device is arranged in parallel, and the flow rate is changed from a small flow rate to a large flow rate by operating the opening and closing operations of the plurality of on-off valves at the time of startup.
JP10261785A 1985-05-16 1985-05-16 Heat pump device Pending JPS61262553A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10261785A JPS61262553A (en) 1985-05-16 1985-05-16 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10261785A JPS61262553A (en) 1985-05-16 1985-05-16 Heat pump device

Publications (1)

Publication Number Publication Date
JPS61262553A true JPS61262553A (en) 1986-11-20

Family

ID=14332205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10261785A Pending JPS61262553A (en) 1985-05-16 1985-05-16 Heat pump device

Country Status (1)

Country Link
JP (1) JPS61262553A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414621A (en) * 1987-07-08 1989-01-18 Takenaka Komuten Co Flow rate regulating method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56210U (en) * 1979-06-13 1981-01-06
JPS57148165A (en) * 1981-03-09 1982-09-13 Mitsubishi Electric Corp Refrigerant flow rate adjustor for cold heat apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56210U (en) * 1979-06-13 1981-01-06
JPS57148165A (en) * 1981-03-09 1982-09-13 Mitsubishi Electric Corp Refrigerant flow rate adjustor for cold heat apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6414621A (en) * 1987-07-08 1989-01-18 Takenaka Komuten Co Flow rate regulating method

Similar Documents

Publication Publication Date Title
US8136364B2 (en) Refrigerant system with expansion device bypass
GB1583002A (en) Control systems for refrigeration systems
US3435626A (en) Pressure control apparatus for refrigeration system
US20040211196A1 (en) Method and apparatus for turbulent refrigerant flow to evaporator
US5014521A (en) Refrigeration system in ice making machine
JPS61262553A (en) Heat pump device
JPS61262552A (en) Heat pump device
JPS61262551A (en) Heat pump device
JPS61262556A (en) Heat pump device
JP2911253B2 (en) Refrigerant heating multi refrigeration cycle
JPH09210480A (en) Two-stage compression type refrigerating apparatus
CN112303966B (en) Temperature type expansion valve and refrigeration cycle system
US4848098A (en) Refrigerating system
JPS59122875A (en) Temperature type expansion valve
JPS5872859A (en) Refrigerator
JPH0419408Y2 (en)
JPS63290368A (en) Heat pump type air conditioner
JPS5844184B2 (en) Refrigeration equipment
JPH0694334A (en) Device for controlling discharged superheating degree
JPH11159906A (en) Absorption heat pump system
JPH0428955A (en) Air conditioner
KR940022035A (en) Refrigerator freezer
JPS5823544B2 (en) Refrigerant control device
JPH05322323A (en) Freezer device
JPS6028934Y2 (en) Refrigeration equipment