JPH05322323A - Freezer device - Google Patents

Freezer device

Info

Publication number
JPH05322323A
JPH05322323A JP12444192A JP12444192A JPH05322323A JP H05322323 A JPH05322323 A JP H05322323A JP 12444192 A JP12444192 A JP 12444192A JP 12444192 A JP12444192 A JP 12444192A JP H05322323 A JPH05322323 A JP H05322323A
Authority
JP
Japan
Prior art keywords
refrigerant
oil return
return pipe
evaporator
accumulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP12444192A
Other languages
Japanese (ja)
Inventor
Masaaki Takegami
雅章 竹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP12444192A priority Critical patent/JPH05322323A/en
Publication of JPH05322323A publication Critical patent/JPH05322323A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/051Compression system with heat exchange between particular parts of the system between the accumulator and another part of the cycle

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

PURPOSE:To improve a freezing capability of a freezer device having a heat exchanging type accumulator by improving a utilization efficiency of an evaporator. CONSTITUTION:There is provided a heat exchanging type accumulator 5 constructed to perform a heat exchanging operation between sucked refrigerant and high pressure liquid refrigerant at an upstream side of an automatic expansion valve 3. There is provided an oil return pipe 8 having a descending gradient from the accumulator 5 to a suction pipe at an upstream side of the accumulator 5. One end of the oil return pipe 8 is opened at a target liquid surface position of the accumulator 5. The oil return pipe 8 is provided with a pilot heat exchanger 9 for use in performing a heat exchanging operation with the high pressure liquid refrigerant. A heat-sensitive cylinder 3a of the automatic expansion valve 3 is fixed to an outlet side of the pilot heat exchanger 9 of the oil return pipe 8. A degree of opening of the automatic expansion valve 3 is adjusted in such a manner that an superheating degree at the outlet port of the oil return pipe 8 is kept constant. A liquid surface position of the heat exchanging type accumulator 5 is controlled. With such an arrangement, an oil returning function is assured, the refrigerant state is properly maintained, an entire evaporator 4 can be used at a wet condition through assurance of the superheating degree so as to improve a freezing capability.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、吸入冷媒と高圧液冷媒
との熱交換を行う熱交換式アキュムレータを備えた冷凍
装置の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement of a refrigeration system equipped with a heat exchange type accumulator for exchanging heat between a suction refrigerant and a high pressure liquid refrigerant.

【0002】[0002]

【従来の技術】従来より、例えば特開昭94−9095
8号公報に開示されるごとく、圧縮機(a)、凝縮器
(b)、感温式自動膨張弁(c)及び満液式蒸発器
(d)を順次接続してなる冷媒回路(x)を備えた冷凍
装置において、蒸発器(d)から圧縮機に(a)吸入さ
れる低圧冷媒と自動膨張弁(c)下流側の高圧液冷媒と
の熱交換を行うように構成された熱交換式アキュムレー
タ(e)を設けるとともに、満液式蒸発器(d)と熱交
換式アキュムレータ(e)間に油戻し管(f)を設ける
一方、蒸発器(d)から流出する低圧冷媒の一部を取り
出すパイロット管(g)を設け、このパイロット管
(g)を流れる冷媒とアキュムレータ(e)出口の高圧
液冷媒との熱交換を行うパイロット熱交換器(h)を設
けて、パイロット管(g)のパイロット熱交換器(h)
出口側に上記自動膨張弁(c)の感温筒(i)を取り付
けることにより、冷凍能力の向上と満液式蒸発器(d)
の液面制御精度の向上を図ろうとするものは公知の技術
である。
2. Description of the Related Art Conventionally, for example, JP-A-94-9095
As disclosed in Japanese Patent No. 8, a refrigerant circuit (x) in which a compressor (a), a condenser (b), a temperature-sensitive automatic expansion valve (c), and a liquid-filled evaporator (d) are sequentially connected. In a refrigerating apparatus including: a heat exchange configured to exchange heat between a low pressure refrigerant (a) sucked into the compressor from the evaporator (d) and a high pressure liquid refrigerant downstream of the automatic expansion valve (c). A type of low-pressure refrigerant flowing out from the evaporator (d) while the type of accumulator (e) is provided and an oil return pipe (f) is provided between the full-fill type evaporator (d) and the heat exchange type accumulator (e). A pilot heat exchanger (h) for exchanging heat between the refrigerant flowing through the pilot pipe (g) and the high-pressure liquid refrigerant at the outlet of the accumulator (e) is provided, and the pilot pipe (g) is provided. ) Pilot heat exchanger (h)
By installing the temperature-sensing cylinder (i) of the automatic expansion valve (c) on the outlet side, the refrigerating capacity is improved and the liquid-filled evaporator (d) is
A known technique is to improve the liquid level control accuracy.

【0003】すなわち、蒸発器(d)で冷凍負荷が低下
すると冷媒液面が上昇するが、そのとき、アキュムレー
タにおける高圧冷媒との熱交換量が少なくなると、これ
に伴い低圧冷媒の温度、つまり過熱度が小さくなり、自
動膨張弁(c)が絞られて蒸発器の冷媒液面が低下す
る。一方、蒸発器(d)で冷凍負荷が増大すると冷媒液
面が低下するが、そのとき、冷媒が油戻し管(f)を流
れなくなり、アキュムレータ(e)の熱交換量が大きく
なるので、低圧冷媒の過熱度が大きくなって、自動膨張
弁(c)が開き、蒸発器(d)の冷媒液面が上昇する。
以上のような作用により、満液式蒸発器(d)の液面を
正確に一定位置に制御するとともに、熱交換式アキュム
レータ(e)で過熱度を確保することで、ある程度蒸発
器(d)の冷媒状態を湿り気味にして、冷凍能力の向上
を図るものである。
That is, when the refrigeration load decreases in the evaporator (d), the liquid level of the refrigerant rises. At that time, when the amount of heat exchange with the high pressure refrigerant in the accumulator decreases, the temperature of the low pressure refrigerant, that is, the superheat And the automatic expansion valve (c) is throttled to lower the refrigerant liquid level in the evaporator. On the other hand, when the refrigeration load increases in the evaporator (d), the refrigerant liquid level decreases, but at that time, the refrigerant stops flowing through the oil return pipe (f), and the heat exchange amount of the accumulator (e) increases, so that the low pressure The degree of superheat of the refrigerant increases, the automatic expansion valve (c) opens, and the liquid level of the refrigerant in the evaporator (d) rises.
With the above operation, the liquid level of the full-fill type evaporator (d) is accurately controlled at a fixed position, and the heat exchange type accumulator (e) secures the degree of superheat, so that the evaporator (d) is to some extent. The refrigerating capacity is improved by making the state of the refrigerant to be moist.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記従
来のものにおいて、以下のような問題があった。
However, the above-mentioned conventional devices have the following problems.

【0005】すなわち、満液式蒸発器(d)の冷媒状態
は湿り状態とすることはできるが、液面を制御するため
にはどうしても蒸発器(d)の上部に過熱領域が存在せ
ざるを得ず、その部分は熱交換に寄与しないので、冷凍
能力の向上を図る上で一定の限界があった。
That is, the refrigerant state of the full-fill type evaporator (d) can be made wet, but in order to control the liquid level, there is no choice but to have an overheated region above the evaporator (d). Since it was not obtained, and that portion did not contribute to heat exchange, there was a certain limit in improving the refrigerating capacity.

【0006】また、上記従来例のような満液式蒸発器で
ない蒸発器でも、蒸発器の出口付近に冷媒蒸気が過熱す
る領域が必要なために、この部分の熱伝達率が低くな
り、やはり、冷凍能力の向上を図る上で、一定の限界が
あった。
Further, even in an evaporator that is not a full-fill type evaporator as in the above-mentioned conventional example, since a region where the refrigerant vapor overheats is required near the outlet of the evaporator, the heat transfer coefficient of this portion becomes low, and However, there were certain limits in improving refrigeration capacity.

【0007】本発明は斯かる点に鑑みてなされたもので
あり、その目的は、熱交換式アキュムレータを備えた冷
凍装置において、蒸発器ではなく熱交換式アキュムレー
タの液面位置を制御することで過熱度を確保し蒸発器全
体を湿り状態で使用するとともに、熱交換式アキュムレ
ータの液面付近から吸入管に油を戻す構成とすること
で、油戻し機能を良好に維持しながら、冷凍能力の向上
を図ることにある。
The present invention has been made in view of the above problems, and an object thereof is to control a liquid level position of a heat exchange type accumulator, not an evaporator, in a refrigerating apparatus having a heat exchange type accumulator. By ensuring the degree of superheat and using the entire evaporator in a wet state, and by returning oil from the vicinity of the liquid surface of the heat exchange type accumulator to the suction pipe, the oil return function is maintained well and the refrigeration capacity is improved. It is to improve.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するた
め、請求項1の発明の講じた手段は、図1に示すよう
に、圧縮機(1)、凝縮器(2)、感温筒(3a)を付
設した感温式自動膨張弁(3)及び蒸発器(4)を順次
接続してなる冷媒回路(7)を備えた冷凍装置を前提と
する。
Means for Solving the Problems To achieve the above object, the means taken by the invention of claim 1 is, as shown in FIG. 1, a compressor (1), a condenser (2), a temperature sensitive tube ( A refrigerating device provided with a refrigerant circuit (7) in which a temperature-sensitive automatic expansion valve (3) additionally provided with 3a) and an evaporator (4) are sequentially connected is assumed.

【0009】そして、上記蒸発器(4)から圧縮機
(1)に吸入される冷媒と自動膨張弁(3)上流側の高
圧液冷媒との熱交換を行うように構成された熱交換式ア
キュムレータ(5)と、一端が上記熱交換式アキュムレ
ータ(5)の目標液面位置に開口し、他端が熱交換式ア
キュムレータ(5)下流側の吸入管に開口するように下
り勾配をもって配設された油戻し管(8)と、該油戻し
管(8)中の冷媒と上記凝縮器(2)−熱交換式アキュ
ムレータ(5)間の高圧液冷媒との熱交換を行うための
パイロット熱交換器(9)とを設けるものとする。
A heat exchange type accumulator configured to exchange heat between the refrigerant sucked from the evaporator (4) into the compressor (1) and the high pressure liquid refrigerant upstream of the automatic expansion valve (3). (5) and one end open to the target liquid surface position of the heat exchange type accumulator (5) and the other end opens to the suction pipe on the downstream side of the heat exchange type accumulator (5) with a downward slope. And an oil return pipe (8), and pilot heat exchange for heat exchange between the refrigerant in the oil return pipe (8) and the high-pressure liquid refrigerant between the condenser (2) and the heat exchange type accumulator (5). And a container (9).

【0010】さらに、上記感温式自動膨張弁(3)の感
温筒(3a)を油戻し管(8)の上記パイロット熱交換
器(9)の出口側に配設する構成としたものである。
Further, the temperature-sensing automatic expansion valve (3) has a temperature-sensing cylinder (3a) arranged on the outlet side of the pilot heat exchanger (9) of the oil return pipe (8). is there.

【0011】請求項2の発明の講じた手段は、上記請求
項1の発明において、蒸発器(4)を満液式蒸発器で構
成したものである。
According to a second aspect of the present invention, in the above first aspect of the invention, the evaporator (4) is a full liquid type evaporator.

【0012】請求項3の発明の講じた手段は、上記請求
項1又は2の発明におけるパイロット熱交換器(9)
を、油戻し管(8)と該油戻し管(8)を加熱する電気
ヒータとで構成したものである。
The means taken by the invention of claim 3 is the pilot heat exchanger (9) according to the invention of claim 1 or 2.
Is composed of an oil return pipe (8) and an electric heater for heating the oil return pipe (8).

【0013】請求項4の発明の講じた手段は、図2に示
すように、上記請求項1又は2の発明において、自動膨
張弁(3)と熱交換式アキュムレータ(5)との間に、
複数個の蒸発器(4a)〜(4c)を互いに並列に接続
する構成としたものである。
As shown in FIG. 2, the means taken by the invention of claim 4 is, in the invention of claim 1 or 2 described above, between the automatic expansion valve (3) and the heat exchange type accumulator (5).
A plurality of evaporators (4a) to (4c) are connected in parallel with each other.

【0014】[0014]

【作用】以上の構成により、請求項1の発明では、蒸発
器(4)から圧縮機(1)に戻る冷媒が熱交換式アキュ
ムレータ(5)で液ラインの高圧液冷媒と熱交換をする
ことで吸入冷媒の過熱度が確保されるので、蒸発器
(4)を湿り状態で使用することが可能になる。また、
油戻し管(8)が熱交換式アキュムレータ(5)の目標
液面位置に開口し、かつ下り勾配で吸入管に接続されて
いることで、比重が小さく液冷媒の上方に浮き上がる油
が優先的に油戻し管(8)から圧縮機(1)に戻される
とともに、油戻し管(8)に流れる冷媒がパイロット熱
交換器(9)において高圧液冷媒との熱交換を受けるこ
とで、冷媒が確実にガス状態で圧縮機(1)に戻され
る。したがって、圧縮機(1)への液バックを生じるこ
となく、しかも蒸発器(4)が湿り状態で使用されるこ
とと相俟って、油戻し機能が良好に確保される。
With the above construction, in the invention of claim 1, the refrigerant returning from the evaporator (4) to the compressor (1) exchanges heat with the high pressure liquid refrigerant in the liquid line by the heat exchange type accumulator (5). Since the superheat of the suctioned refrigerant is ensured, the evaporator (4) can be used in a wet state. Also,
Since the oil return pipe (8) opens at the target liquid surface position of the heat exchange type accumulator (5) and is connected to the suction pipe at a downward gradient, the oil having a small specific gravity and floating above the liquid refrigerant is preferential. Is returned from the oil return pipe (8) to the compressor (1), and the refrigerant flowing in the oil return pipe (8) undergoes heat exchange with the high-pressure liquid refrigerant in the pilot heat exchanger (9), whereby the refrigerant is It is surely returned to the compressor (1) in a gas state. Therefore, the oil return function is favorably ensured without causing liquid back to the compressor (1) and in addition to the fact that the evaporator (4) is used in a wet state.

【0015】その際、油戻し管(8)が熱交換式アキュ
ムレータ(5)の自動膨張弁(3)の感温筒(3a)が
油戻し管(8)のパイロット熱交換器(9)出口に取付
けられているので、蒸発器(4)の熱交換量の増減に伴
いアキュムレータ(5)の液面が目標液面位置からずれ
た場合には、油戻し管(8)における冷媒の過熱度を一
定に保持するよう自動膨張弁(3)の開度が増減調節さ
れることで、液面位置が目標液面位置に一致するよう自
動的に制御され、運転状態の変化に応じて、適正な冷媒
状態が維持されることになる。
At that time, the oil return pipe (8) is the heat-sensing type accumulator (5) of the automatic expansion valve (3) and the temperature sensing cylinder (3a) is the oil return pipe (8) pilot heat exchanger (9) outlet. When the liquid level of the accumulator (5) deviates from the target liquid level position as the heat exchange amount of the evaporator (4) increases or decreases, the degree of superheat of the refrigerant in the oil return pipe (8) By increasing or decreasing the opening of the automatic expansion valve (3) so as to keep the value constant, the liquid surface position is automatically controlled to match the target liquid surface position, and it is appropriate according to the change in the operating state. A stable refrigerant state is maintained.

【0016】したがって、上述の作用により、吸入冷媒
の冷媒状態を適正に維持しながら、油戻し機能を良好に
維持しうるとともに、蒸発器(4)全体を湿り状態で使
用することが可能となり、冷凍能力が向上することにな
る。
Therefore, by the above-mentioned operation, the oil return function can be favorably maintained while properly maintaining the refrigerant state of the suction refrigerant, and the entire evaporator (4) can be used in a wet state. The refrigerating capacity will be improved.

【0017】請求項2の発明では、熱交換式アキュムレ
ータ(5)の側で液面制御が行われるので、満液式蒸発
器の場合でも、蒸発器における液面維持のために有効に
利用できない部分を生じことなく、蒸発器(4)全体の
熱交換容量が有効に利用され、能力増大作用が顕著とな
る。
According to the second aspect of the invention, since the liquid level is controlled on the heat exchange type accumulator (5) side, even in the case of a full-fill type evaporator, it cannot be effectively used for maintaining the liquid level in the evaporator. The heat exchange capacity of the entire evaporator (4) is effectively utilized without producing any part, and the capacity increasing action becomes remarkable.

【0018】請求項3の発明では、パイロット熱交換器
(9)において、油戻し管(8)が高圧冷媒との熱交換
でなく電気ヒータで加熱されるので、加熱量の制御が容
易となり、制御状態が安定化することになる。
In the third aspect of the invention, in the pilot heat exchanger (9), the oil return pipe (8) is heated by an electric heater instead of heat exchange with the high-pressure refrigerant, so that the heating amount can be controlled easily. The control state will be stabilized.

【0019】請求項4の発明では、各蒸発器(4a)〜
(4c)について液面制御を行う必要がなく、1個の熱
交換式アキュムレータ(5)について液面制御をすれば
足りるので、回路構成が簡素化され、マルチ形冷凍装置
における製造コストが大幅に低減することになる。
In the invention of claim 4, each evaporator (4a)-
Since it is not necessary to control the liquid level for (4c) and it is sufficient to control the liquid level for one heat exchange type accumulator (5), the circuit configuration is simplified and the manufacturing cost of the multi-type refrigerating apparatus is significantly increased. Will be reduced.

【0020】[0020]

【実施例】以下、本発明の実施例について、図面に基づ
き説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1は、第1実施例に係る冷凍装置の冷媒
配管系統を示し、(1)は圧縮機、(2)は凝縮器、
(3)は感温式自動膨張弁、(4)は満液式蒸発器、
(5)はアキュムレータであって、上記各機器は冷媒配
管(6)により順次接続されている。すなわち、圧縮機
(1)から吐出された冷媒を凝縮器(2)で凝縮させた
後、自動膨張弁(3)で膨張させ、蒸発器(4)で蒸発
させてからアキュムレータ(5)で冷媒中の液冷媒を除
去して圧縮機(1)に戻すように循環させることによ
り、凝縮器(2)で得た冷熱を蒸発器(4)に移動させ
るようにした冷媒回路(7)が構成されている。
FIG. 1 shows a refrigerant piping system of a refrigerating apparatus according to the first embodiment, (1) is a compressor, (2) is a condenser,
(3) is a temperature-sensitive automatic expansion valve, (4) is a liquid-filled evaporator,
(5) is an accumulator, and the above devices are sequentially connected by a refrigerant pipe (6). That is, the refrigerant discharged from the compressor (1) is condensed in the condenser (2), then expanded by the automatic expansion valve (3), evaporated by the evaporator (4), and then cooled by the accumulator (5). A refrigerant circuit (7) configured to move the cold heat obtained in the condenser (2) to the evaporator (4) by circulating the liquid refrigerant inside and returning it to the compressor (1). Has been done.

【0022】そして、上記アキュムレータ(5)の容器
本体(5a)内には、冷媒回路(7)の液ラインに介設
された熱交換コイル(5b)が収納されていて、この熱
交換コイル(5b)内の高圧液冷媒と蒸発器(4)から
圧縮機(1)に吸入される低圧冷媒との熱交換を行わせ
るように構成されており、アキュムレータ(5)は熱交
換式アキュムレータとなっている(アキュムレータ
(5)内における吸入管の図示は省略している)。
A heat exchange coil (5b) interposed in the liquid line of the refrigerant circuit (7) is housed in the container body (5a) of the accumulator (5). 5b) is configured to perform heat exchange between the high pressure liquid refrigerant and the low pressure refrigerant sucked into the compressor (1) from the evaporator (4), and the accumulator (5) is a heat exchange type accumulator. (The suction pipe in the accumulator (5) is not shown).

【0023】ここで、本発明の特徴として、上記熱交換
式アキュムレータ(5)からその下流側の吸入管まで配
り勾配をもった油戻し管(8)が設けられており、その
入口側端部は熱交換式アキュムレータ(5)の目標液面
位置に対応する部位に開口するように構成されている。
さらに、油戻し管(8)には、この油戻し管(8)を流
れる冷媒と、凝縮器(2)−アキュムレータ(5)間の
高圧液冷媒との熱交換を行わせるためのパイロット熱交
換器(9)が介設されている。そして、油戻し管(8)
のパイロット熱交換器(9)出口側には、上記自動膨張
弁(3)の感温筒(3a)が取り付けられており、該感
温筒(3a)は、パイロット熱交換器(9)で熱交換さ
れた後の低圧冷媒の過熱度を検出し、この過熱度を一定
にするよう自動膨張弁(3)の開度駆動機構を作動させ
るものである。
Here, as a feature of the present invention, an oil return pipe (8) having a slope is provided from the heat exchange type accumulator (5) to the suction pipe on the downstream side thereof, and an inlet side end portion thereof is provided. Is configured to open at a site corresponding to the target liquid surface position of the heat exchange type accumulator (5).
Further, the oil return pipe (8) is a pilot heat exchange for exchanging heat between the refrigerant flowing through the oil return pipe (8) and the high pressure liquid refrigerant between the condenser (2) and the accumulator (5). A container (9) is provided. And oil return pipe (8)
On the outlet side of the pilot heat exchanger (9), the temperature sensing tube (3a) of the automatic expansion valve (3) is attached, and the temperature sensing tube (3a) is the pilot heat exchanger (9). The degree of superheat of the low-pressure refrigerant after heat exchange is detected, and the opening drive mechanism of the automatic expansion valve (3) is operated so as to make the degree of superheat constant.

【0024】すなわち、上記第1実施例では、蒸発器
(4)から圧縮機(1)に戻る冷媒が熱交換式アキュム
レータ(5)で液ラインの高圧液冷媒と熱交換をするこ
とで、吸入冷媒の過熱度が確保され、蒸発器(4)を湿
り状態で使用することが可能になる。また、油戻し管
(8)が熱交換式アキュムレータ(5)の目標液面位置
に開口し、かつ下り勾配で吸入管に接続されているの
で、比重が小さく液冷媒の上方に浮き上がる油が優先的
に油戻し管(8)から圧縮機(1)に戻され、蒸発器
(4)が湿り状態で使用されることと相俟って、油戻し
機能が向上する。しかも、油戻し管(8)の途中でパイ
ロット熱交換器(9)において高圧液冷媒との熱交換を
受けるので、液冷媒が混入してもガス状態で圧縮機
(1)に戻すことができ、圧縮機(1)への液バックを
生じることなく、油戻し機能が良好に維持されることに
なる。
That is, in the first embodiment, the refrigerant returning from the evaporator (4) to the compressor (1) exchanges heat with the high-pressure liquid refrigerant in the liquid line in the heat exchange type accumulator (5), thereby sucking the refrigerant. The superheat of the refrigerant is secured, and the evaporator (4) can be used in a wet state. Further, since the oil return pipe (8) opens to the target liquid surface position of the heat exchange type accumulator (5) and is connected to the suction pipe at a downward gradient, the oil having a small specific gravity and floating above the liquid refrigerant has priority. The oil is returned to the compressor (1) from the oil return pipe (8) and the evaporator (4) is used in a wet state, so that the oil return function is improved. Moreover, since heat exchange with the high-pressure liquid refrigerant is performed in the pilot heat exchanger (9) in the middle of the oil return pipe (8), even if the liquid refrigerant is mixed, it can be returned to the compressor (1) in a gas state. Thus, the oil return function can be favorably maintained without causing liquid back to the compressor (1).

【0025】その際、油戻し管(8)が熱交換式アキュ
ムレータ(5)の自動膨張弁(3)の感温筒(3a)が
油戻し管(8)のパイロット熱交換器(9)出口に取付
けられていることから、下記の作用でアキュムレータ
(5)の液面が適正位置を保つよう制御される。すなわ
ち、蒸発器(4)の熱交換量の増大等によりアキュムレ
ータ(5)への冷媒流入量が増してその液面が目標液面
位置から上昇すると、油戻し管(8)における冷媒の過
熱度が低下するので、自動膨張弁(3)が閉じられる方
向に調節され、アキュムレータ(5)への冷媒流入量が
低減することで液面が下降する一方、蒸発器(4)の熱
交換量の増大等によりアキュムレータ(5)への冷媒流
入量が低減してその液面が下降すると、油戻し管(8)
における冷媒の過熱度が増大するので、自動膨張弁
(3)が開かれる方向に調節され、アキュムレータ
(5)への冷媒流入量が低減することで液面が上昇す
る。この作用によって、液面位置が目標液面位置に一致
するよう自動的に制御され、運転状態の変化に応じて、
適正な冷媒状態を維持することができる。
At this time, the oil return pipe (8) is the heat exchange type accumulator (5), and the temperature sensing cylinder (3a) of the automatic expansion valve (3) is the outlet of the pilot heat exchanger (9) of the oil return pipe (8). The liquid level of the accumulator (5) is controlled so as to maintain the proper position by the following action. That is, when the amount of refrigerant flowing into the accumulator (5) increases due to an increase in the amount of heat exchange of the evaporator (4) and the liquid level rises from the target liquid level position, the degree of superheat of the refrigerant in the oil return pipe (8). Is decreased, the automatic expansion valve (3) is adjusted in the direction to be closed, and the amount of refrigerant flowing into the accumulator (5) is reduced to lower the liquid level, while the amount of heat exchange of the evaporator (4) is decreased. When the amount of refrigerant flowing into the accumulator (5) is reduced due to increase or the like and the liquid level is lowered, the oil return pipe (8)
Since the degree of superheat of the refrigerant increases, the automatic expansion valve (3) is adjusted in the opening direction, and the amount of refrigerant flowing into the accumulator (5) is reduced, so that the liquid level rises. By this action, the liquid surface position is automatically controlled so as to match the target liquid surface position, and in response to changes in the operating state,
It is possible to maintain an appropriate refrigerant state.

【0026】したがって、吸入冷媒の冷媒状態を適正に
維持しながら油戻し機能を良好に維持しうるとともに、
蒸発器(4)全体を湿り状態で使用することができ、よ
って、冷凍能力の向上を図ることができるのである。
Therefore, the oil return function can be favorably maintained while properly maintaining the refrigerant state of the suction refrigerant, and
The entire evaporator (4) can be used in a wet state, and thus the refrigerating capacity can be improved.

【0027】なお、上記第1実施例では、蒸発器(4)
を満液式蒸発器としたが、本発明の蒸発器は満液式のも
のに限定されることがない。つまり、乾式のものでも過
熱度を確保するために熱交換に有効利用できない部分が
あるが、熱交換式アキュムレータ(5)で過熱度を確保
する構成とすることで、蒸発器全体を湿り状態として使
用することが可能になり、冷凍能力の向上を図ることが
できる。
In the first embodiment, the evaporator (4)
However, the evaporator of the present invention is not limited to the liquid-filled type. In other words, even in the dry type, there is a portion that cannot be effectively used for heat exchange in order to secure the degree of superheat, but by adopting a configuration in which the degree of superheat is secured by the heat exchange type accumulator (5), the entire evaporator is kept wet. It can be used, and the refrigerating capacity can be improved.

【0028】ただし、特に満液式蒸発器の場合、蒸発器
における液面維持のために、熱交換器の上方に熱交換に
寄与しない領域が生じるが、上記実施例のごとく、熱交
換式アキュムレータ(5)の側で液面制御を行うように
したことで、蒸発器(4)全体を湿り状態として利用効
率の向上を図ることができ、能力増大効果が顕著とな
る。
However, particularly in the case of a full-fill type evaporator, a region that does not contribute to heat exchange occurs above the heat exchanger in order to maintain the liquid level in the evaporator, but as in the above embodiment, the heat exchange type accumulator is used. By performing the liquid level control on the side of (5), it is possible to improve the utilization efficiency by keeping the entire evaporator (4) in a wet state, and the effect of increasing the capacity becomes remarkable.

【0029】また、実施例は省略するが、上記第1実施
例のパイロット熱交換器(9)において、油戻し管
(8)を高圧冷媒との熱交換でなく電気ヒータで加熱す
るように構成してもよい。その場合、加熱量の制御が容
易であるので、制御状態の安定化を図ることができる利
点がある。
Although not shown in the embodiment, in the pilot heat exchanger (9) of the first embodiment, the oil return pipe (8) is heated by an electric heater instead of heat exchange with the high pressure refrigerant. You may. In that case, since the control of the heating amount is easy, there is an advantage that the control state can be stabilized.

【0030】次に、請求項4の発明に係る第2実施例に
ついて説明する。図2は第2実施例の冷凍装置の冷媒配
管系統を示し、上記第1実施例の冷媒配管系統(図1)
と基本的な構成は同じであるが、本実施例では、自動膨
張弁(3)−熱交換式アキュムレータ(5)間に、複数
の満液式蒸発器(4a)〜(4c)が各々減圧度調節用
キャピラリチュ―ブ(10a)〜(10c)と共に、互
いに並列に接続されている。
Next, a second embodiment according to the invention of claim 4 will be described. FIG. 2 shows the refrigerant piping system of the refrigeration system of the second embodiment, and the refrigerant piping system of the first embodiment (FIG. 1).
However, in the present embodiment, a plurality of liquid-filled evaporators (4a) to (4c) reduce pressure between the automatic expansion valve (3) and the heat exchange accumulator (5). The degree adjusting capillaries (10a) to (10c) are connected in parallel with each other.

【0031】本第2実施例では、従来のように各蒸発器
について液面制御を行う必要がなく、1個の熱交換式ア
キュムレータ(5)について液面制御をすれば足りるの
で、回路構成が簡素化され、マルチ形冷凍装置における
製造コストを大幅に低減しうる利点がある。
In the second embodiment, it is not necessary to control the liquid level for each evaporator as in the conventional case, and it suffices to control the liquid level for one heat exchange type accumulator (5). There is an advantage that it is simplified and the manufacturing cost of the multi-type refrigerating apparatus can be significantly reduced.

【0032】[0032]

【発明の効果】以上説明したように、請求項1の発明に
よれば、冷凍装置の構造として、熱交換式アキュムレー
タにより蒸発器から圧縮機に吸入される冷媒と自動膨張
弁上流側の高圧液冷媒との熱交換を行わせ、アキュムレ
ータとその下流側の吸入管との間に下り勾配をもった油
戻し管を設け、その入口側端部を熱交換器アキュムレー
タの目標液面位置に開口させる一方、油戻し管中の流体
と上記凝縮器−熱交換式アキュムレータ間の高圧液冷媒
との熱交換を行うためのパイロット熱交換器を設け、自
動膨張弁の感温筒を油戻し管のパイロット熱交換器の出
口側に取付ける構造とし、アキュムレータの液面を、油
戻し管における冷媒の過熱度を一定にするよう作動する
自動膨張弁で制御するようにしたので、冷媒状態を適正
に維持しながら油戻し機能を良好に維持しうるととも
に、熱交換式アキュムレータでの高圧液冷媒との熱交換
により冷媒の過熱度を確保することで、蒸発器を湿り状
態で使用することができ、よって、冷凍能力の向上を図
ることができる。
As described above, according to the invention of claim 1, as the structure of the refrigerating apparatus, the refrigerant sucked from the evaporator to the compressor by the heat exchange type accumulator and the high pressure liquid on the upstream side of the automatic expansion valve are provided. Allows heat exchange with the refrigerant, provides an oil return pipe with a downward slope between the accumulator and the suction pipe on the downstream side, and opens its inlet end at the target liquid surface position of the heat exchanger accumulator. On the other hand, a pilot heat exchanger for exchanging heat between the fluid in the oil return pipe and the high-pressure liquid refrigerant between the condenser and the heat exchange type accumulator is provided, and the temperature-sensing cylinder of the automatic expansion valve is used as the oil return pipe pilot. The structure is such that it is mounted on the outlet side of the heat exchanger, and the liquid level of the accumulator is controlled by an automatic expansion valve that operates to keep the degree of superheat of the refrigerant in the oil return pipe constant. While oil It is possible to use the evaporator in a damp state by ensuring the superheat of the refrigerant by exchanging heat with the high pressure liquid refrigerant in the heat exchange type accumulator while maintaining good function, and thus refrigerating capacity. Can be improved.

【0033】請求項2の発明によれば、上記請求項1の
発明における蒸発器を満液式蒸発器としたので、熱交換
式アキュムレータの側で液面制御を行うことで、満液式
蒸発器における液面維持のために有効に利用できない領
域を生じことなく、蒸発器の利用効率を高めることがで
き、よって、著効を発揮することができる。
According to the invention of claim 2, since the evaporator in the invention of claim 1 is a full liquid type evaporator, liquid level control is performed on the side of the heat exchange type accumulator, so that full liquid type evaporation is performed. The utilization efficiency of the evaporator can be improved without producing a region that cannot be effectively used for maintaining the liquid level in the container, and therefore, a remarkable effect can be exhibited.

【0034】請求項3の発明によれば、上記請求項1又
は2記載の冷凍装置において、パイロット熱交換器にお
ける油戻し管の冷媒の加熱を電気ヒータで行うようにし
たので、加熱量の制御の容易化と制御状態の安定化とを
図ることができる。
According to the invention of claim 3, in the refrigerating apparatus of claim 1 or 2, the heating of the refrigerant in the oil return pipe in the pilot heat exchanger is performed by an electric heater, so that the heating amount is controlled. Can be facilitated and the control state can be stabilized.

【0035】請求項4の発明によれば、上記請求項1又
は2記載の冷凍装置において、自動膨張弁−熱交換式ア
キュムレータ間に複数の蒸発器を互いに並列に接続する
構成としたので、各蒸発器について液面制御を行うこと
なく1個の熱交換式アキュムレータについて液面制御を
することにより、回路構成の簡素化を図ることができ、
よって、マルチ形冷凍装置における製造コストの低減を
図ることができる。
According to the invention of claim 4, in the refrigerating apparatus according to claim 1 or 2, the plurality of evaporators are connected in parallel between the automatic expansion valve and the heat exchange type accumulator. By controlling the liquid level of one heat exchange type accumulator without controlling the liquid level of the evaporator, the circuit configuration can be simplified.
Therefore, the manufacturing cost of the multi-type refrigeration system can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】第1実施例に係る冷凍装置の冷媒配管系統図で
ある。
FIG. 1 is a refrigerant piping system diagram of a refrigeration apparatus according to a first embodiment.

【図2】第2実施例に係る冷凍装置の冷媒配管系統図で
ある。
FIG. 2 is a refrigerant piping system diagram of a refrigerating apparatus according to a second embodiment.

【図3】従来の冷凍装置の冷媒配管系統図である。FIG. 3 is a refrigerant piping system diagram of a conventional refrigeration system.

【符号の説明】[Explanation of symbols]

1 圧縮機 2 凝縮器 3 自動膨張弁 3a 感温筒 4 蒸発器 5 熱交換式アキュムレータ 7 冷媒回路 8 油戻し管 9 パイロット熱交換器 1 Compressor 2 Condenser 3 Automatic expansion valve 3a Temperature sensing tube 4 Evaporator 5 Heat exchange type accumulator 7 Refrigerant circuit 8 Oil return pipe 9 Pilot heat exchanger

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機(1)、凝縮器(2)、感温筒
(3a)を付設した感温式自動膨張弁(3)及び蒸発器
(4)を順次接続してなる冷媒回路(7)を備えた冷凍
装置において、 上記蒸発器(4)から圧縮機(1)に吸入される冷媒と
自動膨張弁(3)上流側の高圧液冷媒との熱交換を行う
ように構成された熱交換式アキュムレータ(5)と、 一端が上記熱交換式アキュムレータ(5)の目標液面位
置に開口し、他端が熱交換式アキュムレータ(5)下流
側の吸入管に開口するように下り勾配をもって配設され
た油戻し管(8)と、 該油戻し管(8)中の冷媒と上記凝縮器(2)−熱交換
式アキュムレータ(5)間の高圧液冷媒との熱交換を行
うためのパイロット熱交換器(9)とを備えるととも
に、 上記感温式自動膨張弁(3)の感温筒(3a)は油戻し
管(8)の上記パイロット熱交換器(9)の出口側に配
設されていることを特徴とする冷凍装置。
1. A refrigerant circuit (1) in which a compressor (1), a condenser (2), a temperature-sensitive automatic expansion valve (3) provided with a temperature-sensitive cylinder (3a), and an evaporator (4) are sequentially connected. In a refrigerating apparatus including 7), the refrigerant sucked into the compressor (1) from the evaporator (4) and the high-pressure liquid refrigerant upstream of the automatic expansion valve (3) are heat-exchanged. The heat exchange type accumulator (5) and one end open to the target liquid surface position of the heat exchange type accumulator (5) and the other end opens to the suction pipe on the downstream side of the heat exchange type accumulator (5). For exchanging heat between the oil return pipe (8) arranged with a high pressure liquid refrigerant between the refrigerant in the oil return pipe (8) and the condenser (2) -heat exchange type accumulator (5) And a pilot heat exchanger (9), and the temperature of the temperature-sensing automatic expansion valve (3) is sensed. (3a) is a refrigeration apparatus which is characterized in that it is arranged on the outlet side of the pilot heat exchangers of the oil return pipe (8) (9).
【請求項2】 請求項1記載の冷凍装置において、 蒸発器(4)は満液式蒸発器であることを特徴とする冷
凍装置。
2. The refrigerating apparatus according to claim 1, wherein the evaporator (4) is a full liquid evaporator.
【請求項3】 請求項1又は2記載の冷凍装置におい
て、 パイロット式熱交換器(9)は、油戻し管(8)と該油
戻し管(8)を加熱する電気ヒータとで構成したことを
特徴とする冷凍装置。
3. The refrigeration system according to claim 1 or 2, wherein the pilot heat exchanger (9) comprises an oil return pipe (8) and an electric heater for heating the oil return pipe (8). Refrigerating device.
【請求項4】 請求項1又は2記載の冷凍装置におい
て、 自動膨張弁(3)と熱交換式アキュムレータ(5)との
間には、複数個の蒸発器(4a)〜(4c)が互いに並
列に接続されていることを特徴とする冷凍装置。
4. The refrigerating apparatus according to claim 1, wherein a plurality of evaporators (4a) to (4c) are provided between the automatic expansion valve (3) and the heat exchange type accumulator (5). A refrigerating apparatus which is connected in parallel.
JP12444192A 1992-05-18 1992-05-18 Freezer device Withdrawn JPH05322323A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12444192A JPH05322323A (en) 1992-05-18 1992-05-18 Freezer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12444192A JPH05322323A (en) 1992-05-18 1992-05-18 Freezer device

Publications (1)

Publication Number Publication Date
JPH05322323A true JPH05322323A (en) 1993-12-07

Family

ID=14885585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12444192A Withdrawn JPH05322323A (en) 1992-05-18 1992-05-18 Freezer device

Country Status (1)

Country Link
JP (1) JPH05322323A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000042839A (en) * 1998-12-28 2000-07-15 신영주 Heat exchanger
JP2002206815A (en) * 2001-01-09 2002-07-26 Daikin Ind Ltd Freezer device
WO2024014029A1 (en) * 2022-07-14 2024-01-18 三菱重工業株式会社 Compressor unit and refrigeration system
CN118009592A (en) * 2024-04-09 2024-05-10 珠海格力电器股份有限公司 Oil return device, oil return control method and refrigeration system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000042839A (en) * 1998-12-28 2000-07-15 신영주 Heat exchanger
JP2002206815A (en) * 2001-01-09 2002-07-26 Daikin Ind Ltd Freezer device
WO2024014029A1 (en) * 2022-07-14 2024-01-18 三菱重工業株式会社 Compressor unit and refrigeration system
CN118009592A (en) * 2024-04-09 2024-05-10 珠海格力电器股份有限公司 Oil return device, oil return control method and refrigeration system

Similar Documents

Publication Publication Date Title
EP0750166B1 (en) Refrigerant circulating system
US4688390A (en) Refrigerant control for multiple heat exchangers
KR900003052B1 (en) Refrigerant flow control system for use with refrigerator
US5140827A (en) Automatic refrigerant charge variation means
US4779425A (en) Refrigerating apparatus
US5784892A (en) Refrigerant charge variation mechanism
JP4462435B2 (en) Refrigeration equipment
CA2278415A1 (en) Heat exchange equipment
JP2007139257A (en) Refrigeration device
KR102191560B1 (en) Heat pump system and control method of the same
JPH05322323A (en) Freezer device
JP6157182B2 (en) Refrigeration equipment
US3421337A (en) Reverse cycle refrigeration system
JP4872367B2 (en) vending machine
JPH0733095Y2 (en) Accumulator oil return device
EP3862660B1 (en) Heat pump system
JP2004061056A (en) Oil level detecting method and device for compressor
JPS5969663A (en) Refrigeration cycle
JP2867792B2 (en) Heating and cooling machine
JP3191463B2 (en) Heating and cooling machine
JPH06213541A (en) Heating-and-cooling machine
JP2936881B2 (en) Refrigeration equipment
JP3615353B2 (en) Operation control method for air conditioner
JPH0522762Y2 (en)
JPH01121641A (en) Air conditioning system for building

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990803