JPS61261707A - Optical parts for optical communication - Google Patents

Optical parts for optical communication

Info

Publication number
JPS61261707A
JPS61261707A JP10426785A JP10426785A JPS61261707A JP S61261707 A JPS61261707 A JP S61261707A JP 10426785 A JP10426785 A JP 10426785A JP 10426785 A JP10426785 A JP 10426785A JP S61261707 A JPS61261707 A JP S61261707A
Authority
JP
Japan
Prior art keywords
optical
lens
light
optical axis
lenses
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10426785A
Other languages
Japanese (ja)
Inventor
Shigeta Ishikawa
石川 重太
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10426785A priority Critical patent/JPS61261707A/en
Publication of JPS61261707A publication Critical patent/JPS61261707A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/2938Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device for multiplexing or demultiplexing, i.e. combining or separating wavelengths, e.g. 1xN, NxM
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29346Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
    • G02B6/29361Interference filters, e.g. multilayer coatings, thin film filters, dichroic splitters or mirrors based on multilayers, WDM filters
    • G02B6/29362Serial cascade of filters or filtering operations, e.g. for a large number of channels
    • G02B6/29365Serial cascade of filters or filtering operations, e.g. for a large number of channels in a multireflection configuration, i.e. beam following a zigzag path between filters or filtering operations
    • G02B6/29367Zigzag path within a transparent optical block, e.g. filter deposited on an etalon, glass plate, wedge acting as a stable spacer

Abstract

PURPOSE:To moderate positional and angular accuracy with good balance and to attain non-adjustment of an optical axis by uniting one lens group obtained by dividing respective lenses into two lens groups with a light emitting/ photodetecting element or an optical fiber to form a collimeter. CONSTITUTION:Optical beams consisting of components lambda2, lambda3 are reflected by an interference film filter 10-1, the optical beam lambda2 is coupled with a projection fiber 15-3 through an interference film filter 10-2 and the optical beam lambda3 is coupled with a projection fible 15-4. The 1st lens 3-1 and the 4th lenses 7-1-7-3 are fixed in a support 14 and the collars of the support 14 and a terminal 13 are abutted each other and fixed each other by adjusting the optical axis to form the collimeter. Consequently, non-adjustment of the optical axis can be attained with the working accuracy of mechanical parts to be sufficiently mass-produced and the cost of the optical parts can be sharply reduced.

Description

【発明の詳細な説明】 技術分野 本発明は光通信用光部品に関し、特にその光学系の一部
を構成するレンズ・コリメーI−系に関Jる。
DETAILED DESCRIPTION OF THE INVENTION Technical Field The present invention relates to optical components for optical communications, and particularly to a lens collimator I-system that constitutes a part of the optical system.

従」←攻j1 従来、発光素子又は光ファイバからの出射光ビームを他
の光ファイバ又は受光素子に単に結合づるだりてなく、
分岐挿入、合波分波、光路切換、減衰等の機能をイ」加
Jるために、光通信用光部品では光ビームの伝搬・結合
手段としてレンズ・]リツメ−1〜が多用されている。
Conventionally, the light beam emitted from a light emitting element or optical fiber is not simply coupled to another optical fiber or light receiving element;
In order to add functions such as add/drop, multiplex/demultiplex, optical path switching, attenuation, etc., lenses are often used as a means of propagating and combining light beams in optical components for optical communications. .

従来のレンズ・」リフ−1−系では入カポ−1−の各々
に1個のレンズが又出力ボートの各々にも1個のレンズ
が夫々配置されている。
In the conventional lens system, one lens is placed in each of the input ports and one lens is placed in each of the output ports.

従来の光部品の光軸調整法には3通りの方法がある。第
1の方法は発光/受光素子又は光ファイバを固定してお
いて、レンズの位置を微調づ−る方法である。第2の方
法はレンズを固定しておいで、発光/受光素子又は光フ
ァイバの位置を微調する方法である。第コ、第2のいず
れの方法においても、要求される位置の微調精度は非富
に厳しい−・′]     方・角度精度1緩0゛・第
3の方法は、発光/受光素子又は光ファイバ覗    
 とレンズをコリメータとして一体化したものを調;、
□ 整する方法である。この方法では、第1、第2の方法と
は逆にコリメータの位置精度は緩くて良いが要求される
角度精度は非常に厳しい。従つ゛C1従来の光部品では
、光軸調整に大きな工数を要す、1    るか又は光
軸無調整化には非常に高精度な機構部゛     品が
必要なため、低価格化が困難であった。
There are three conventional methods for adjusting the optical axis of optical components. The first method is to fix the light emitting/light receiving element or the optical fiber and finely adjust the position of the lens. The second method is to fix the lens and finely adjust the position of the light emitting/light receiving element or optical fiber. In both the first and second methods, the required fine-tuning accuracy of the position is extremely strict. peek
and a lens integrated as a collimator.
□ It is a method of adjusting. In this method, contrary to the first and second methods, the positional accuracy of the collimator may be loose, but the required angular accuracy is very strict. Therefore, with conventional optical components, it is difficult to reduce the price because it requires a large amount of man-hours to adjust the optical axis, or extremely high-precision mechanical parts are required to eliminate the need for optical axis adjustment. there were.

発明の目的 本発明は、充分に量産可能な機構部品の加工精度で光軸
の無調整化が可能でかつ価格を大幅に低■    減可
能な光通信用光部品を提供することを目的としている。
Purpose of the Invention The object of the present invention is to provide an optical component for optical communication that can eliminate the need for adjusting the optical axis with sufficient machining precision for mechanical components that can be mass-produced, and can significantly reduce the cost. .

発明の構成 本発明による光通信用光部品は、光導入素子と、この光
導入素子の導入光軸上にこの光導入素子に近接して配置
された2個の入力側レンズと、光導:肩   1+′!
″・′″′)11“(D )s *J−1c = (7
)光導出素子に近接して配置された2個の出力側レンズ
と、前記入力側レンズと出力側レンズとの間に挿入され
導入光を予め定められた処理機能に基づいて処理して導
出する光学素子とを有し、前記光導入素子と前記2個の
入力側レンズのうち当該光導入素子により近い方のレン
ズとが一体に固定され、また前記光導出素子と前記2個
の出力側レンズのうち当該光導出素子により近い方のレ
ンズとが一体に固定されていることを特徴としている。
Structure of the Invention The optical component for optical communication according to the present invention includes a light introduction element, two input side lenses arranged close to the light introduction element on the introduction optical axis of the light introduction element, and a light guide: shoulder. 1+′!
″・′″′)11″(D )s *J-1c = (7
) Two output-side lenses arranged close to the light emitting element and inserted between the input-side lens and the output-side lens to process and guide the introduced light based on a predetermined processing function. an optical element, the light introduction element and the lens closer to the light introduction element of the two input lenses are fixed together, and the light introduction element and the two output lenses are fixed together. It is characterized in that the lens closer to the light guide element is fixed integrally with the lens.

実施例 以下、図面を参照して本発明の詳細な説明り−る。Example Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図に本発明の一実施例の構成を示す。発光素子又は
光ファイバ4−1〜4− nから出射した光ビームは各
々、第ルンズ3−1〜3−nと第2レンズ2−1〜2−
nを通過後、平行ビームとなり分岐挿入、合波分波、光
路切換、減衰等のための機能素子1に入射される。
FIG. 1 shows the configuration of an embodiment of the present invention. The light beams emitted from the light emitting elements or optical fibers 4-1 to 4-n are transmitted to the lenses 3-1 to 3-n and the second lenses 2-1 to 2-2-n, respectively.
After passing through n, the beam becomes a parallel beam and enters the functional element 1 for adding/dropping, multiplexing/demultiplexing, optical path switching, attenuation, etc.

上記平行ビームは機能素子1を伝搬に必要な処理を施さ
れた後、機能素子1より出射し、各々第3レンズ6−1
〜5−mと第4レンズ7−1〜71::I     、
 jllとにより集束され、受光素子又は光ファイバ・
1 蒼”      8−1〜8−mに結合される。
After the parallel beams are subjected to the necessary processing for propagation through the functional element 1, they are emitted from the functional element 1, and are each passed through a third lens 6-1.
~5-m and fourth lenses 7-1 to 71::I,
It is focused by a photodetector or an optical fiber.
1 Ao” Combined with 8-1 to 8-m.

4 ′ −1え□イ51cよイヮフイ7.4−1〜4−。ッ。4′ -1e□i51c yo ii 7.4-1~4-. Wow.

1(1〜5− n 4mよ’) −(Ai (E 8 
n、っIJ )! −9e ff5 Ji12ルンズ3
−1〜3−nは各々発光側ホルダ5−1−1゛ 1    している。一方、受光素子又は光ファイバ8
−1〜8−m及び第4レンズ7−1〜7−mは受光側t
:’II   *JL19−1〜9−mk−,,t:。
1 (1~5-n 4myo') -(Ai (E 8
n, っIJ)! -9e ff5 Ji12 Luns 3
-1 to 3-n each have a light emitting side holder 5-1-1'1. On the other hand, the light receiving element or optical fiber 8
-1 to 8-m and the fourth lens 7-1 to 7-m are on the light receiving side t
:'II *JL19-1~9-mk-,,t:.

−h (L g h−1,ニー v2.5] 1    リメータを形成している。このように、従来
各々″!! :1   、。1あり一アアヶ、1□11工、−カ。。
-h (L g h-1, knee v2.5) 1 It forms a limiter. In this way, conventionally each ``!!: 1, .

パ:)     ゾ、Cヶえ、V/つ□エア1.イ7.
イア、お−1.。
Pa:) Zo, Cgae, V/tsu□Air 1. B7.
Ia, o-1. .

〕    でいるのが従来と異なる点である。] The difference from the conventional method is that

′1     本発明の構成による]リメータに要求さ
れる位・1 (′□    置及び角度精度は従来の構成における発
光/受光・ I リ    素子又は光ファイバに要求される精度に比べ
て著、、j 呼 !シフ緩和される。図面を用いてその原理について];
j    説明する。
'1 According to the configuration of the present invention] The positional and angular accuracy required for the remeter is significantly higher than that required for the emitting/receiving element or optical fiber in the conventional configuration. Call! Schiff is relaxed.About its principle using drawings];
j Explain.

□゛l     第2図[D IJ 、/! −、系、
7)エデ、、ヶ示。。(。)メ     は従来のコリ
メート系のモデルを示し、また(’B)、゛・ ÷    は本発明の構成におけるコリター1〜系のモ
デルを、暑 =”、1                − 5 −
示す。ファイバ出射パワー四〇からファイバ入射パワー
poutまでの結合損失と位置ずれΔX又は角度ずれ△
θとの関係を、従来のコリメート系につ゛いて第3図に
、本発明におけるコリメート系について第4図に夫々示
す。尚、第3図及び第4図においては発光側及び受光側
共コア径50μm、NA= 0.2GIフアイバを用い
ることを条件としている。
□゛l Figure 2 [DIJ,/! -, system,
7) Ede...Gasashi. . (.)Me indicates the model of the conventional collimating system, and ('B), ゛・÷ indicates the model of the collimator 1 to system in the configuration of the present invention.
show. Coupling loss and positional deviation ΔX or angular deviation △ from fiber output power 40 to fiber input power pout
The relationship with θ is shown in FIG. 3 for a conventional collimating system and in FIG. 4 for a collimating system according to the present invention. In addition, in FIGS. 3 and 4, the conditions are that both the light emitting side and the light receiving side use a core diameter of 50 μm and NA=0.2 GI fiber.

第3図と第4図とを比較すると、第2レンズ2と第4レ
ンズ7とにより]リメータとして見かけ上のコア径を拡
大すると、角度ずれ八〇に対しては結合損失の感度が高
くなるが、位置ずれ△Xに対する感度は大幅に緩和され
ている。現状の加工技術で容易に量産が可能な精度とし
ては、概ね寸法精度が100μm、角度精度が0.2度
程度ぐある。
Comparing Figures 3 and 4, we can see that when the apparent core diameter is expanded as a remeter by the second lens 2 and the fourth lens 7, the sensitivity of the coupling loss increases with respect to an angular deviation of 80°. However, the sensitivity to positional deviation ΔX is significantly relaxed. The precision that can be easily mass-produced using current processing technology is approximately 100 μm in dimensional precision and 0.2 degree in angular precision.

第3図から分かる様に光軸の無調整化を実現しようとし
ても、従来、非常に高精度な機構部品が必要であり低価
格化の障害となっていた。
As can be seen from FIG. 3, even if an attempt was made to eliminate the need for adjusting the optical axis, extremely high-precision mechanical parts were required, which was an obstacle to lowering the price.

一方、第4図から分かる様に、本発明の構成では、位置
の要求精度と角度の要求精度との間で自由に調和をとる
ことが可能であり、比較的低価格な機構部品で光軸の無
調整化が可能できる。又、総ての光軸を無調整化しなく
ても、精度が緩和されればその調整工数は大幅に削減さ
れる。
On the other hand, as can be seen from FIG. 4, with the configuration of the present invention, it is possible to freely balance the required position accuracy and angle accuracy, and the optical axis can be adjusted using relatively low-cost mechanical parts. It is possible to eliminate the need for adjustment. Furthermore, even if all optical axes are not adjusted, the number of adjustment steps can be significantly reduced if the accuracy is relaxed.

尚、前j!ISの従来の]リフ−1一方式では、位置粘
度が著しく緩和され過ぎているため、逆に角度精IIが
厳しくなり過ぎてやはり位置精度と角度精度の調和がと
りにくいという点で全く同様のことが言える。
Furthermore, Maej! IS's conventional RIF-1 one-way system is completely similar in that the position viscosity is significantly relaxed, and the angle precision II becomes too strict, making it difficult to balance position accuracy and angle accuracy. I can say that.

第5図は本発明の実施例を適用して実現した3波長用光
分波器の構造を示す。入射ファイバ15−1の端末13
の先端より出射した波長λ1.λ2゜ス3の光ビームは
第ルンズ3−1と第2レンズ2−1を通過後平行ビーム
となり、ガラスブロック11中を伝搬して干渉膜フィル
タ10−1に到達する。ここで、λ1の成分のみ干渉膜
フィルタ10−1を通過し、第3レンズ6−1と第4レ
ンズ7−1で集束され出射ファイバ15−2に結合する
FIG. 5 shows the structure of a three-wavelength optical demultiplexer realized by applying an embodiment of the present invention. Terminal 13 of input fiber 15-1
The wavelength λ1. emitted from the tip of the The light beam of λ2° 3 becomes a parallel beam after passing through the first lens 3-1 and the second lens 2-1, propagates through the glass block 11, and reaches the interference film filter 10-1. Here, only the component of λ1 passes through the interference film filter 10-1, is focused by the third lens 6-1 and the fourth lens 7-1, and is coupled to the output fiber 15-2.

一方、λ2とλ3の成分の光ど一方は干渉膜フィルタ1
0−1で反銅された後、同様にして各々λ2の光ビーム
は干渉膜フィルタ10−2を通過した後出側ファイバ1
5−3に、又λ3の光ビームは出射ファイバ15−4に
結合する。第ルンズ3−1及び第4レンズ7−1〜7−
3をザボート14内に固定し、ザボート14と端末13
のつば同士を突合せて光軸調整し互いに固定することに
より、]リメー夕を形成している。
On the other hand, one of the light components of λ2 and λ3 is filtered through the interference film filter 1.
0-1, the light beams of λ2 each pass through an interference film filter 10-2 and then enter the output fiber 1.
5-3, and the light beam of λ3 is coupled to the output fiber 15-4. 3rd lens 3-1 and 4th lens 7-1 to 7-
3 is fixed inside the boat 14, and the boat 14 and the terminal 13 are fixed.
By butting the ribs together to adjust the optical axis and fixing them together, a remeter is formed.

ボルダ12は金属等を高精度に切削して作られる。ホル
ダ120周辺部のU溝16−1〜16−4にコリメータ
を、又底面の中央部のざぐり部分にガラスブロック11
を基準面17−1.17−2に押し当てる様にして支持
することにより、高精度な光軸固定が可能である。
The boulder 12 is made by cutting metal or the like with high precision. A collimator is installed in the U grooves 16-1 to 16-4 around the holder 120, and a glass block 11 is installed in the counterbore in the center of the bottom.
By supporting the optical axis by pressing it against the reference surface 17-1, 17-2, it is possible to fix the optical axis with high precision.

本実施例にお【プる諸元は以下の通りである。The specifications used in this example are as follows.

λ1 = 1300nm、λ2 =780nm 、λ3
 =880nm半球レンズの曲率半径:  L5mm 干渉膜フィルタ:LWPF及びSWP Fガラスブロッ
クのU買:BK7ガラス ホルダの材質ニアルミニウム 」リメータはホルダの外で予め組立て可能4Tため、端
末の位置精度は従来並に厳しいが、量産性は良い。本実
施例で、コリメータとガラスブロックの固定を無調整で
行った結果、付加結合損失は(13dB以内であった。
λ1 = 1300nm, λ2 = 780nm, λ3
=880nm Radius of curvature of hemispherical lens: L5mm Interference film filter: LWPF and SWP However, mass production is good. In this example, as a result of fixing the collimator and glass block without adjustment, the additional coupling loss was within 13 dB.

又、組立て工数(ま従来の]リメート系で構成した3波
長光分波器に比べて1/3に低減でき、本発明が光部品
の低価格化に有効であることが確認できた。
In addition, the assembly man-hours (well, conventional) can be reduced to 1/3 compared to a three-wavelength optical demultiplexer constructed using a remate system, confirming that the present invention is effective in reducing the cost of optical components.

発明の効果 以上の説明により明らかな様に、本発明では、光部品の
光学系として従来用いられているレンズ・コリメート系
において、各々のレンズを2個に分割した一方を発光/
受光素子又は光ファイバと一体化してコリメータを形成
することにより位置及び角度精度が調和良く緩和される
。その結果、充分量産可能な機構部品の加工精度で光軸
の無調整化が可能どなり、光部品の価格が大幅に低減さ
れる効果が生じる。
Effects of the Invention As is clear from the above explanation, in the present invention, in a lens collimating system conventionally used as an optical system for optical components, each lens is divided into two parts, and one of the parts is used to emit light/
By integrating the light receiving element or the optical fiber to form a collimator, positional and angular accuracy can be harmoniously relaxed. As a result, it becomes possible to eliminate the need for adjusting the optical axis with sufficient machining accuracy for mechanical components that can be mass-produced, resulting in the effect of significantly reducing the cost of optical components.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例の構成図、第2図(A)は従来
のレンズ・コリメート系のモデル図、第2− 〇 − 図(B)は本発明のレンズ・コリター1−系のモデル図
、第3図及び第4図は従来及び本発明による各レンズ・
コリメート系の特性を夫々示1図、第5図(A)は本発
明の応用例の平面図、(+−3)はそのA−A’断面図
である。 主要部分の符号の説明 1・・・・・・機能光学素子 2.3.6.7・・・・・・レンズ 4・・・・・・発光素子又は光ファイバ8・・・・・・
受光素子又は光ファイバ9.12・・・・・・ホルダ
Figure 1 is a configuration diagram of an embodiment of the present invention, Figure 2 (A) is a model diagram of a conventional lens/collimating system, and Figure 2 (B) is a model diagram of the lens/collimator 1 system of the present invention. The model diagrams, FIGS. 3 and 4 show each lens and lens according to the conventional and the present invention.
The characteristics of the collimating system are shown in FIG. 1, and FIG. 5(A) is a plan view of an application example of the present invention, and (+-3) is a cross-sectional view taken along the line AA'. Explanation of symbols of main parts 1... Functional optical element 2.3.6.7... Lens 4... Light emitting element or optical fiber 8...
Light receiving element or optical fiber 9.12...Holder

Claims (1)

【特許請求の範囲】[Claims] 光導入素子と、この光導入素子の導入光軸上にこの光導
入素子に近接して配置された2個の入力側レンズと、光
導出素子と、この光導出素子への入射光軸上にこの光導
出素子に近接して配置された2個の出力側レンズと、前
記入力側レンズと出力側レンズとの間に挿入され導入光
を予め定められた処理機能に基づいて処理して導出する
光学素子とを有し、前記光導入素子と前記2個の入力側
レンズのうち当該光導入素子により近い方のレンズとが
一体に固定され、また前記光導出素子と前記2個の出力
側レンズのうち当該光導出素子により近い方のレンズと
が一体に固定されていることを特徴とする光通信用光部
品。
a light introduction element, two input-side lenses arranged close to the light introduction element on the introduction optical axis of the light introduction element, a light extraction element, and two input lenses arranged on the introduction optical axis of the light introduction element; Two output-side lenses arranged close to this light guiding element are inserted between the input-side lens and the output-side lens to process and guide the introduced light based on a predetermined processing function. an optical element, the light introduction element and the lens closer to the light introduction element of the two input lenses are fixed together, and the light introduction element and the two output lenses are fixed together. An optical component for optical communication, characterized in that a lens closer to the light guiding element is fixed integrally with the lens.
JP10426785A 1985-05-16 1985-05-16 Optical parts for optical communication Pending JPS61261707A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10426785A JPS61261707A (en) 1985-05-16 1985-05-16 Optical parts for optical communication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10426785A JPS61261707A (en) 1985-05-16 1985-05-16 Optical parts for optical communication

Publications (1)

Publication Number Publication Date
JPS61261707A true JPS61261707A (en) 1986-11-19

Family

ID=14376151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10426785A Pending JPS61261707A (en) 1985-05-16 1985-05-16 Optical parts for optical communication

Country Status (1)

Country Link
JP (1) JPS61261707A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222603A (en) * 1988-07-11 1990-01-25 Fujitsu Ltd Light receiving module
EP1146362A2 (en) * 2000-02-17 2001-10-17 JDS Uniphase Inc. Dichroic filter for wavelength separation

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0222603A (en) * 1988-07-11 1990-01-25 Fujitsu Ltd Light receiving module
EP1146362A2 (en) * 2000-02-17 2001-10-17 JDS Uniphase Inc. Dichroic filter for wavelength separation
EP1146362A3 (en) * 2000-02-17 2004-05-19 JDS Uniphase Inc. Dichroic filter for wavelength separation

Similar Documents

Publication Publication Date Title
JPS6145801B2 (en)
JPH07103770A (en) Compound optical waveguide type optical device
JPH08313744A (en) Optical circuit parts
JPH09189821A (en) Optical device using optical fiber and its manufacture
JPS6146911A (en) Waveguide type optical module
JP2003004992A (en) Optical transmission and reception module and its manufacturing method
JPH10268158A (en) Optical branching filter and optical coupling part
JPS61261707A (en) Optical parts for optical communication
JPS59198408A (en) Waveguide type optical branching device
US6175670B1 (en) Planar lightguide circuit having a planar grating
JPH02259610A (en) Waveguide type light wavelength multiplexer
JPS63163308A (en) Optical element and its manufacture
JPS6333707A (en) Waveguide type optical multiplexer/demultiplexer
US6894846B1 (en) Optical add/drop apparatus and the method for making the same
JP6810076B2 (en) Fiber module
JPH07333462A (en) Parts for optical communication
JP3985576B2 (en) Optical connector, optical wiring system, and optical connector manufacturing method
JPS629305A (en) Photocoupling parts
JP2004325813A (en) Optical multiplexing and demultiplexing module
JPH10160952A (en) Wavelength dividing element and light wavelength multiplex transmission module
JPS61232405A (en) Optical demultiplexer and multiplexer
JP2003172806A (en) Lens element and optical parts using the same
JPH01213606A (en) Optical function device
JPS61212806A (en) Optical coupling and branching device and optical multiplexer and demultiplexer and their manufacture
JP2003149492A (en) Optical waveguide circuit module