JPS6126154B2 - - Google Patents
Info
- Publication number
- JPS6126154B2 JPS6126154B2 JP55052461A JP5246180A JPS6126154B2 JP S6126154 B2 JPS6126154 B2 JP S6126154B2 JP 55052461 A JP55052461 A JP 55052461A JP 5246180 A JP5246180 A JP 5246180A JP S6126154 B2 JPS6126154 B2 JP S6126154B2
- Authority
- JP
- Japan
- Prior art keywords
- potential
- memory cell
- power supply
- external power
- logic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000012360 testing method Methods 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 15
- 239000003990 capacitor Substances 0.000 claims description 8
- 230000008569 process Effects 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 12
- 238000010998 test method Methods 0.000 description 11
- 230000008859 change Effects 0.000 description 9
- 230000004913 activation Effects 0.000 description 3
- 230000003321 amplification Effects 0.000 description 3
- 238000003199 nucleic acid amplification method Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/50—Marginal testing, e.g. race, voltage or current testing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2201/00—Indexing scheme relating to error detection, to error correction, and to monitoring
- G06F2201/81—Threshold
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/50—Marginal testing, e.g. race, voltage or current testing
- G11C2029/5004—Voltage
Landscapes
- Testing Of Individual Semiconductor Devices (AREA)
- Techniques For Improving Reliability Of Storages (AREA)
- For Increasing The Reliability Of Semiconductor Memories (AREA)
Description
【発明の詳細な説明】
本発明は絶縁ゲート型電界効果素子をを用いた
集積回路の試験法に関し、特に1トランジスタ型
メモリセルの余裕電圧試験法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for testing an integrated circuit using an insulated gate field effect device, and more particularly to a method for testing a margin voltage of a one-transistor type memory cell.
1トランジスタ型メモリセルはセル当りの使用
素子数が少なく、大容量メモリ集積回路に適して
いるが、メモリセル出力信号が小さいため、メモ
リセル部あるいは微小信号増幅回路(以下S・A
という)部の製造上のばらつきが動作マージン余
裕を減少させる。従つて、メモリセルあるいは
S・A系の動作マージンを測定することは、製造
工程能力を知る上で有効な手段であり、さらに進
んでメモリセルあるいはS・A系の動作マージン
を保証できるならば、外部物理的雑音要因(例え
ばα粒子)に耐えるメモリ回路を選別することも
可能になる。 One-transistor memory cells use a small number of elements per cell and are suitable for large-capacity memory integrated circuits, but because the memory cell output signal is small, they are used in the memory cell section or small signal amplification circuit (hereinafter referred to as S.A.
) manufacturing variations reduce operating margin margins. Therefore, measuring the operating margin of a memory cell or S/A system is an effective means of knowing the manufacturing process capability, and if it is possible to go further and guarantee the operating margin of a memory cell or S/A system. , it also becomes possible to select memory circuits that are resistant to external physical noise factors (eg alpha particles).
従来、この種の試験方法としてバンプテストと
呼ばれる外部電源を振動させてメモリ回路全体の
動作マージンをテストする方法がある。この方法
はメモリ回路全体の電源のゆれに対する強さをテ
ストすることを目的としている。 Conventionally, as a test method of this type, there is a method called a bump test in which an external power supply is vibrated to test the operating margin of the entire memory circuit. The purpose of this method is to test the resistance of the entire memory circuit to power fluctuations.
第1図は従来の1トランジスタ型メモリ回路の
試験法の一例のバンプテスト法を説明するための
回路図、第2図は従来のバンプテストに使用する
電圧の波形図である。 FIG. 1 is a circuit diagram for explaining a bump test method as an example of a conventional one-transistor type memory circuit testing method, and FIG. 2 is a voltage waveform diagram used in the conventional bump test.
1トランジスタ型メモリセル1の動作はプリチ
ヤージ期間においてMOS型トランジスタ(以下
MOSTという)Q11,Q12を導通させ、桁線D,
の電位を共にVMに平衡させる。活性化期間―
(MOST:Q11,Q12,Q22はオフ)にメモリセル
語線WL(S)がタイミングφ1とデコーダDECの
論理積で活性化されるとメモリ容量Csに蓄積さ
れていた電荷がMOST:Q30を通して桁線Dに転
送されて、桁線Dの電位レベルをVMから若干変
化させる。一方、タイミングφ1でリフアレンス
セル語線WL(R)も活性化されて、リフアレンスセ
ル3の容量C2(節点Rの電位はプリチヤージ期
間中にMOSU:Q32により大地電位になつてい
る)にMOST:Q31を通して電荷が転送され、桁
線の電位レベルを若干下げる。両桁線D,の
微小電位差をMOST:Q21,Q22から成るクロス
カプルドMOST増幅器2をタイミングφ2で
MOST:Q23を導通させることにより、活性化し
てD,の電位差を増幅する。メモリモル1及び
リフアレンズセル3のコンデンサCs,CBの対極
は通常節点Aに接続されて、抵抗Rを経由して外
部電源VDDに接続される。抵抗Rは本来VDDを変
化させるバンプテストに強くするために挿入され
ているので、、節点Aの負荷容量と抵抗Rによる
時定数は相当に大きくなつている。 The operation of the one-transistor type memory cell 1 is that of a MOS type transistor (hereinafter referred to as
(referred to as MOST) Q 11 and Q 12 are made conductive, and the girder lines D,
Equilibrate the potentials of both to V M . Activation period-
(MOST: Q 11 , Q 12 , Q 22 are off) When the memory cell word line WL(S) is activated by the AND of timing φ 1 and decoder DEC, the charge accumulated in the memory capacitor Cs becomes MOST : It is transferred to the digit line D through Q 30 , and the potential level of the digit line D is slightly changed from VM . On the other hand, at timing φ 1 , the reference cell word line WL(R) is also activated, and the capacitance C 2 of the reference cell 3 (the potential of the node R is set to the ground potential by MOSU: Q 32 during the precharge period) ) through MOST:Q 31 , which lowers the potential level of the digit line slightly. The minute potential difference between both digit lines D and MOST: Cross-coupled MOST amplifier 2 consisting of Q 21 and Q 22 is connected at timing φ 2 .
MOST: By making Q 23 conductive, it is activated and the potential difference between D and D is amplified. The opposite electrodes of the capacitors C s and C B of the memory mole 1 and the referens cell 3 are normally connected to a node A and then connected to an external power supply V DD via a resistor R. Since the resistor R is originally inserted to make it strong against bump tests that change VDD , the time constant due to the load capacitance of the node A and the resistor R is considerably large.
VDDを±△VDD変化させてバンプテストを行う
と、プリチヤージ電位VPはほぼ±△VDDの振動
を示し、桁線平衡電位レベルを与えるVMは±α
×△VDD(α1)の振動をする。また、メモリ
セル節点Sの電位CSも大きな時定数をもつて±
β×△VDD(β1)の振動をすることになる。
これら振動に対してメモリ回路系がどの程度の量
に耐えられるかを目的として試験するのがバンプ
テストである。 When a bump test is performed by varying V DD by ±△V DD , the precharge potential V P shows an oscillation of approximately ±△V DD , and the V M that gives the digit line equilibrium potential level is ±α
It vibrates at ×△V DD (α1). In addition, the potential C S of the memory cell node S also has a large time constant.
It will vibrate as β×△V DD (β1).
A bump test is a test to determine how much of these vibrations a memory circuit system can withstand.
しかしながら、メモリセルの余裕度を測定しよ
うとするとき、メモリセルの内部の電圧が固定的
でないので、この振動のために測定が不正確にな
るという欠点があつた。 However, when trying to measure the margin of a memory cell, the voltage inside the memory cell is not fixed, and this vibration causes the measurement to be inaccurate.
本発明は上記欠点を除き、メモリセルのコンデ
ンサの対極を接地電位にしてメモリセルの書込み
電位を一定にすすることにより正確なメモリセル
余裕電圧を試験する方法を提供するものである。 The present invention eliminates the above-mentioned drawbacks and provides a method for accurately testing the memory cell margin voltage by setting the counter electrode of the capacitor of the memory cell to ground potential and keeping the write potential of the memory cell constant.
本発明のメモリセル余裕電圧試験法は、1トラ
ンジスタ型メモリセルとクロスカプルドMOSト
ランジスタ微小信号増幅器とリフアレンスセルと
を含むメモリ回路の前記メモリのコンデンサ対極
を接地電位に固定するプロセスと、前記メモリセ
ルへ論理“1”及び論理“0”を書き込むときの
二つの外部電源電位をそれぞれ一定に設定するプ
ロセスと、前記メモリセルからの読出し時の外部
電源電位を前記書込み時の外部電源と異なる電位
にすることにより前記書込み時の二つの外部電源
電位の中間にあるクリテイカル電位を変化させて
メモリセルの余裕電圧を縮小または拡大させるプ
ロセスとを含んで構成される。 The memory cell margin voltage testing method of the present invention includes a process of fixing the counter electrode of a capacitor of a memory circuit including a one-transistor type memory cell, a cross-coupled MOS transistor small signal amplifier, and a reference cell to a ground potential, and A process of setting two external power supply potentials constant when writing logic "1" and logic "0" to the memory cell, and setting the external power supply potential when reading from the memory cell to a different potential from the external power supply potential at the time of writing. The method includes a process of reducing or expanding the margin voltage of the memory cell by changing a critical potential between the two external power supply potentials at the time of writing.
本発明を実施例により説明する。 The present invention will be explained by examples.
第3図は本発明の一実施例の試験法を説明する
ための回路図、第4図は本発明の試験法に用いる
外部電位とクリテイカル電位を説明するための図
である。 FIG. 3 is a circuit diagram for explaining a test method according to an embodiment of the present invention, and FIG. 4 is a diagram for explaining an external potential and a critical potential used in the test method of the present invention.
図に示すように1トランジスタ型メモリセル1
1のコンデンサCS′の対極を低インピーダンスで
大地電位にする。本発明の試験法では、第4図に
示すように、書込みサイクル期間TWと読出しサ
イクル期間TRで外部電源電位VDDを明確に変化
させる。メモリセル容量をCS′、リフアレンスセ
ル容量をCR′、桁線容量をCD′、メモリセル節点
電位をVS′で表わし、桁線電位を平衡電位VM′に
する。 As shown in the figure, one transistor type memory cell 1
The opposite electrode of capacitor C S ' of No. 1 is set to ground potential with low impedance. In the test method of the present invention, as shown in FIG. 4, the external power supply potential V DD is clearly changed during the write cycle period T W and the read cycle period TR . The memory cell capacitance is represented by C S ', the reference cell capacitance is represented by C R ', the column line capacitance is expressed by C D ', the memory cell node potential is expressed by V S ', and the column line potential is set to the equilibrium potential V M '.
メモリセル11が桁線を変化させる微小電位変
化分は、S・A(微小信号増幅回路)12の活性
化時刻をWL′(S)活性化時刻よりあまりおそくで
きない(アクセスタイムを遅くしないため)か
ら、通常セルの有する能力の100%未満である。
S・A12が活性化される時刻迄に、セルに有する
能力のK(K1)倍が桁線に出力されたとす
る。両桁線の差信号電位レベル△VS.Aは(メモ
リセル11の出す信号)―(リフアレンスセル1
3の出す信号)で与えられるから
△VS.A=KCS′/CD′+CS′(VM′−VS′
)
−CR′/CD′+CR′VM′
になる。ここで△VS.A≡0になるVS′をクリテ
イカル電位Vcとすると
上式より
VC=VM′(1−CD′+CS′/CD′+CR′×
CR′/CS′×1/K)
になる、即ち、VCはVM′に比例する。CD′≫C
S′,CS′〓2CR′ K〓1を考慮すると
Vc〓0.5×VM′ ……(1)
になる。 The minute potential change that causes the memory cell 11 to change the digit line cannot make the activation time of the S・A (minimal signal amplification circuit) 12 much later than the WL'(S) activation time (so as not to delay the access time). Therefore, it is less than 100% of the capacity of normal cells.
Assume that K (K1) times the capacity of the cell is output to the digit line by the time S.A12 is activated. The difference signal potential level △V S . A between both digit lines is (signal output from memory cell 11) - (reference cell 1
3 ) , so △ V S .
) −C R ′/C D ′+C R ′V M ′. Here , if V S ' where △ V S .
C R '/C S '×1/K), that is, V C is proportional to V M '. C D ′≫C
Considering S ′, C S ′〓2C R ′K〓1, it becomes V c 〓0.5×V M ′ ……(1).
書込みサイクルにおいて、メモリセル11の節
点S′に論理“1”レベルまたは論理“0”レベル
を桁線D′さら書込む。プリチヤージ期間に桁線
電位VDDをVDD1(またはVDD2)に変化させて
も、メモリセルコンデンサCS′の対極が接地電位
であるから節点S′の電位即ちメモリセル11への
書込み電位は変化しない。プリチヤージ期間に電
源を変化させて後、読出しサイクルを行なう。電
源を変化させると、VM′はVDDの関数であるから
(VM′なる電位は回路的にVDDと接地電位との間
の分割電位である)、上式(1)に基づいて、クリテ
イカル電位Vcが変化する。即ち書込み時VDDと
読出し時VDDを異なる値にすることにより、メモ
リセル電位VS′を変化させることなく、クリテイ
カル電位VCを変化させることができる。 In the write cycle, a logic "1" level or a logic "0" level is further written to the node S' of the memory cell 11 on the digit line D'. Even if the digit line potential V DD is changed to V DD1 (or V DD2 ) during the precharge period, since the opposite electrode of the memory cell capacitor C S ' is at the ground potential, the potential of the node S', that is, the write potential to the memory cell 11 is It does not change. After changing the power supply during the precharge period, a read cycle is performed. When the power supply is changed, V M ' is a function of V DD (the potential V M ' is a divided potential between V DD and the ground potential in circuit terms), so based on the above equation (1), , the critical potential Vc changes. That is, by setting V DD during writing and V DD during reading to different values, it is possible to change the critical potential V C without changing the memory cell potential V S '.
特に、VM′をVDDにすれば、クリテイカル電位
VCの変化△VC(VC1−VCまたはVC2−VC)
は、△VC〓0.5(VDD1−VDD)または△VC〓
0.5(VDD2−VDD)となり、定量化しやすい。 In particular, if V M ' is set to V DD , the change in critical potential V C △V C (V C1 - V C or V C2 - V C )
is △V C 〓0.5 (V DD1 −V DD ) or △V C 〓
0.5 (V DD2 −V DD ), which is easy to quantify.
以上の説明で明らかなように、本発明の方法に
よれば、書込み時電源で定まるメモリセル内の論
理“1”レベル“0”レベルを変化させることな
く、読出し時のクリテイカル電圧を変化させるこ
とにより、外部から強制的にメモリセルの余裕電
圧(論理“1”レベル―クリテイカル電圧または
クリテイカル電圧―論理“0”レベル)を縮小、
拡大させることができる。 As is clear from the above explanation, according to the method of the present invention, the critical voltage during reading can be changed without changing the logic "1" level and "0" level in the memory cell determined by the power supply during writing. By forcefully reducing the margin voltage of the memory cell (logic "1" level - critical voltage or critical voltage - logic "0" level) from the outside,
It can be expanded.
一般にS.Aを構成する一対のクロスカツプルド
MOSTは、しきい値電圧あるいは、電流増幅率
が完全には揃つていない。このため、論理“1”
レベルに対するクリテイカル電位VC1と論理
“0”レベルに対するクリテイカル電位VC0とは
一致しない。 A pair of cross-cut pulls that generally constitute an SA
MOSTs do not have perfectly aligned threshold voltages or current amplification factors. Therefore, logic “1”
The critical potential V C1 for the level does not match the critical potential V C0 for the logic “0” level.
前記計算上のクリテイカル電位VCとこれらVC
1,VC0との差を不感帯と名付けて、論理“1”
レベルに対する不感帯Vus1、論理“0”レベル
に対する不感帯Vus0とすると、
Vus1=VC1−VC,VUS0=Vc−VC0
になる。 The above calculated critical potential V C and these V C
1 , the difference with V C0 is called the dead zone, and the logic is “1”.
Assuming a dead zone Vus 1 for the level and a dead zone Vus 0 for the logic "0" level, Vus 1 =V C1 -V C and V US0 = Vc - V C0 .
第5図は上記方法によつて設定したメモリセル
内部の電位レベルを説明する図である。 FIG. 5 is a diagram illustrating the potential level inside the memory cell set by the above method.
本発明の方法によるとメモリ内部の余裕電圧と
不感帯とを推定することができる。これをVc=
0.5×VDDに設定した場合について説明する。 According to the method of the present invention, the margin voltage and dead zone inside the memory can be estimated. This is Vc=
The case where it is set to 0.5×V DD will be explained.
第6図a,bは本発明の試験法に用いる外部電
源電位の変化状態を説明するための図である。 FIGS. 6a and 6b are diagrams for explaining changes in external power supply potential used in the test method of the present invention.
第6図aはメモリセルに論理“0”電位VW0を
書込み期間TW中に書き込んだ後、外部電源電位
VDDを遷移時間TTをもつて△TDDだけ減少させ
て、読出期間TR中で読出して試験する場合の電
圧を示す。 FIG. 6a shows that after a logic "0" potential V W0 is written into the memory cell during the write period T W , the external power supply potential V DD is decreased by ΔT DD with a transition time T T , and the read period T Indicates the voltage when reading and testing in R.
−△VDDの値を変化させて、TR期間中の読出
しで論理“0”が読めなくなつた時の−△VDD
を、−△VDDLとすると、該−△VDDLによつて第
5図のVc0が−△Vc0だけ変化させられて丁度VW
0に一致したことになる。 -△V DD when the value of -△V DD is changed and logic “0” can no longer be read during the T R period
If , is -△V DDL , Vc 0 in Fig. 5 is changed by -△Vc 0 due to this -△V DDL , and it becomes exactly V W
This means that it matches 0 .
即ち、論理“0”の余裕電圧VNMOは△VDDLに
よる△VCOに等しいから、
VNMO=0.5×△VDDLで与えられる。 That is, since the margin voltage V NMO of logic "0" is equal to △V CO due to △V DDL , it is given by V NMO = 0.5 x △V DDL .
さらに不感帯幅VUS0は第5図より
Vus0=Vc−VNMO−VW
=0.5×VDD−0.5−×△VDDL−VW
で求められる。通常、書込み時論理“0”電位V
Wは接地電位であるから、
VUS0=0.5×VDD−0.5×△VDDLとなる。Further, the dead band width V US0 is determined from FIG. 5 as Vus 0 =Vc-V NMO -V W =0.5×V DD −0.5-×△V DDL −V W . Normally, logic “0” potential V during writing
Since W is the ground potential, V US0 =0.5×V DD −0.5×△V DDL .
第6図bは、メモリセルに論理“1”電位VW
1を書込み期間TW中に書き込んだ後外部電源VD
Dを遷移時間TTで以つて+△VDDだけ増加させ
て、読出期間TRに読出して試験する場合の電圧
を示す。 FIG. 6b shows a logic "1" potential V W applied to the memory cell.
After writing 1 during the write period T W , the external power supply V D
The voltage is shown when D is increased by +ΔV DD with the transition time T T and read and tested during the read period T R .
+△VDDの値を変化させて、TR期間中の読出
しで論理“1”が読めなくなる時の+△VDDを+
△VDDHとすると、、該+△VDDHによつて第5図
のVc1が+△Vc変化させられてVW1に一致した
ことになる。 By changing the value of +△V DD , the +△V DD when the logic “1” cannot be read during the T R period is +
If ΔV DDH is used, Vc 1 in FIG. 5 is changed by +ΔVc due to +ΔV DDH and becomes equal to V W1 .
書込み時論理“1”電位VW1は、通常書込時
電源VDDW電位かまたはVDDW電位からMOSTソ
ースフオロワーによるしきい値電位VTだけ下つ
た電位のいずれかである。即ち、
VW1=VDDW
または
VW1=VDDW−VT
である。 The logic "1" potential V W1 during writing is either the normal write power supply V DDW potential or a potential lower than the V DDW potential by the threshold potential V T of the MOST source follower. That is, V W1 = V DDW or V W1 = V DDW - V T .
読出し期間TRにおける電源を第6図bのよう
にVDDとすると
VW1=VDD−△VDDH
または
VW1=VDD−△VDDH−VT
となる。いずれの場合にも論理“1”の余裕電圧
VNM1は、VC1の変化分△VC1と書込み時、電
源VDDWと読出し電源VDDとの差△VDDHの和で与
えられる。即ち、
VNM1=△VC1+△VDDH=1.5×△VDDH
となる。不感帯幅VUS1=VW1−VNM1−VCで
与えられるから
VUS1=0.5×VDD−1.5×△VDDH
または
VUS1=0.5×VDD−1.5×△VDDH−VT
となる。 If the power supply during the read period T R is set to V DD as shown in FIG. 6b, then V W1 =V DD -△V DDH or V W1 =V DD -△V DDH -V T . In either case, the margin voltage V NM1 of logic "1" is given by the sum of the change in V C1 ΔV C1 and the difference ΔV DDH between the power supply V DDW and the read power supply V DD during writing. That is, V NM1 = △V C1 + △V DDH = 1.5 x △V DDH . Since the dead band width V US1 is given by V W1 −V NM1 −V C , V US1 =0.5×V DD −1.5×ΔV DDH or V US1 =0.5×V DD −1.5×ΔV DDH −V T .
以上詳細に説明したように、本発明によれば、
メモリセル・コンデンサの対極を接地電位にし、
メモリセルへの書込み電位を変化させない方法に
よつて、メモリセル内部の余裕電圧、不感帯幅を
外部より定量的に、しかも正確に測定することが
できるのでその効果は著しい。 As explained in detail above, according to the present invention,
Set the opposite electrode of the memory cell capacitor to ground potential,
By using a method that does not change the write potential to the memory cell, the margin voltage and dead zone width inside the memory cell can be quantitatively and accurately measured from the outside, which is extremely effective.
第1図は従来のメモリ回路の試験法の一例のバ
ンプテスト法を説明するための回路図、第2図は
従来のバンプテストに使用する電圧の波形図、第
3図は本発明の一実施例の試験法をを説明するた
めの回路図、第4図は本発明の試験法に用いる外
部電位とクリテイカル電位を説明するための図、
第5図は本発明の試験法によつて設定したメモリ
セル内部の電位レベルを説明する図、第6図a,
bは本発明の試験法に用いる外部電源電位の変化
状態を説明するための図である。
1,11……メモリセル、2,12……微小信
号増幅器、3,13……レフアレンスセル。
Fig. 1 is a circuit diagram for explaining a bump test method as an example of a conventional memory circuit testing method, Fig. 2 is a voltage waveform diagram used in the conventional bump test, and Fig. 3 is an embodiment of the present invention. A circuit diagram for explaining the example test method, FIG. 4 is a diagram for explaining the external potential and critical potential used in the test method of the present invention,
FIG. 5 is a diagram explaining the potential level inside the memory cell set by the test method of the present invention, FIG. 6a,
b is a diagram for explaining the state of change in the external power supply potential used in the test method of the present invention. 1, 11... memory cell, 2, 12... minute signal amplifier, 3, 13... reference cell.
Claims (1)
MOSトランジスタ微小信号増幅器とリフアレン
ス、セルとを含むメモリ回路の前記メモリセルの
コンデンサ対極を接地電位に固定するプロセス
と、前記メモリセルへ論理“1”及び論理“0”
を書込むときの二つの外部電源電位をそれぞれ一
定に設定するプロセスと、前記メモリセルからの
読出し時の外部電源電位を前記書込み時の外部電
源と異なる電位にすることにより前記書込み時の
二つの外部電源電位の中間にあるクリテイカル電
位を変化させてメモリセルの余裕電圧を縮小また
は拡大させるプロセスとを含むことを特徴とする
メモリセル余裕電圧試験法。1 Transistor type memory cell and cross-coupled
A process of fixing the opposite electrode of a capacitor of the memory cell of a memory circuit including a MOS transistor small signal amplifier, a reference cell, and a memory cell to a ground potential, and applying logic "1" and logic "0" to the memory cell.
The two external power supply potentials at the time of writing are set constant, and the external power supply potential at the time of reading from the memory cell is set to a different potential from the external power supply at the time of writing. A memory cell margin voltage testing method comprising: a process of reducing or expanding the margin voltage of a memory cell by changing a critical potential located between an external power supply potential.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5246180A JPS56148792A (en) | 1980-04-21 | 1980-04-21 | Testing method for margin voltage of memory cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5246180A JPS56148792A (en) | 1980-04-21 | 1980-04-21 | Testing method for margin voltage of memory cell |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS56148792A JPS56148792A (en) | 1981-11-18 |
JPS6126154B2 true JPS6126154B2 (en) | 1986-06-19 |
Family
ID=12915352
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5246180A Granted JPS56148792A (en) | 1980-04-21 | 1980-04-21 | Testing method for margin voltage of memory cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS56148792A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5853775A (en) * | 1981-09-26 | 1983-03-30 | Fujitsu Ltd | Testing of ic memory |
JPS5891594A (en) * | 1981-11-27 | 1983-05-31 | Fujitsu Ltd | Dynamic semiconductor storage device |
US4612630A (en) * | 1984-07-27 | 1986-09-16 | Harris Corporation | EEPROM margin testing design |
US5142495A (en) * | 1989-03-10 | 1992-08-25 | Intel Corporation | Variable load for margin mode |
US5610867A (en) * | 1995-09-28 | 1997-03-11 | International Business Machines Corporation | DRAM signal margin test method |
US5559739A (en) * | 1995-09-28 | 1996-09-24 | International Business Machines Corporation | Dynamic random access memory with a simple test arrangement |
-
1980
- 1980-04-21 JP JP5246180A patent/JPS56148792A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS56148792A (en) | 1981-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5241503A (en) | Dynamic random access memory with improved page-mode performance and method therefor having isolator between memory cells and sense amplifiers | |
US5184326A (en) | Integrated semiconductor memory of the dram type and method for testing the same | |
US4504929A (en) | Dynamic semiconductor memory device | |
KR930008416B1 (en) | Semiconductor memory circuit | |
US5903502A (en) | Variable equilibrate voltage circuit for paired digit lines | |
JPS6145316B2 (en) | ||
US4286178A (en) | Sense amplifier with dual parallel driver transistors in MOS random access memory | |
JPS6126154B2 (en) | ||
US4255679A (en) | Depletion load dynamic sense amplifier for MOS random access memory | |
TWI287793B (en) | Increasing a refresh period in a semiconductor memory device | |
JPH06176572A (en) | Semiconductor memory device | |
JP3238806B2 (en) | Semiconductor storage device | |
JPS6149760B2 (en) | ||
JPH0510756B2 (en) | ||
JPS59180891A (en) | Semiconductor memory | |
JPS61217986A (en) | Dynamic type ram | |
KR100214462B1 (en) | Memory cell writing method | |
JPH01192098A (en) | Semiconductor memory | |
JPS63282994A (en) | Semiconductor dynamic random access memory | |
JPH10208498A (en) | Semiconductor memory circuit | |
JP2768130B2 (en) | Method for measuring leakage current of semiconductor memory circuit | |
JPH0520833B2 (en) | ||
JPS603709B2 (en) | semiconductor storage device | |
JPS59104793A (en) | Dynamic ram | |
JPH0756751B2 (en) | 1-transistor MOS dynamic RAM |