JPS61260673A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61260673A
JPS61260673A JP10294385A JP10294385A JPS61260673A JP S61260673 A JPS61260673 A JP S61260673A JP 10294385 A JP10294385 A JP 10294385A JP 10294385 A JP10294385 A JP 10294385A JP S61260673 A JPS61260673 A JP S61260673A
Authority
JP
Japan
Prior art keywords
ohmic
ohmic electrode
surface layer
source
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10294385A
Other languages
Japanese (ja)
Inventor
Haruo Kawada
春雄 川田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP10294385A priority Critical patent/JPS61260673A/en
Publication of JPS61260673A publication Critical patent/JPS61260673A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To reduce the ohmic resistance of an ohmic electrode by introducing an element from the outside to a surface layer in a region in which the ohmic electrode is formed. CONSTITUTION:The ions of Si as an N-type impurity I for shaping source/drain regions 3 are implanted to a substrate 1 in which a channel region 2 and a gate electrode 4 are formed according to a conventional manufacturing process and a mask 8 patterned conformed to the source/drain regions 3 is shaped. The implantation of In as an introducing element E is added. The implantation of In is added, and processes are returned to the conventional manufacturing process again. Regarding Ga1-xXInXAs in a surface layer 7 shaped, X is increased on the surface side though X changes in the depth direction that is, a band gap is narrowed on the surface side, and the ohmic resistance of an ohmic electrode 6 formed is reduced largely as approximately half a conventional example.

Description

【発明の詳細な説明】 〔概要〕 化合物半導体にオーミック電極が形成されてなる半導体
装置において、 オーミ7り電極が形成される領域の表面層のバンドギャ
ップを、外部からの元素導入によって狭く変化させてお
くことにより、 該電極のオーミンク抵抗を小さくしたものである。
[Detailed Description of the Invention] [Summary] In a semiconductor device in which an ohmic electrode is formed on a compound semiconductor, the bandgap of the surface layer in the region where the ohmic electrode is formed is narrowed by introducing an element from the outside. This reduces the Ohmink resistance of the electrode.

〔産業上の利用分野〕[Industrial application field]

本発明は、化合物半導体を用いた半導体装置に係り、特
に、そのオーミンク電極の接合部の構成に関す。
The present invention relates to a semiconductor device using a compound semiconductor, and particularly to the configuration of a junction portion of an ohmink electrode.

化合物半導体を使用した半導体装置は、高速動作半導体
装置や光半導体装置として重用されるようになってきた
Semiconductor devices using compound semiconductors are increasingly being used as high-speed operation semiconductor devices and optical semiconductor devices.

これらの半導体装置では、オーミック電極の接合対象が
化合物半導体であるため、オーミック抵抗が一般に高く
なるが、品質向上のためその低減が望まれている。
In these semiconductor devices, since the object to which the ohmic electrode is bonded is a compound semiconductor, the ohmic resistance is generally high, but its reduction is desired to improve quality.

〔従来の技術〕[Conventional technology]

第4図は化合物半導体を用いた半導体装置例であるガリ
ウム砒素電界効果トランジスタ (GaAs−FET)
の側断面図である。
Figure 4 shows a gallium arsenide field effect transistor (GaAs-FET), which is an example of a semiconductor device using a compound semiconductor.
FIG.

同図において、1は半絶縁性ガリウム砒素(GaAs)
の基板、2はn型不純物なるシリコン(Si)を注入し
活性化してn型としたチャネル領域、3は同しくSiを
注入し活性化してn1型にしたソース/ドレイン領域、
4はタングステン (W)  シリサイドのゲート電極
、5は二酸化シリコン(SiO2)の絶縁層、6はソー
ス/ドレイン領域3に対しオーミック接合する金ゲルマ
ニウム/金(^uGe/Au)のオーミック電極である
In the figure, 1 is semi-insulating gallium arsenide (GaAs)
2 is a channel region in which silicon (Si), which is an n-type impurity, is implanted and activated to make it an n-type; 3 is a source/drain region in which Si is also implanted and activated to make it an n-type;
4 is a gate electrode made of tungsten (W) silicide, 5 is an insulating layer made of silicon dioxide (SiO2), and 6 is an ohmic electrode made of gold germanium/gold (^uGe/Au) that is in ohmic contact with the source/drain region 3.

このGaAs−FETは、二つあるソース/ドレイン領
域3の一方がソース、他方がドレインとなり、両者間を
流れるドレイン電流はゲート電極4の電圧により制御さ
れる。そしてこのドレイン電流は、オーミック電極6に
よって導出される。
In this GaAs-FET, one of two source/drain regions 3 serves as a source and the other serves as a drain, and the drain current flowing between the two is controlled by the voltage of the gate electrode 4. This drain current is then led out by the ohmic electrode 6.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従ってドレイン電流に対して、ソース/ドレイン領域3
とオーミック電極6との間に存在する接合抵抗(オーミ
ック抵抗)が直列に入るので、このオーミック抵抗は小
さいことが望ましい。
Therefore, for the drain current, the source/drain region 3
Since the junction resistance (ohmic resistance) existing between the electrode 6 and the ohmic electrode 6 is connected in series, it is desirable that this ohmic resistance is small.

しかしながら上記GaAs−FETは、ソース/ドレイ
ン領域3がGaAsで形成されているため、そのハンド
ギャップの大きさから上記オーミック抵抗は、十分に小
さくなり得ない問題がある。
However, since the source/drain region 3 of the GaAs-FET is formed of GaAs, there is a problem in that the ohmic resistance cannot be made sufficiently small due to the size of the hand gap.

この問題は、上記GaAs−FETに限られず、化合物
半導体を使用した多くの半導体装置において共通した問
題である。
This problem is not limited to the GaAs-FET described above, but is a common problem in many semiconductor devices using compound semiconductors.

〔問題点を解決するための手段〕[Means for solving problems]

第1図は本発明の要旨を示す側断面図である。 FIG. 1 is a side sectional view showing the gist of the present invention.

上記問題点は、第1図に示す如く、第一の化合物半導体
からなりオーミ、り電極6 (即ち第4図図示の場合の
オーミック電極6)が形成される領域3 (即ち同じく
ソース/ドレイン領域3)の表面層7が、オーミ、り電
極6の形成に先立つ外部からの元素E導入により、第一
の化合物半導体のバンドギャップより狭いバンドギャッ
プを有する第二の化合物半導体に変化させられてなる本
発明の半導体装置によって解決される。
As shown in FIG. 1, the above problem is caused by the region 3 (i.e., the source/drain region also) in which the ohmic electrode 6 (i.e., the ohmic electrode 6 in the case shown in FIG. 4) is formed, which is made of the first compound semiconductor, as shown in FIG. The surface layer 7 of 3) is changed into a second compound semiconductor having a band gap narrower than that of the first compound semiconductor by introducing an element E from the outside prior to the formation of the ohmic electrode 6. This problem is solved by the semiconductor device of the present invention.

[作用〕 上記構成により、オーミック電極6の接合対象となる半
導体が、従来の第一の化合物半導体から第二の化合物半
導体に変わりそのバンドギャップが従来より狭(なるの
で、オーミック電極のオーミック抵抗が従来より小さく
なる。
[Function] With the above configuration, the semiconductor to which the ohmic electrode 6 is bonded changes from the conventional first compound semiconductor to the second compound semiconductor, and its bandgap becomes narrower than before, so the ohmic resistance of the ohmic electrode is reduced. Smaller than before.

このことにより、例えば第4図図示のGaAs−FET
においてドレイン電流に対して直列に入る抵抗が減少し
て動作速度が向上するなど、半導体装置の品質を向上さ
せることが可能になる。
By this, for example, the GaAs-FET shown in FIG.
It is possible to improve the quality of the semiconductor device, such as by reducing the resistance connected in series with the drain current and improving the operating speed.

〔実施例〕〔Example〕

第2図は本発明による半導体装置の実施例の側断面図、
第3図はその実施例において本発明を実現させる製造工
程の側断面図である。
FIG. 2 is a side sectional view of an embodiment of a semiconductor device according to the present invention;
FIG. 3 is a side sectional view of a manufacturing process for realizing the present invention in its embodiment.

第2図に示す半導体装置は第4図図示GaAs−FET
に本発明の構成を適用したものである。
The semiconductor device shown in FIG. 2 is the GaAs-FET shown in FIG.
The configuration of the present invention is applied to.

即ち、オーミック電極6が形成されるソース/ドレイン
領域3の表面層7に前記元素Eなるインジウム(In)
を導入し、表面層7をガリウムインジウム砒素(Gal
−xlnx As)に変えたもので、その他は第4図図
示と変わらない。
That is, indium (In), which is the element E, is formed on the surface layer 7 of the source/drain region 3 where the ohmic electrode 6 is formed.
is introduced, and the surface layer 7 is made of gallium indium arsenide (Gal
-xlnx As), and the rest is the same as shown in FIG.

以下第3図を用いて、表面層7をGal−xlnXAs
に変える製造工程を説明する。
Below, using FIG. 3, the surface layer 7 is made of Gal-xlnXAs.
We will explain the manufacturing process to change the

従来の製造工程に従い、チャネル領域2とゲート電極4
とを形成し更にソース/ドレイン領域3に合わせてバタ
ーニングされた例えば5i02のマスク8を形成した基
板1に、ソース/ドレイン領域3形成のためのn型不純
物IなるSiをイオン注入法により注入する。
Channel region 2 and gate electrode 4 are formed according to conventional manufacturing processes.
Si, which is an n-type impurity I, for forming the source/drain regions 3 is implanted into the substrate 1 on which a mask 8 of, for example, 5i02, which is patterned to match the source/drain regions 3, is formed by ion implantation. do.

この後、導入元素EなるInの注入を追加する。After this, implantation of In, which is the introduced element E, is added.

この注入はイオン注入法によって行い、その条件は、例
えば、100Keν、3X]O”/cdである。
This implantation is performed by an ion implantation method, and the conditions are, for example, 100Keν, 3X]O''/cd.

Inの注入を追加した後は、再び従来の製造工程に復帰
する。
After adding In implantation, the conventional manufacturing process is resumed.

上記Inの注入のみでは、表面層7はGa、xlnx 
Asに変化していない。Ga1−xlnxAsに変化さ
せるためには、注入したInをGaAsと共に結晶化さ
せる処理が必要である。
With only the above-mentioned In implantation, the surface layer 7 is formed of Ga, xlnx
It has not changed to As. In order to change to Ga1-xlnxAs, a treatment is required to crystallize the implanted In together with GaAs.

この処理は、Siを注入したソース/ドレイン領域3を
活性化させる例えば750℃、15分の熱処理によって
同時に行われる。
This treatment is simultaneously performed by heat treatment at, for example, 750° C. for 15 minutes to activate the source/drain regions 3 into which Si is implanted.

従ってこのような表面層7の形成は、工程の単純な追加
によって行うことが可使である。
Therefore, it is possible to form such a surface layer 7 by simply adding a step.

かく形成された表面層7のGa1−xlnx Asは、
Xが深さ方向に変化するも表面側で大きく即ち表面側で
バンドギャップが狭(なり、形成されたオーミック電極
6のオーミック抵抗は、従来例の約1/2と大幅に小さ
くなった。
The Ga1-xlnx As of the surface layer 7 thus formed is
Although X changes in the depth direction, it is larger on the surface side, that is, the band gap is narrower on the surface side, and the ohmic resistance of the formed ohmic electrode 6 is significantly reduced to about 1/2 of that of the conventional example.

なお上記実施例では、表面層7に元素Eを注入するのを
イオン注入法によって行ったが、他の方法例えば拡散な
どによって行っても良い。
In the above embodiment, the element E was implanted into the surface layer 7 by the ion implantation method, but it may be performed by other methods such as diffusion.

また上記実施例はGaAs−FETの場合であるが、本
発明の構成は、その作用から他の化合物半導体を使用す
る半導体装置およびオーミック電極を有する他の半導体
装置においても有効であることは容易に理解出来る。
Further, although the above embodiment is for a GaAs-FET, it is easy to see that the structure of the present invention is also effective in semiconductor devices using other compound semiconductors and other semiconductor devices having ohmic electrodes due to its operation. I can understand.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明の構成によれば、化合物半
導体を使用した半導体装置において、オーミック電極の
オーミック抵抗を低減させることが出来て、当該半導体
装置の品質向上を可能にさせる効果がある。
As explained above, according to the configuration of the present invention, in a semiconductor device using a compound semiconductor, the ohmic resistance of the ohmic electrode can be reduced, and the quality of the semiconductor device can be improved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の要旨を示す側断面図、第2図は本発明
による半導体装置の実施例の側断面図、 第3図はその実施例において本発明を実現させる製造工
程の側断面図、 第4図は化合物半導体を用いた半導体装置例の側断面図
、である。 図において、 1は基板、 2はチャネル領域、 3はソース/ドレイン領域(6が形成される領域)、 4はゲート電極、 5は絶縁層、 6はオーミック電極、 7は3の表面層、 8はマスク、 Eは導入元素、 ■は不純物、である。 7i、、り萌の呑旨を示1 1回・1町面図 第1図 」−づと g屑宴方芒4夕・1乃ブ則薗γ面B打%2閉 あ3図 イカ辷来イクリ の イロリばff1lllcクデ$4
11ffi
FIG. 1 is a side sectional view showing the gist of the invention, FIG. 2 is a side sectional view of an embodiment of a semiconductor device according to the invention, and FIG. 3 is a side sectional view of a manufacturing process for realizing the invention in the embodiment. , FIG. 4 is a side sectional view of an example of a semiconductor device using a compound semiconductor. In the figure, 1 is the substrate, 2 is the channel region, 3 is the source/drain region (the region where 6 is formed), 4 is the gate electrode, 5 is the insulating layer, 6 is the ohmic electrode, 7 is the surface layer of 3, 8 is a mask, E is an introduced element, and ■ is an impurity. 7i, shows the drinking intention of Rimoe 1 1 time 1 town map 1st g waste banquet direction 4 evening 1 nobu Norizono gamma side B stroke % 2 close a 3 map squid Come on, Iroriba ff1lllc Kude $4
11ffi

Claims (1)

【特許請求の範囲】[Claims] 第一の化合物半導体からなりオーミック電極(6)が形
成される領域(3)の表面層(7)が、該オーミック電
極(6)の形成に先立つ外部からの元素(E)導入によ
り、該第一の化合物半導体のバンドギャップより狭いバ
ンドギャップを有する第二の化合物半導体に変化させら
れてなることを特徴とする半導体装置。
The surface layer (7) of the region (3) made of the first compound semiconductor and in which the ohmic electrode (6) is formed is caused by the introduction of an element (E) from the outside prior to the formation of the ohmic electrode (6). 1. A semiconductor device characterized by being changed into a second compound semiconductor having a bandgap narrower than that of the first compound semiconductor.
JP10294385A 1985-05-15 1985-05-15 Semiconductor device Pending JPS61260673A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10294385A JPS61260673A (en) 1985-05-15 1985-05-15 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10294385A JPS61260673A (en) 1985-05-15 1985-05-15 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61260673A true JPS61260673A (en) 1986-11-18

Family

ID=14340909

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10294385A Pending JPS61260673A (en) 1985-05-15 1985-05-15 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61260673A (en)

Similar Documents

Publication Publication Date Title
US4956308A (en) Method of making self-aligned field-effect transistor
JPS61260673A (en) Semiconductor device
JPS5979577A (en) Semiconductor integrated circuit device
JPH0213826B2 (en)
JPH0350771A (en) Semiconductor device
JPH0382163A (en) Power mosfet and manufacture thereof
JPS6318348B2 (en)
JPH0493038A (en) Field-effect transistor
JPS60136265A (en) Semiconductor device
JPH01225177A (en) Field effect transistor
JPS62211959A (en) Semiconductor device
JPS62274670A (en) Manufacture of junction type field-effect transistor
JPH0737905A (en) Manufacture of semiconductor device
JPS6360566A (en) Semiconductor device
JPS6367787A (en) Field-effect transistor
KR940001398B1 (en) Manufacturing method of mosfet
JPS62122276A (en) Manufacture of compound semiconductor device
JPS6149479A (en) Semiconductor device
JPH04101435A (en) Manufacture of field effect transistor
JPS63157474A (en) Manufacture of semiconductor device
JPS6070772A (en) Manufacture of field-effect transistor
JPH028454B2 (en)
JPS62211961A (en) Compound semiconductor device and manufacture thereof
JPS58145161A (en) Manufacture of semiconductor device
JPH0521467A (en) Manufacture of field-effect transistor