JPS6360566A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS6360566A
JPS6360566A JP20365286A JP20365286A JPS6360566A JP S6360566 A JPS6360566 A JP S6360566A JP 20365286 A JP20365286 A JP 20365286A JP 20365286 A JP20365286 A JP 20365286A JP S6360566 A JPS6360566 A JP S6360566A
Authority
JP
Japan
Prior art keywords
insulating film
region
gate
semiconductor
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20365286A
Other languages
Japanese (ja)
Inventor
Toshiyuki Usagawa
利幸 宇佐川
Yoichi Nishino
洋一 西野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP20365286A priority Critical patent/JPS6360566A/en
Publication of JPS6360566A publication Critical patent/JPS6360566A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a short channel effect by forming two semiconductor regions having impurity concentration higher than a semiconductor substrate onto an insulating film shaped onto the substrate at a regular interval and a control electrode between both regions. CONSTITUTION:An excellent insulating film 14 having an extremely small interface level is shaped onto an Si substrate 16 exceedingly thinly, an N<+> region 15 is formed, and a gate electrode 11 and source-drain electrodes 12, 13 are shaped. Accordingly, when gate voltage is applied and an inversion layer is formed under the gate electrode 11, the insulating film 14 can be thinned, thus taking an ohmic contact by tunnel currents the N<+> region 15 and a channel layer (the inversion layer) while between extremely reducing a short channel effect.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、M r S (Metol−Insulat
or −Semico(Iductor )型F E’
T (1;’1eld EffetTra(Isist
ar )に係り、時にサブミクロンゲート長における短
チヤンネル効果抑制に好適な半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention is based on M r S (Metol-Insulat
or -Semico (Iductor) type F E'
T (1;'1eld EffectTra(Isist
ar), and relates to a semiconductor device suitable for suppressing short channel effects sometimes in submicron gate lengths.

〔従来の技術〕[Conventional technology]

従来、S i −MO8F’ET(Metal−Qxi
de −8elniCOQauCter−、@1cld
 gffet’l’ransistor ]はSi基板
を熱酸化させ高耐熱ゲート電極メモリを蒸着後、ホトリ
ソ グラフィーによりゲート加工し、イオン注入法を用
いてソース・ドレイン領域を形成することでトランジス
タを形成し7てきた。
Conventionally, S i -MO8F'ET (Metal-Qxi
de -8elniCOQauCter-, @1cld
gffet'l'transistor] is a transistor that is formed by thermally oxidizing a Si substrate, depositing a highly heat-resistant gate electrode memory, processing the gate using photolithography, and forming source and drain regions using ion implantation. Ta.

従来のnチギンネルMO8−FETの構造については、
例えばフィジックス オブ セミコンダクターデバイセ
ズ、ニス・エム・ニス壷シイ−・イー。
Regarding the structure of the conventional n-chiginnel MO8-FET,
For example, Physics of Semiconductor Devices, Niss M Niss CII.

第2版ジョン・ウィリー・アンド・テンズ第434頁第
3図(physics of Sem1conduct
or j)evi ces 。
2nd edition John Wiley and Tens, page 434 Figure 3 (physics of Sem1conduct
or j)evi ces.

5−M−8ze 2nd edition John 
Wiley & 5onspp、434. Fig・3
)に示されている。従来溝を第2図(a)に示す。p型
基板6をfi酸化させたsio、z4をIr1sula
trとして、ゲートメタkl、ソース・ドレイン領域5
をn“イオン注入技術で形成、2.3はソースドレイン
電極を示す。この様なFETのまま注入として、閾値電
圧Vshがゲート長の微細化に伴い深くなることが従来
広く知られている。
5-M-8ze 2nd edition John
Wiley & 5onspp, 434. Fig・3
) is shown. A conventional groove is shown in FIG. 2(a). p-type substrate 6 is fi-oxidized sio, z4 is Ir1sula
As tr, gate meta kl, source/drain region 5
is formed by n'' ion implantation technology, and 2.3 indicates a source/drain electrode.It is widely known that when such an FET is implanted as it is, the threshold voltage Vsh becomes deeper as the gate length becomes finer.

その具体例を第2図(b)に示す。白丸は実験値である
。この様な短チャンネル効果はサブミクロンゲート長で
荷に著しく、実際のDRAM(1)yHamic几an
dom Access Memory)への適用の除土
たる障害となっていた。
A specific example is shown in FIG. 2(b). White circles are experimental values. Such short channel effects are noticeable at submicron gate lengths, and are difficult to detect in actual DRAMs (1) yHamic processing.
This has become an obstacle to soil removal when applied to dom access memory.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

51−M08FETに代表される広い意味のMIS(i
4etal−Insulator−8emicondu
ctr )では主としてイオン注入技術を用いているた
めソース・ドレインのn0領域がキー1リア反転層のf
側にで来るため、この様な顕著な短チャンネル効果は不
可避であった。
51-M08FET in a wide sense
4etal-Insulator-8emicondu
ctr) mainly uses ion implantation technology, so the n0 region of the source/drain is the f of the key 1 rear inversion layer.
Because of the side effects, such pronounced short channel effects were unavoidable.

本発明の目的は、上記した短チギネル効果を防止するの
に好適な素子構造を提供することにある。
An object of the present invention is to provide an element structure suitable for preventing the short tiginel effect described above.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的を達成する手段を、シリコンMISFETの場
合について第1図に示す。
Means for achieving the above object are shown in FIG. 1 for the case of a silicon MISFET.

3i基板16に界面準位の極めて少ない曳質の絶縁膜1
4を極めて薄く(大略50Å以下)形成、n9型Siよ
シなるno (不純物濃度10” ’ cm−3程度)
領域15を3000人程度形成後、各々ゲート電極11
、ソース・ドレイン電極12.13を形成する、 〔作用〕 ゲート電圧を印加して反転層をゲート1鳳下に形成した
場合、絶縁膜を薄くできるため、n9領域15とチャン
ネル層(反転層)との間にはトンネル1流により、オー
ミック接触をすることが可能となる。
A 3i substrate 16 is coated with a conductive insulating film 1 with extremely few interface states.
4 is formed extremely thin (approximately 50 Å or less), and is similar to n9 type Si (impurity concentration of about 10'' cm-3).
After forming the region 15 for about 3000 people, each gate electrode 11
, forming the source/drain electrodes 12 and 13. [Operation] When an inversion layer is formed under the gate 1 by applying a gate voltage, the insulating film can be made thinner, so that the N9 region 15 and the channel layer (inversion layer) are formed. It is possible to make ohmic contact between the two through the tunnel flow.

又、n0領域がチみネル層の上方に形成しであるので、
短チャンネル効果はきわめて小さくなる。
Also, since the n0 region is formed above the channel layer,
Short channel effects become extremely small.

n0領域15と絶縁膜14とは選択的にn0領域のSi
のみを除去することが可能なので、ゲート電極形成を容
易にし、ウエーノ・面内の閾値電圧を一様にそろえるこ
とができ、LSI集積化に適する。
The n0 region 15 and the insulating film 14 are selectively made of Si in the n0 region.
Since it is possible to remove only the wafer, it is possible to easily form the gate electrode, and the threshold voltage in the wafer plane can be made uniform, making it suitable for LSI integration.

〔実施例〕〔Example〕

以下、本発明を実施例を通して更に詳しく説明する。 Hereinafter, the present invention will be explained in more detail through Examples.

〔実=列l〕[Real = column l]

S i −MOSFETに本発明を適用した場合の実施
例を第3図(a) 、 (b) 、 (C)に示す。
An example in which the present invention is applied to a Si-MOSFET is shown in FIGS. 3(a), (b), and (C).

p型Si基板36上に非常に高純度の(不純物濃度lX
l0”鋸−3以下のp型)Si層37を厚さ1 a m
M B E (Mo1ecul erBeam gpi
taxy)によυ形成後、ドライ酸化を行ない20人の
熱酸化膜よりなる絶縁膜34を形成後、リン(P)をl
x 10” Ocm−”含有するn0層35を3000
人形成し、ゲートホトレジスト30を塗布し、電子線描
画法により、ゲート長0.3μmのホトレジスト加工を
行なった(第3図(a))。
Very high purity (impurity concentration lX) is placed on the p-type Si substrate 36.
10" saw-3 p type) Si layer 37 with a thickness of 1 am
M B E (Molecular Beam gpi
After forming υ by dry oxidation (taxy), dry oxidation is performed to form an insulating film 34 made of 20 thermal oxide films, and then phosphorus (P) is
3000 x 10"Ocm-" containing n0 layer 35
A gate photoresist 30 was formed, and photoresist processing with a gate length of 0.3 μm was performed by electron beam lithography (FIG. 3(a)).

次に、ドライエツチングによシ選択的にゲート部分のn
”−Si層を奴#)除き、室温において光CVD法によ
シSiN膜41をSOO人を全面に被着させた(第3図
(b))。
Next, by dry etching, the gate portion is selectively etched.
After removing the Si layer, a SiN film 41 was deposited on the entire surface of the SOO layer by photo-CVD at room temperature (FIG. 3(b)).

次に09層35の側壁に被着したSiN膜41を残す様
にドライエツチングでその他の部分のSiNを除去し、
ゲートメタルとなるA/、膜を3000人蒸着入り7ト
オフ法によりゲート電極31i形成更に、ソース・ドレ
イン電極32゜33を通常の方法で形成した(第3図(
C))。
Next, SiN in other parts is removed by dry etching so as to leave the SiN film 41 adhered to the side wall of the 09 layer 35.
The gate electrode 31i was formed using the 7-off method with 3000 person evaporation to form the A/ film that would become the gate metal.Furthermore, the source and drain electrodes 32 and 33 were formed using the usual method (see Fig. 3).
C)).

この後、ゲート電極31とn0領域35をはさtrsi
Ng41をウェットエツチングで取り除き、パッシベー
ション膜トして、CVDmで、5to2を形成した。
After this, the gate electrode 31 and the n0 region 35 are sandwiched together.
Ng41 was removed by wet etching, a passivation film was formed, and 5to2 was formed by CVDm.

本実施例では、口0領域35は、P(リン)をドーパン
トとしたがAs(ヒ素)でもかまわない。
In this embodiment, P (phosphorus) is used as a dopant in the mouth 0 region 35, but As (arsenic) may also be used.

又、nチギンネルMO8FETの場合を示したが、pチ
ャンネルMo5t”ETの場合には、本実施例のn型部
分をすべてp型におきかえればよく、0MO8(相補型
MO8)FETの場合には両者を組み合せれば良い。
In addition, although the case of an n-channel MO8FET is shown, in the case of a p-channel Mo5t"ET, all the n-type parts in this example need to be replaced with p-type, and in the case of a 0MO8 (complementary type MO8) FET, It is better to combine both.

実施例4のS 1−MOSFETを用い、0.2μmゲ
ート長の64メガヒツトSRAM  (3tetic几
andom Access Memory )を形成し
たところ高い歩留シのもとにI 0On8という高速の
アクセス時間を達成できた。
Using the S1-MOSFET of Example 4, we formed a 64-megabyte SRAM (3Tic andom Access Memory) with a gate length of 0.2 μm, and a high-speed access time of I0On8 was achieved with a high yield. .

本実施例ではSi  MOSFET  の場合を示した
がAtGaAs/GaAsヘテロ接合の場合、或いはQ
aAsにおけるrA I S F E Tの場合も同様
の手法でMI8FE’l’を形成できる。
In this example, the case of Si MOSFET is shown, but the case of AtGaAs/GaAs heterojunction or Q
In the case of rA I S F E T in aAs, MI8FE'l' can be formed using a similar method.

又、トンネル電流を大キくシてオーミック性を良くする
ため絶縁膜34の材料として810*の代シにTa2α
hAlzO3* S isN<等を用いることも可能で
ある。
In addition, in order to increase the tunnel current and improve the ohmic properties, Ta2α is used instead of 810* as the material of the insulating film 34.
It is also possible to use hAlzO3* S isN<, etc.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ゲート絶縁膜を極めて薄く(50Å以
下)にでき、 +(又はp”)領域がゲート酸化膜を介
して上方に形成されているので、1)短チャンネル効果
が極めて小さく。
According to the present invention, the gate insulating film can be made extremely thin (50 Å or less), and the + (or p'') region is formed above through the gate oxide film, so: 1) the short channel effect is extremely small;

2)選択的に00 (又はpl領域をゲート酸化膜に対
して取シ除けるのできわめて信頼性高くトランジスタ素
子を形成できる。
2) Since the 00 (or pl region) can be selectively removed from the gate oxide film, a highly reliable transistor element can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明トランジスタの断面図、第2図は従来構
造のトランジスタの断面図、第3図は本発明の実施例を
示す工程図。 1.11.31・・・ゲートメタル、2,3,12゜1
3.32.33・・・ソース・ドレイン電極、4゜14
.34・・・ゲート絶縁膜、5,15.35・・・口゛
領域、41・・・SiN膜、30・・・レジスト、6゜
16.36・・・8i基板%37・・・アンド−プルー
型S1エピタ千シャル層。 代理人 弁理士 小川柳刃  。 第 j 口 不2 図 ゲート +  Lり C7也〕 乙  P型Sj基石5.、/b5ど丞ネタ−13図
FIG. 1 is a sectional view of a transistor according to the present invention, FIG. 2 is a sectional view of a transistor having a conventional structure, and FIG. 3 is a process diagram showing an embodiment of the present invention. 1.11.31...Gate metal, 2, 3, 12゜1
3.32.33...Source/drain electrode, 4°14
.. 34...Gate insulating film, 5, 15.35... Mouth region, 41...SiN film, 30...Resist, 6°16.36...8i substrate%37...And- Pull type S1 epitaxial layer. Agent: Patent attorney Ogawa Yanagiba. No. J Mouthless 2 Figure Gate + Lri C7ya] Otsu P-type Sj Foundation Stone 5. ,/b5 Dojo Neta - Figure 13

Claims (1)

【特許請求の範囲】 1、少なくとも所定の半導体基板上に形成された絶縁膜
と、前記絶縁膜上に形成された所定間隔を有する前記半
導体基板よりも不純物濃度の高い半導体よりなる2つの
半導体領域と、前記絶縁膜上の前記2つの半導体領域の
間に設けられた制御電極とを有する半導体装置。 2、特許請求の範囲第1項記載の半導体装置において、
前記半導体基板に形成される反転層と前記半導体領域と
は、トンネル電流により、オーミック接続されることを
特徴とする半導体装置。
[Scope of Claims] 1. An insulating film formed on at least a predetermined semiconductor substrate, and two semiconductor regions formed on the insulating film and formed at a predetermined interval and made of a semiconductor having a higher impurity concentration than the semiconductor substrate. and a control electrode provided between the two semiconductor regions on the insulating film. 2. In the semiconductor device according to claim 1,
A semiconductor device, wherein the inversion layer formed on the semiconductor substrate and the semiconductor region are ohmically connected by a tunnel current.
JP20365286A 1986-09-01 1986-09-01 Semiconductor device Pending JPS6360566A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20365286A JPS6360566A (en) 1986-09-01 1986-09-01 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20365286A JPS6360566A (en) 1986-09-01 1986-09-01 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS6360566A true JPS6360566A (en) 1988-03-16

Family

ID=16477597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20365286A Pending JPS6360566A (en) 1986-09-01 1986-09-01 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS6360566A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172197A (en) * 1990-04-11 1992-12-15 Hughes Aircraft Company Hemt structure with passivated donor layer
US5652451A (en) * 1994-09-05 1997-07-29 Mitsubishi Denki Kabushiki Kaisha Recessed gate field effect transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172197A (en) * 1990-04-11 1992-12-15 Hughes Aircraft Company Hemt structure with passivated donor layer
US5652451A (en) * 1994-09-05 1997-07-29 Mitsubishi Denki Kabushiki Kaisha Recessed gate field effect transistor

Similar Documents

Publication Publication Date Title
US4419809A (en) Fabrication process of sub-micrometer channel length MOSFETs
JPS6215863A (en) Manufacture of self-aligning metal-semiconductor fet
JPS6360566A (en) Semiconductor device
JPH04291732A (en) Manufacture of field-effect transistor
KR940002402B1 (en) Manufacturing method of self-aligned gate trench mosfet
JPS6245078A (en) Field effect transistor and manufacture thereof
JPS6211516B2 (en)
JPS6057980A (en) Manufacture of semiconductor device
JPH0737905A (en) Manufacture of semiconductor device
JPH0547982B2 (en)
JPS62229978A (en) Semiconductor device
KR0170513B1 (en) Mos transistor and its fabrication
JPH04305976A (en) Semiconductor device
JPH01161873A (en) Manufacture of semiconductor device
JPH028454B2 (en)
JPS61152079A (en) Manufacture of schottky gate type fet
JPS6038883A (en) Manufacture of schottky gate type field effect transistor
JPH02199844A (en) Schottky gate field-effect transistor
JPH01155665A (en) Semiconductor integrated circuit
JPS62122276A (en) Manufacture of compound semiconductor device
JPS63236364A (en) Semiconductor device and manufacture thereof
JPH1098182A (en) Field effect transistor and its manufacture
JPH10321644A (en) Manufacture of semiconductor device
JPH0695530B2 (en) Method for manufacturing semiconductor device
JPS61248477A (en) Manufacture of mis type semiconductor element