JPS6126018B2 - - Google Patents

Info

Publication number
JPS6126018B2
JPS6126018B2 JP52131754A JP13175477A JPS6126018B2 JP S6126018 B2 JPS6126018 B2 JP S6126018B2 JP 52131754 A JP52131754 A JP 52131754A JP 13175477 A JP13175477 A JP 13175477A JP S6126018 B2 JPS6126018 B2 JP S6126018B2
Authority
JP
Japan
Prior art keywords
disk
molding material
load cell
load
pressurizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52131754A
Other languages
Japanese (ja)
Other versions
JPS5465087A (en
Inventor
Tadashi Sato
Hidenori Idate
Toshuki Akamatsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP13175477A priority Critical patent/JPS5465087A/en
Publication of JPS5465087A publication Critical patent/JPS5465087A/en
Publication of JPS6126018B2 publication Critical patent/JPS6126018B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は、加熱ヒータ5,6がそれぞれ設けら
れ上円盤1と下円盤2とを間隙を介して上下に対
向させ、上円盤1の上面に加圧用ラム15を取り
付けて加圧用ラム15の上下駆動により上円盤1
を上下駆動自在に配設すると共に下円盤2の下面
に伝動柱28を取り付けて伝動柱28の回転によ
り下円盤2を水平方向へ回転自在に配設し、加圧
用ラム15に加圧用ラム15の水平方向の回転負
荷を測定する蓿りロードセル17を取り付けると
共に加圧用ラム15に加圧用ラム15の軸方向の
負荷を測定する軸圧ロードセル38を取り付け、
下円盤2の上面に成形材料を載置し、上円盤1を
降下させて成形材料を加圧し、下円盤2を回転さ
せながら上円盤1にかかる負荷を捻りロードセル
17及び軸圧ロードセル38にて計測することを
特徴とする成形材料の粘着性測定法に係り、その
目的とするところは、半溶融又は溶融状態におけ
る成形材料と金属面との粘着性を定量的に測定で
きる成形材料の粘着性測定法を提供するにある。
DETAILED DESCRIPTION OF THE INVENTION In the present invention, heaters 5 and 6 are provided respectively, an upper disk 1 and a lower disk 2 are vertically opposed to each other with a gap therebetween, and a pressurizing ram 15 is attached to the upper surface of the upper disk 1. upper disk 1 by vertically driving the pressurizing ram 15.
A transmission column 28 is attached to the lower surface of the lower disk 2 so that the lower disk 2 can be freely rotated in the horizontal direction by rotation of the transmission column 28. At the same time, an axial pressure load cell 38 is attached to the pressurizing ram 15 to measure the load in the axial direction of the pressurizing ram 15.
The molding material is placed on the upper surface of the lower disc 2, the upper disc 1 is lowered to pressurize the molding material, and while the lower disc 2 is rotated, the load applied to the upper disc 1 is twisted by the load cell 17 and the axial pressure load cell 38. The tackiness measurement method for molding materials is characterized by measuring the tackiness of molding materials, and its purpose is to quantitatively measure the tackiness of molding materials and metal surfaces in a semi-molten or molten state. Provides a measurement method.

成形材料をロール加工或いは押出し、射出成形
加工等を行なう場合、成形材料はロール壁とかシ
リンダー壁からの伝導熱並びに壁面および材料間
における剪断摩擦熱を受けて半溶融或いは溶融状
態になる。半溶融又は溶融状態になつた成形材料
は、金属質のロール面或いはシリンダー壁および
スクリユー面と多かれ少なかれ粘着性を有する。
適度な粘着性を有する場合は、ロール間のくい込
み或いはシリンダーとスクリユー間のくい込みを
良くし、成形材料の混練を効果的に達成するため
に望ましいが、成形材料の粘着性が極度に小さい
とロール面又はシリンダー面、スクリユー面でス
リツプが生ずるようになつて、混練が小さくなる
し、一方成形材料の粘着性が大き過ぎる場合に
は、ロール又はスクリユー等に負荷されるトルク
が大きくなり、それだけ大きい所要動力を必要と
するし、トルクが異常に大きくなると摩擦による
発熱量が多大となり、成形材料の温度が異常に高
くなつて焼き付きや分解を起す原因となる。しか
るに従来は成形材料と金属面との粘着性について
は、実際にロール加工、或いは押出し、射出成形
加工による経験的判断しか方法はなく、粘着性を
定量的に評価できる試験方法はなかつた。
When a molding material is subjected to roll processing, extrusion, injection molding, etc., the molding material becomes semi-molten or molten due to conduction heat from the roll wall or cylinder wall and shear friction heat between the wall surface and the material. The molding material in a semi-molten or molten state is more or less sticky to the metallic roll surface or cylinder wall and screw surface.
If the adhesiveness is moderate, it is desirable to improve the penetration between the rolls or between the cylinder and the screw, and to effectively knead the molding material. However, if the adhesiveness of the molding material is extremely low, the roll Slips will occur on the surface, cylinder surface, screw surface, and the kneading will be reduced.On the other hand, if the viscosity of the molding material is too high, the torque applied to the rolls or screws, etc. will increase, which increases accordingly. A large amount of power is required, and if the torque becomes abnormally large, the amount of heat generated by friction becomes large, and the temperature of the molding material becomes abnormally high, causing seizure or decomposition. However, in the past, the only way to determine the adhesion between a molding material and a metal surface was to make an empirical judgment based on actual roll processing, extrusion, or injection molding, and there was no test method that could quantitatively evaluate the adhesion.

本発明はかかる点に鑑みて成したものであり、
以下発明を詳述する。上円盤1と下円盤2は上下
に対設され、別々に加熱できるようになつてい
る。上円盤1は上下動できるようになつていて上
部で荷重負荷装置に連結してあり、上円盤1の下
面13で任意の荷重を負荷できるようになつてい
る。下円盤2は回転数自在に設けられている。熱
可塑性樹脂や熱硬化性樹脂等の混合物からなる成
形材料の粘着性を測定するには、上円盤1と下円
盤2を加熱した状態で下円盤2上面14に成形材
料を載置し、上円盤1を降下させて下面13で成
形材料を加圧する。成形材料を加圧した状態で下
円盤2を定速回転させながら上円盤1に負荷され
る回転トルクを計測し、半溶融又は溶融状態にお
ける成形材料の粘着性を定量的に測定するもので
あり、上下の円盤1,2間の間隙や温度を変えた
り、下円盤2の回転速度を変えたり、載置する成
形材料の量や上円盤1の荷重負荷量等の測定条件
を種々変化させて測定するものである。
The present invention has been made in view of these points,
The invention will be explained in detail below. The upper disk 1 and the lower disk 2 are arranged vertically opposite each other so that they can be heated separately. The upper disc 1 is designed to be able to move up and down, and is connected to a load loading device at the upper part, so that an arbitrary load can be applied to the lower surface 13 of the upper disc 1. The lower disk 2 is provided to rotate freely. To measure the tackiness of a molding material made of a mixture of thermoplastic resin, thermosetting resin, etc., the molding material is placed on the upper surface 14 of the lower disc 2 while the upper disc 1 and lower disc 2 are heated. The disk 1 is lowered to pressurize the molding material with the lower surface 13. This method measures the rotational torque applied to the upper disk 1 while rotating the lower disk 2 at a constant speed while pressurizing the molding material, and quantitatively measures the tackiness of the molding material in a semi-molten or molten state. , by changing the gap and temperature between the upper and lower disks 1 and 2, by changing the rotation speed of the lower disk 2, and by changing various measurement conditions such as the amount of molding material placed and the amount of load on the upper disk 1. It is something to be measured.

本発明は上下に対向する2つの円盤をそれぞれ
加熱したので上円盤と下円盤の温度を別々に変え
て粘着性の測定ができるものであり、下円盤の上
面に成形材料を載置し、上円盤を降下させて成形
材料を加圧したので上円盤の降下量を調整するこ
とにより上下の円盤の間隔を変えたり成形材料の
載置量を変えることができるものであり、下円盤
を回転させながら上円盤に負荷されるトルクを計
測するので下円盤の回転数を変えることにより回
転数の変動によるトルクの変化を計測できるもの
であり、したがつて成形材料の粘着性に起因する
トルクを2つの円盤の間隙及び温度,成形材料の
載置量、下円盤の回転数の関連において定量的に
計測できるものであり、さらに、加圧用ラムの水
平方向の回転負荷を測定する捻りロードセルを取
り付けると共に加圧用ラムに加圧用ラムの軸方向
の負荷を測定する軸圧ロードセルを取り付けて、
下円盤の上面に成形材料を載置し、上円盤を降下
させて成形材料を加圧し、下円盤を回転させなが
ら上円盤にかかる負荷を各ロードセルにて計測す
るようにしたので、上円盤を降下させて成形材料
を加圧すると共に下円盤を水平方向へ回転させ
て、捻りロードセル及び軸圧ロードセルにかかる
負荷を計測することができ、成形材料の受ける面
圧の大きさと粘着性の関係を測定することもでき
るものである。したがつて実際のロール加工或い
は押出し、射出成形加工等におけるロールくい込
み、スクリユーくい込みの難易の程度を実験的に
評価できるものであり、ロールくい込みやスクリ
ユーくい込みを良好ならしめる加工条件を決定す
るための指針が得られるものである。
In the present invention, since two disks facing each other are heated, the tackiness can be measured by changing the temperature of the upper disk and the lower disk separately.The molding material is placed on the upper surface of the lower disk, and the The molding material is pressurized by lowering the disc, so by adjusting the amount of descent of the upper disc, the distance between the upper and lower discs can be changed and the amount of molding material placed can be changed. However, since the torque applied to the upper disk is measured, by changing the rotation speed of the lower disk, changes in torque due to fluctuations in rotation speed can be measured. Therefore, the torque due to the adhesiveness of the molding material can be measured by It can quantitatively measure the relationship between the gap and temperature of the two discs, the amount of molding material placed, and the rotational speed of the lower disc.Furthermore, it is equipped with a torsion load cell that measures the rotational load in the horizontal direction of the pressurizing ram. Attach an axial pressure load cell to the pressurizing ram to measure the load in the axial direction of the pressurizing ram,
The molding material was placed on the upper surface of the lower disk, the upper disk was lowered to pressurize the molding material, and the load on the upper disk was measured by each load cell while the lower disk was rotating. It is possible to measure the load applied to the torsional load cell and axial pressure load cell by lowering it to apply pressure to the molding material and rotating the lower disk in the horizontal direction, and measuring the relationship between the magnitude of surface pressure applied to the molding material and tackiness. It is also possible to do so. Therefore, it is possible to experimentally evaluate the degree of difficulty in roll biting and screw biting in actual roll processing, extrusion, injection molding, etc., and to determine processing conditions that will improve roll biting and screw biting. It provides guidance.

以下、本発明を実施例により詳述する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例 1 第1図は実施例1において使用する測定装置を
示したものであり、1は上円盤、2は下円盤、3
は上蓋、4は底蓋、5及び6は環状加熱ヒータ、
7及び8はそれぞれヒータ5及び6の配線、9並
びに10は共に植え込みボルト9,10はそれぞ
れ複数個設けてあり、植え込みボルト9は上蓋3
と上円盤1を、植え込みボルト10は底蓋4と下
円盤2をそれぞれ固着するためのものである。1
1及び12はサーミスタ、上円盤1の下面13お
よび下円盤2の上面14は共に研磨しあり、測定
面として使用するものである。15は加圧用ラム
であり、下部に設けた捻子部16によつて上円盤
1の中央に固定してある。加圧用ラム15の上部
は任意の荷重負荷装置(例えば、エアーシリン
ダ、油圧シリンダ、etc、図示せず)に連結して
あり、任意の圧力を負荷できるように成してあ
る。また、加圧用ラム15の中間には蓿りロード
セル17をと、加圧用ラム15の軸方向の負荷を
測定する軸圧ロードセル38とを設けてある。1
8はガイド板、19,20は固定具、21は架
台、22は支柱、23はガイド板18の両端に設
けた穿孔であり、穿孔23中を支柱22は貫通し
て居り、ガイド板18の水平を保ちながら上下す
るものである。24はストツパー、25はストツ
パの固定具であり、その内壁には捻子部26が、
又支柱22の周囲には捻子部27が設けてあつて
希望する位置に固定できるようになつている。
Example 1 Figure 1 shows the measuring device used in Example 1, where 1 is the upper disk, 2 is the lower disk, and 3 is the measuring device used in Example 1.
is a top lid, 4 is a bottom lid, 5 and 6 are annular heaters,
7 and 8 are the wiring for the heaters 5 and 6, respectively; 9 and 10 are each provided with a plurality of stud bolts 9 and 10, and the stud bolt 9 is connected to the upper cover 3.
and the upper disk 1, and the stud bolts 10 are for fixing the bottom cover 4 and the lower disk 2, respectively. 1
1 and 12 are thermistors, and the lower surface 13 of the upper disk 1 and the upper surface 14 of the lower disk 2 are both polished and used as measurement surfaces. Reference numeral 15 denotes a pressurizing ram, which is fixed to the center of the upper disk 1 by a screw portion 16 provided at the lower part. The upper part of the pressurizing ram 15 is connected to an arbitrary load applying device (for example, an air cylinder, a hydraulic cylinder, etc., not shown) so that an arbitrary pressure can be applied thereto. Furthermore, a falling load cell 17 and an axial pressure load cell 38 for measuring the load in the axial direction of the pressurizing ram 15 are provided in the middle of the pressurizing ram 15 . 1
8 is a guide plate, 19 and 20 are fixtures, 21 is a frame, 22 is a column, 23 is a hole provided at both ends of the guide plate 18, and the column 22 passes through the hole 23. It moves up and down while remaining horizontal. 24 is a stopper, 25 is a fixing device for the stopper, and a screw portion 26 is provided on the inner wall of the stopper.
Further, a screw portion 27 is provided around the support column 22 so that it can be fixed at a desired position.

28は伝動柱、29は伝動軸、30は伝動ギア
ー、31は駆動ギアー、32は駆動軸、33は可
変変速機、34はモータ、35はボールベアリン
グ、伝動柱28の上部には捻子部26が設けてあ
り、伝動柱28は下円盤2の中央に固定してあ
る。粘着性の測定にあたつては第1図に示した測
定装置において、環状加熱ヒータ5及び6への入
力電圧を調整してサーミスタ11及び12によつ
て温度検知を行い上下の円盤1,2共110℃に設
定し、上、下の円盤1,2の間隙が2.5mmになる
ように、ストツパー固定具25の位置を調節し
た。次に可変変速機33を調節して下円盤2が1.
r.p.m.で回転するように設定し、荷重負荷装置
(図示せず)を調節して上円盤1に100Kg/cm2の圧
力を負荷できるように設定した。フエノール樹脂
成形材料を秤量して下円盤2の上面14に載置
し、荷重負荷装置を駆動させて上円盤1を降下さ
せ、フエノール樹脂成形材料を加圧した。同時に
モータ34を回転駆動して捻りロードセル17に
かゝる負荷を計測記録した。計測したトルク値
は、測定開始後しばらくの間は一定値を保ち、や
がてフエノール樹脂の硬化反応のために増加し始
めたが、そこで測定を完了した。次いで、可変変
速機33を調節して、下円盤2が2r.p.m.4r.p.
m.8r.p.m・12r.p.m.………というように変えて
同様な測定を行ない、計測したトルク値(安定
値)と回転数の関係を図示すると、第3図のAの
如くなつた。一方、第3図のBは同じフエノール
樹脂成形材料の流動性を管内流動試験で測定し、
その結果から計算によつて得た曲線である。同じ
回転数のトルク値Aとトルク値Bの差から円盤表
面へのフエノール樹脂成形材料の粘着性に起因す
るトルク増加が測定できた。また上下の円盤1,
2の設定温度を変えて上記の測定を行うことによ
り粘着性の温度依存の状態がわかつた。
28 is a transmission column, 29 is a transmission shaft, 30 is a transmission gear, 31 is a drive gear, 32 is a drive shaft, 33 is a variable transmission, 34 is a motor, 35 is a ball bearing, and the upper part of the transmission column 28 is a screw portion 26. is provided, and the transmission column 28 is fixed to the center of the lower disc 2. To measure tackiness, in the measuring device shown in FIG. Both were set at 110° C., and the position of the stopper fixture 25 was adjusted so that the gap between the upper and lower disks 1 and 2 was 2.5 mm. Next, adjust the variable transmission 33 so that the lower disc 2 is at 1.
It was set to rotate at rpm, and a load applying device (not shown) was adjusted so that a pressure of 100 Kg/cm 2 could be applied to the upper disk 1. The phenolic resin molding material was weighed and placed on the upper surface 14 of the lower disc 2, and the load applying device was driven to lower the upper disc 1, thereby pressurizing the phenolic resin molding material. At the same time, the motor 34 was driven to rotate and the load applied to the torsion load cell 17 was measured and recorded. The measured torque value remained constant for a while after the start of the measurement, and eventually began to increase due to the curing reaction of the phenol resin, but the measurement was completed at that point. Next, the variable transmission 33 is adjusted so that the lower disc 2 is set to 2r.pm4r.p.
When similar measurements were made by changing the torque to m.8r.pm, 12r.pm, etc., and the relationship between the measured torque value (stable value) and rotational speed was illustrated, the result was as shown in A in Figure 3. On the other hand, B in Figure 3 measures the fluidity of the same phenolic resin molding material by an in-tube flow test.
This is a curve obtained by calculation from the results. From the difference between torque value A and torque value B at the same rotation speed, it was possible to measure the increase in torque due to the stickiness of the phenolic resin molding material to the disk surface. Also, the upper and lower disks 1,
By performing the above measurements while changing the set temperature in step 2, it was possible to understand the temperature dependence of tackiness.

実施例 2 第2図は実施例2において使用する測定装置を
示したものであり、下円盤2の上面の構造を円筒
状すなわち容器状に成し、側壁37を設けると共
に蓿りロードセル17の上部の加圧用ラム15中
間部に軸圧ロードセル38を設けたものである。
Example 2 FIG. 2 shows a measuring device used in Example 2, in which the upper surface of the lower disk 2 has a cylindrical shape, that is, a container shape, a side wall 37 is provided, and the upper part of the floating load cell 17 is formed. An axial pressure load cell 38 is provided at the intermediate portion of the pressurizing ram 15.

第2図に示した測定装置において、上円盤1の
温度を90℃、下円盤2の温度を120℃に設定し、
上下円盤1,2の間隙が0.5mmになるように、ト
ツパ固定具25の位置を調節した。下円盤2が
6r.p.m.で回転するように設定し、荷重負荷装置
を調節して上円盤1に100Kg/cm2の圧力を負荷で
きるように設定した。塩化ビニル樹脂と充填剤等
とを配合したコンパウンドを秤量して下円盤2の
上面14に載置し、上円盤1を降下させてコンパ
ウンドを加圧すると共に、下円盤2を回転させて
捻りロードセル17および軸圧ロードセル38に
かゝる負荷を計測記録した。次いでストツパ固定
具25を調節して、上下円盤1,2の間隙を1
mm、1.5mm、2mm…というように変えて同様な測
定を行ない、計測した捻りトルク値の経時変化を
図示したのが第4図であり、第4図中イは0.5
mm、ロは1mm、ハは1.5mm、ニは2mmに設定した
測定値である。第4図はおける初期のトルク減少
はコンパウンドの温度上昇によるものであり、そ
の後しばらく安定期間が続いたのち、摩擦発熱に
起因する温度上昇により更にトルク値は減少した
が、この傾向は上下の円盤1,2の間隙が小さい
程著しかつた。同時に計測した軸圧トルクの値よ
り、上下円盤1,2の間隙による材料の受ける面
圧の大きさの変化を評価できた。かゝる試験を
上,下円盤1,2の設定温度、下円盤2の回転
数、材料の量etc、を変えて行なうことにより、
ロール間のくい込み、スクリユーのくい込みを良
好ならしめるための加工条件を推定することがで
きた。
In the measuring device shown in Fig. 2, the temperature of the upper disk 1 is set to 90℃, the temperature of the lower disk 2 is set to 120℃,
The position of the topper fixture 25 was adjusted so that the gap between the upper and lower disks 1 and 2 was 0.5 mm. Lower disk 2
It was set to rotate at 6 rpm, and the load applying device was adjusted so that a pressure of 100 Kg/cm 2 could be applied to the upper disk 1. A compound made of vinyl chloride resin, filler, etc. is weighed and placed on the upper surface 14 of the lower disk 2. The upper disk 1 is lowered to pressurize the compound, and the lower disk 2 is rotated to twist the load cell 17. And the load applied to the axial pressure load cell 38 was measured and recorded. Next, adjust the stopper fixture 25 to make the gap between the upper and lower disks 1 and 2 1.
Figure 4 shows the change in the measured torsional torque value over time after similar measurements were made with the torque changed to mm, 1.5 mm, 2 mm, etc. A in Figure 4 indicates 0.5 mm.
The measurement values are set in mm, B is 1mm, C is 1.5mm, and D is 2mm. Figure 4 shows that the initial torque decrease was due to the temperature increase in the compound, and after a period of stability, the torque value further decreased due to the temperature increase caused by frictional heat generation. The smaller the gap between 1 and 2, the more noticeable it was. From the value of the axial pressure torque measured at the same time, it was possible to evaluate the change in the magnitude of the surface pressure applied to the material due to the gap between the upper and lower disks 1 and 2. By conducting such a test by changing the set temperatures of the upper and lower disks 1 and 2, the rotation speed of the lower disk 2, the amount of material, etc.
We were able to estimate the processing conditions for achieving good penetration between rolls and screw penetration.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に用いた測定装置を示す縦断面
図、第2図は他の測定装置の要部を示す縦断面
図、第3図は下円盤の回転数とトルク値の関係を
示すグラフ図、第4図は時間とトルク値の関係を
示すグラフ図であり、1は上円盤、2は下円盤1
5は加圧用ラム、17は捻りロードセル、28は
伝動柱、38は軸圧ロードセルである。
Fig. 1 is a longitudinal sectional view showing the measuring device used in the present invention, Fig. 2 is a longitudinal sectional view showing the main parts of another measuring device, and Fig. 3 shows the relationship between the rotation speed of the lower disk and the torque value. Graph diagram, Figure 4 is a graph diagram showing the relationship between time and torque value, 1 is the upper disk, 2 is the lower disk 1
5 is a pressurizing ram, 17 is a torsion load cell, 28 is a transmission column, and 38 is an axial pressure load cell.

Claims (1)

【特許請求の範囲】[Claims] 1 加熱ヒータがそれぞれ設けられた上円盤と下
円盤とを間隙を介して上下に対向させ、上円盤の
上面に加圧用ラムを取り付けて加圧用ラムの上下
駆動により上円盤を上下駆動自在に配設すると共
に下円盤の下面に伝動柱を取り付けて伝動柱の回
転により下円盤を水平方向へ回転自在に配設し、
加圧用ラムに加圧用ラムの水平方向の回転負荷を
測定する捻りロードセルを取り付けると共に加圧
用ラムに加圧用ラムの軸方向の負荷を測定する軸
圧ロードセルを取り付け、下円盤の上面に成形材
料を載置し、上円盤を降下させて成形材料を加圧
し、下円盤を回転させながら上円盤にかかる負荷
を蓿りロードセル及び軸圧ロードセルにて計測す
ることを特徴とする成形材料の粘着性測定法。
1. An upper disk and a lower disk, each provided with a heater, are vertically opposed to each other with a gap in between, and a pressurizing ram is attached to the upper surface of the upper disk so that the upper disk can be freely driven vertically by driving the pressurizing ram up and down. At the same time, a transmission column is attached to the lower surface of the lower disk, and the rotation of the transmission column allows the lower disk to rotate freely in the horizontal direction.
A torsion load cell that measures the rotational load in the horizontal direction of the pressurizing ram is attached to the pressurizing ram, and an axial pressure load cell that measures the axial load of the pressurizing ram is attached to the pressurizing ram, and the molding material is applied to the upper surface of the lower disk. Measurement of adhesion of molding material, which is characterized by placing the upper disc down, pressurizing the molding material, and rotating the lower disc while measuring the load on the upper disc using a falling load cell and an axial pressure load cell. Law.
JP13175477A 1977-10-31 1977-10-31 Measuring method of tackiness of molding materials Granted JPS5465087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13175477A JPS5465087A (en) 1977-10-31 1977-10-31 Measuring method of tackiness of molding materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13175477A JPS5465087A (en) 1977-10-31 1977-10-31 Measuring method of tackiness of molding materials

Publications (2)

Publication Number Publication Date
JPS5465087A JPS5465087A (en) 1979-05-25
JPS6126018B2 true JPS6126018B2 (en) 1986-06-18

Family

ID=15065399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13175477A Granted JPS5465087A (en) 1977-10-31 1977-10-31 Measuring method of tackiness of molding materials

Country Status (1)

Country Link
JP (1) JPS5465087A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0610650B2 (en) * 1984-11-30 1994-02-09 株式会社島津製作所 Viscosity measuring device
CN102601322A (en) * 2012-04-06 2012-07-25 天津立中合金集团有限公司 Device for rapidly measuring flowability of aluminum alloy in online manner

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4958891A (en) * 1972-10-04 1974-06-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4958891A (en) * 1972-10-04 1974-06-07

Also Published As

Publication number Publication date
JPS5465087A (en) 1979-05-25

Similar Documents

Publication Publication Date Title
McKennell Cone-plate viscometer
JPS6073339A (en) Method of testing viscoelastic material
JPH0321861B2 (en)
WO2004034064A1 (en) Apparatus and method for testing moisture susceptibility, rutting and fatigue of material
Evans et al. Efficiency and running temperature of a polymer–steel spur gear pair from slip/roll ratio fundamentals
JPH10206306A (en) Shearing testing device and method for ground material
JPS6126018B2 (en)
JPS6321528B2 (en)
US5357785A (en) Method and device for determining rhenological properties
US6523397B1 (en) Curing characteristics measuring apparatus and measuring method
CN106442318B (en) Lubricant friction tester
US3982427A (en) Apparatus for working and testing solid elastomers
CN218796886U (en) Coating piece for manufacturing medicine patch
US3935729A (en) Gap filler for rheometer
US4109514A (en) Rheometer and uses thereof
CN115383530B (en) Extruded sheet leveling all-in-one
CN105259064A (en) Sliding abrasion testing device and calculation method with sample surface crystalline grains having preferred orientation
US1817739A (en) Apparatus for determining the frictional qualities of a liquid
JPH0772710B2 (en) Viscoelasticity measuring device
CN212989085U (en) Friction and wear tester
CN111257141A (en) Device and method for testing shear fatigue performance of asphalt
JPH0610650B2 (en) Viscosity measuring device
CN206161506U (en) Emollient frictional force tester
JPH0375280B2 (en)
JPH07104254B2 (en) Device for measuring shear stress under pressure of high viscosity liquid substance