JPS61259105A - Optical minute displacement meter - Google Patents

Optical minute displacement meter

Info

Publication number
JPS61259105A
JPS61259105A JP10223785A JP10223785A JPS61259105A JP S61259105 A JPS61259105 A JP S61259105A JP 10223785 A JP10223785 A JP 10223785A JP 10223785 A JP10223785 A JP 10223785A JP S61259105 A JPS61259105 A JP S61259105A
Authority
JP
Japan
Prior art keywords
iris
displacement meter
objective lens
beam splitter
minute displacement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10223785A
Other languages
Japanese (ja)
Inventor
Noriyuki Miyahara
宮原 則行
Akimasa Morita
晃正 森田
Hisao Kitagawa
久雄 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP10223785A priority Critical patent/JPS61259105A/en
Priority to US06/852,845 priority patent/US4732485A/en
Priority to DE19863613209 priority patent/DE3613209A1/en
Publication of JPS61259105A publication Critical patent/JPS61259105A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/24Measuring arrangements characterised by the use of optical techniques for measuring contours or curvatures

Abstract

PURPOSE:To make it possible to arbitrarily set resolving power and a measuring range, by changing NA of an incident side to a specimen by providing a means for changing NA behind an objective lens. CONSTITUTION:With respect to a minute displacement meter consisting of a laser diode 1, an objective lens 5, a beam splitter 7, critical angle prisms 8, 9 and photodiodes 10-13, for example, an iris diaphragm type luminous flux control iris 14 is provided between a collimation lens 2 and a deflection beam splitter 3. The iris 14 consisting of an iris blade 15, a rotary ring 16, a rack 17, a motor 18 and a pinion 19. When the large undulation or unevenness on the surface of a specimen 6 is desired to observe, NA is reduced by throttling the iris 14 to enlarge a measuring range and the measurement of a rough sur face profile is enabled and the measuring range is reduced as NA is made larger by opening the iris 14 but, because resolving power is enhanced, the use as a high resolving power minute displacement meter is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、工作物の表面粗さや微小変位(上下変位)等
を非接触式に測定する光学式微小変位計に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an optical minute displacement meter that measures the surface roughness, minute displacement (vertical displacement), etc. of a workpiece in a non-contact manner.

〔従来の技術〕[Conventional technology]

近年の目覚ましい精密加工技術の発展により、表面に微
小な形状を加工した製品や部品が増えてきた。LSIパ
ターン、回折格子、光ディスク。
With the remarkable development of precision processing technology in recent years, the number of products and parts with minute shapes processed on their surfaces has increased. LSI patterns, diffraction gratings, optical discs.

粗さ標準片などの表面は規則的な微細形状をもつた代表
例といえる。又、シリコンウェハにエツチングにより作
った段差やアルミニウム表面の溝状の傷の断面、鋼材表
面を超精密加工した鏡面なども微細形状といえる。そし
て、例えばダイヤモンドバイトによる超精密加工面の表
面粗さはサブμm以下を達成しているし、レーザディス
クや磁気テープ、フィルムなどの表面粗さも同じような
オーダである。こうした表面粗さの測定は、現在殆ど触
針式微小変位計で行われている。
The surface of a roughness standard piece can be said to be a typical example of a surface with a regular fine shape. In addition, steps made by etching on a silicon wafer, cross-sections of groove-like scratches on aluminum surfaces, and mirror surfaces produced by ultra-precision processing on steel surfaces can also be considered microscopic shapes. For example, the surface roughness of an ultra-precision machined surface using a diamond cutting tool has achieved sub-μm or less, and the surface roughness of laser disks, magnetic tapes, films, etc. is on the same order. Currently, most measurements of surface roughness are performed using a stylus-type micro-displacement meter.

しか゛しながら、これらの製品や部品の多くは商品とし
て仕上がっており、傷をつけないで表面の微細形状を詳
細に測定できることが望まれる。そこで、こうした、ニ
ーズを満足させるために非接触式微小変位計の開発が進
められてきている。その中で、現在量も実用的と考えら
れているのは光学式である。
However, many of these products and parts are finished as commercial products, and it is desirable to be able to measure the fine shapes of their surfaces in detail without damaging them. Therefore, in order to satisfy these needs, development of non-contact minute displacement meters has been progressing. Among them, the optical type is currently considered to be practical.

その測定原理は多様だが、例えば臨界角法を用いたもの
では、第10図に示したものがある。これは、レーザダ
イオード1からの赤外レーザ光が、コリメータレンズ2
.偏光ビームスブリフタ3゜λ/4板4.対物レンズ5
を通って試料6上に投射され、反射された光は対物レン
ズ5.λ/4板4、偏光ビームスプリッタ3.ビームス
プリ7り7を通って臨界角プリズム8又は9で反射した
光は夫々二つのフォトダイオードto、tt又は12.
13(第11図参照)に入射するように構成されている
。そして、試料6の測定面が対物レンズ5の焦点位置に
ある場合、測定面で反射された光は対物レンズ5によっ
て平行光束となり、臨界角プリズム8又は9に入射する
が、この待人射光が丁度臨界角近傍で入射するように臨
界角プリズム8又は9を設定しておくと、各二個のフォ
トダイオード10.11又は12.13には第11図(
b)に示した如く同一光量の光が到達する。又、測定面
が焦点位置より対物レンズ5に近い位置にある場合、反
射光は対物レンズ5を通った後発散光となり臨界角プリ
ズム8又9に入射するが、この時光軸の両側で入射角が
異なるため、全反射の条件を満たさない側の光はプリズ
ム8又9の外へ出てしまい且つ全反射の条件を満たす側
の光は全反射されるので、第11図(a)に示した如く
フォトダイオード10又12には少量の光しか到達せず
且つフォトダイオード11又13には充分な光が到達す
る。又、測定面が焦点位置より対物レンズ5から遠い位
置にある場合は、上記と逆になり、第11図(C)に示
した如くフォトダイオード10又は12には充分な光が
到達し且つフォトダイオード11又は13には少量の光
しか到達しない、従って、各二つのフォトダイオード1
0゜11又は12.13の出力差を読み取りつつ試料6
を移動させて走査することにより、その表面粗さや微小
変位等を測定することができる。
Although there are various measurement principles, for example, one using the critical angle method is shown in FIG. This means that the infrared laser beam from the laser diode 1 passes through the collimator lens 2.
.. Polarizing beam subrifter 3°λ/4 plate 4. Objective lens 5
The reflected light is projected onto the sample 6 through the objective lens 5. λ/4 plate 4, polarizing beam splitter 3. The light reflected by the critical angle prism 8 or 9 through the beam splitter 7 passes through two photodiodes to, tt or 12., respectively.
13 (see FIG. 11). When the measurement surface of the sample 6 is at the focal point of the objective lens 5, the light reflected from the measurement surface becomes a parallel beam of light by the objective lens 5 and enters the critical angle prism 8 or 9, but this incident light is exactly If the critical angle prism 8 or 9 is set so that the incident light is near the critical angle, each of the two photodiodes 10.11 or 12.13 will have the following characteristics as shown in FIG.
As shown in b), the same amount of light arrives. In addition, when the measurement surface is located closer to the objective lens 5 than the focal position, the reflected light becomes a diverging light after passing through the objective lens 5 and enters the critical angle prism 8 or 9, but at this time, the incident angle is different on both sides of the optical axis. Because of the difference, the light on the side that does not satisfy the conditions for total reflection will go out of the prism 8 or 9, and the light on the side that satisfies the conditions for total reflection will be totally reflected. Thus, only a small amount of light reaches photodiode 10 or 12, and sufficient light reaches photodiode 11 or 13. If the measurement surface is located further from the objective lens 5 than the focal position, the above will be reversed, and sufficient light will reach the photodiode 10 or 12 and no photo will be detected, as shown in FIG. Only a small amount of light reaches the diodes 11 or 13, so each of the two photodiodes 1
Sample 6 while reading the output difference of 0°11 or 12.13.
By moving and scanning the surface, its surface roughness, minute displacement, etc. can be measured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところが、このような臨界角法を用いた微小変位計では
、  2n−以下という高い分解能は実現できているが
、測定範囲が2μmと狭いため、その測定対象は表面に
大きな振幅のうねりや凹凸がない鏡面状の試料に限られ
ていた。即ち、前述の如く多種多様の試料の測定のため
に夫々で要求される分解能と測定範囲を実現することが
要求されているが、従来の微小変位計はその要求を満た
すことができなかった。
However, although micro-displacement meters using such a critical angle method have achieved a high resolution of 2n- or less, the measurement range is as narrow as 2 μm, and the measurement target has large-amplitude undulations or irregularities on the surface. It was limited to specular samples. That is, as mentioned above, it is required to realize the required resolution and measurement range for measuring a wide variety of samples, but conventional micro-displacement meters have not been able to meet these requirements.

一方、測定範囲を拡大する一つの方法として対物レンズ
をNAの小さな焦点深度の深い低倍のレンズに交換する
方法があるが、従来行われている対物レンズの交換方式
例えばターレット式では、対物レンズ部がかなり大きな
ものとなる他、芯ズレが生じ易く且つ同焦などを必要な
精度に保つことが困難である。又単−の対物レンズを交
換する方式でも芯ズレ等を高精度に抑えたり同焦を必要
な精度に保つことが困難な他、対物レンズを交換する作
業が煩わしく、特にインプロセス計測等を行うことは極
めて困難である。又、複数の分解能。
On the other hand, one way to expand the measurement range is to replace the objective lens with a low-magnification lens with a small NA and deep depth of focus. In addition to being quite large in size, misalignment is likely to occur and it is difficult to maintain parfocality at the required accuracy. In addition, even with the method of replacing a single objective lens, it is difficult to suppress misalignment with high accuracy or maintain parfocality to the required accuracy, and the task of replacing the objective lens is cumbersome, especially when performing in-process measurements. This is extremely difficult. Also, multiple resolutions.

測定範囲の異なる微小変位計を用意しておき、測定対象
に応じて微小変位計を交換するのも煩わしく、測定対象
が同じでも同一箇所を測定することは殆ど不可能であり
、経済的な損失も多いという問題があった。
It is troublesome to prepare minute displacement meters with different measurement ranges and replace them depending on the measurement target, and it is almost impossible to measure the same location even if the measurement target is the same, resulting in economic loss. The problem was that there were too many.

本発明は、上記問題点に鑑み、一台の微小変位計で測定
対象、tm定目的に応じて分解能5測定範囲を任意に設
定し得るようにして、複数の微小変位計を用途別に用意
する必要がなくなり、同一対象に対して異なるレンジで
の測定がほぼ同時にでき、インプロセス計測にも応用し
得るようにした光学式微小変位計を提供することを目的
としている。
In view of the above-mentioned problems, the present invention allows a single micro-displacement meter to arbitrarily set a resolution 5 measurement range depending on the object to be measured and the purpose of tm determination, and prepares a plurality of micro-displacement meters for different uses. The object of the present invention is to provide an optical micro-displacement meter that can measure the same object at different ranges almost simultaneously, and can also be applied to in-process measurement.

〔問題点を解決するための手段及び作用〕本発明による
光学式微小変位計は、対物レンズの後方においてNAを
変化させる手段を存するようにし才、試料への入射側の
NAを変化させ、分解能、測定範囲を任意に設定し得る
ようにしたものである。
[Means and effects for solving the problem] The optical micro-displacement meter according to the present invention has a means for changing the NA at the rear of the objective lens, and changes the NA on the side of incidence to the sample, thereby increasing the resolution. , the measurement range can be set arbitrarily.

(実施例) 以下図示した各実施例に基づき、上記従来例と同一の部
材に同一符号を付して本発明の詳細な説明する。
(Embodiments) The present invention will be described in detail below based on the illustrated embodiments, with the same reference numerals assigned to the same members as in the conventional example described above.

第1図は第一実施例の光学系を示しており、これはコリ
メータレンズ2と偏光ビームスプリッタ3との間に光束
制限絞り14を配置した以外は従来例と同じである。光
束制限絞り14は、例えば第2図に示した如きカメラ等
に用いられる虹彩絞りでも良く、その絞り羽根15を開
閉するための回転リング16の外周部には成る範囲に亘
ってうソーク17が設けられていると共に、エンコーダ
DCモータ18の輪にはラック17と噛合するビニオン
19が固着されている。
FIG. 1 shows the optical system of the first embodiment, which is the same as the conventional example except that a light flux limiting aperture 14 is disposed between the collimator lens 2 and the polarizing beam splitter 3. The light flux limiting diaphragm 14 may be, for example, an iris diaphragm used in a camera as shown in FIG. In addition, a pinion 19 that meshes with the rack 17 is fixed to the ring of the encoder DC motor 18.

第3図は上記実施例の信号処理系を示しており、20は
測定レンジ設定回路、21は制御回路、22はモータ駆
動回路、23は絞り径検出回路、24はレーザダイオー
ド駆動回路である。
FIG. 3 shows the signal processing system of the above embodiment, where 20 is a measurement range setting circuit, 21 is a control circuit, 22 is a motor drive circuit, 23 is an aperture diameter detection circuit, and 24 is a laser diode drive circuit.

本発明による光学式微小変位計は上述の如く構成されて
いるから、測定レンジ設定回路20により測定レンジを
設定すると、制御回路21を介してモータ駆動回路22
が制御され、モータ18が駆動される。モータ18が駆
動されると、ピニオン19及びラック17を介して回転
リング16が回転され、絞り羽根15が開作動又は閉作
動せしめられる。この時、モータ18のエンコーダ部か
らの信号は絞り径検出回路23に送られて絞り径の検出
が行われている。絞り径が測定レンジ設定回路で設定さ
れたレンジに対応すると、制御回路21、モータ駆動回
路22を介してモータ18は停止せしめられる。
Since the optical minute displacement meter according to the present invention is configured as described above, when the measurement range is set by the measurement range setting circuit 20, the motor drive circuit 22
is controlled, and the motor 18 is driven. When the motor 18 is driven, the rotating ring 16 is rotated via the pinion 19 and the rack 17, and the aperture blades 15 are opened or closed. At this time, a signal from the encoder section of the motor 18 is sent to the aperture diameter detection circuit 23 to detect the aperture diameter. When the aperture diameter corresponds to the range set by the measurement range setting circuit, the motor 18 is stopped via the control circuit 21 and the motor drive circuit 22.

今、絞り14が絞られているとすると、この時の光束は
第1図に示した光束b(斜線部分)となる、この状態は
、絞り14を絞らない場合の光束aの状態に較べて試料
6に入射する光束のNAを小さくした状態であ、って、
これは対物レンズ5のNAを小さくしたことと等価であ
る。NAを小さくした場合の測定範囲の拡大の様子は第
4図の計算結果即ち変位−出力関係に示されており、こ
れは実験結果と一致する。従って、光束制限絞り14の
径を変えることで測定範囲を任意に設定することができ
る。但し、NAを小さくして測定範囲を拡大すると、分
解能がそれに伴って低下し、又第5図の表に示した如く
試料6上の測定スポットのサイズも大きくなるので、対
象、目的に合わせて測定範囲を設定する必要がある。又
、絞り14を絞ると光量が低下し、結果としてS/N比
が低下するので、絞り径検出回路23からの信号を利用
してレーザダイオード駆動回路24を制御回路21によ
り制御し、絞り径が小さくなった時はレーザ光量が増加
するように設定することも可能である。
Assuming that the aperture 14 is now closed, the luminous flux at this time becomes the luminous flux b (shaded area) shown in FIG. 1. This state is compared to the state of the luminous flux a when the aperture 14 is not narrowed down. In a state where the NA of the luminous flux incident on sample 6 is reduced,
This is equivalent to reducing the NA of the objective lens 5. The expansion of the measurement range when the NA is reduced is shown in the calculation results, ie, the displacement-output relationship, in FIG. 4, which agrees with the experimental results. Therefore, by changing the diameter of the light flux limiting diaphragm 14, the measurement range can be arbitrarily set. However, if you reduce the NA and expand the measurement range, the resolution will decrease accordingly, and the size of the measurement spot on the sample 6 will also increase as shown in the table in Figure 5. It is necessary to set the measurement range. Furthermore, when the aperture 14 is stopped down, the light intensity decreases, resulting in a decrease in the S/N ratio. Therefore, the laser diode drive circuit 24 is controlled by the control circuit 21 using the signal from the aperture diameter detection circuit 23 to adjust the aperture diameter. It is also possible to set the amount of laser light to increase when the value becomes smaller.

ここでは虹彩絞りを例にあげて説明したが光束制限絞り
14ば、同心円状に透明電極を配設した液晶絞りや、第
6図に示した如く径の異なる絞りを複数個円周上に配列
したターレット型絞り25や、第7図に示した如く径の
異なる絞りを複数個直線上に並べた切替型絞り26など
、光束を制限できるものなら何でも良い、又、モータ1
8を用いて絞り径を変えているが、手動でも良いのは言
うまでも無い。
Although the iris diaphragm has been explained here as an example, the luminous flux limiting diaphragm 14 may be a liquid crystal diaphragm with transparent electrodes arranged concentrically, or a plurality of diaphragms with different diameters arranged on the circumference as shown in Fig. 6. Any device that can limit the luminous flux may be used, such as a turret-type diaphragm 25 or a switching diaphragm 26 in which a plurality of diaphragms with different diameters are arranged in a straight line as shown in FIG.
8 is used to change the aperture diameter, but it goes without saying that it can also be done manually.

又、光束制限絞り14の位置は、コリメータレンズ2と
偏光ビームスプリンタ3との間としたが、偏光ビームス
プリンタ3と対物レンズ5との間に置くことも可能であ
る。但し、その場合試料6から反射して戻ってくる光に
対しても実効的NAを小さくすることになり、試料6に
傾きがあると絞り14によりけられが生じ、傾きに対し
ては極めて弱いものとなる。
Further, although the light flux limiting diaphragm 14 is located between the collimator lens 2 and the polarizing beam splinter 3, it can also be placed between the polarizing beam splinter 3 and the objective lens 5. However, in this case, the effective NA will also be reduced for the light reflected back from the sample 6, and if the sample 6 is tilted, vignetting will occur due to the aperture 14, making it extremely weak against tilt. Become something.

以上のように、本発明の光学式微小変位計によれば、測
定試料表面の大きなうねりや凹凸を見たい時には、絞り
14を絞ってNAを小さくすることにより測定範囲が拡
大し、表面の大まかなプロファイルの測定が可能となる
。又、この時測定スポットサイズも大きくなるので、表
面のごみ等の小さな凹凸の影響を受けずに測定できる。
As described above, according to the optical micro-displacement meter of the present invention, when it is desired to see large undulations or irregularities on the surface of a measurement sample, the measurement range can be expanded by narrowing down the aperture 14 and reducing the NA. This makes it possible to measure profiles. Furthermore, since the measurement spot size also increases at this time, measurements can be made without being affected by small irregularities such as dust on the surface.

更に、試料への入射側のNAのみを小さくしているので
、試料に傾きがあっても対物レンズ自体のNAを小さく
した時よりも影響を受けにくい、又、絞り14を開いて
NAを大きくしていくと、測定範囲は縮小するが、分解
能が向上するので、従来通りの高分解能微小変位計とし
て使用できる。
Furthermore, since only the NA on the incident side to the sample is made small, even if the sample is tilted, it is less affected than when the NA of the objective lens itself is made small, and the NA can be increased by opening the aperture 14. As the measurement range decreases, the resolution improves, so it can be used as a conventional high-resolution micro-displacement meter.

従って、絞り14の絞り具合一つで、一台の微小変位計
を高分解能微小変位計から測定レンジの広い微小変位計
へと自由に変えることができ、測定対象や測定目的に応
じて微小変位計の性能を任意にセットすることができる
Therefore, by adjusting the aperture of the aperture 14, one micro-displacement meter can be freely changed from a high-resolution micro-displacement meter to a micro-displacement meter with a wide measurement range. The performance of the meter can be set arbitrarily.

第8図は第二実施例の光学系を示しており、これはコリ
メータレンズ2の代りに焦点距離可変のズームレンズ系
27を配置した以外は従来例と同じである。ズームレン
ズ系27は、焦点距離可変のコリメータレンズとして機
能し、この焦点距離を任意に変化させることでレーザビ
ームを例えば光束b(斜線部分)のような任意の径をも
った光束に変換できるものとする。このズーミングは手
動でも良いし、何等かの電動系に°より行っても良い。
FIG. 8 shows the optical system of the second embodiment, which is the same as the conventional example except that a variable focal length zoom lens system 27 is arranged in place of the collimator lens 2. The zoom lens system 27 functions as a collimator lens with a variable focal length, and by arbitrarily changing this focal length, the laser beam can be converted into a luminous flux having an arbitrary diameter, such as a luminous flux b (shaded area). shall be. This zooming may be done manually or by some kind of motorized system.

この例の場合、試料6への入射側のNAのみをズームレ
ンズ系27のセツティングだけで小さくもできるので、
第一実施例と同様な効果がある。
In this example, the NA on the incident side to the sample 6 can be reduced by simply setting the zoom lens system 27.
This has the same effect as the first embodiment.

又、光量が絞られることがないので、SN比を一定に保
てるという利点もある。
Furthermore, since the amount of light is not limited, there is also the advantage that the S/N ratio can be kept constant.

第9図は第三実施例の光学系を示しておりこれは第一実
施例の光束制限絞り14の位置に偏光板28をレーザダ
イオード1の偏光の向きに合わせて配置し、偏光ビーム
スプリッタ3を無偏光のビームスプリッタ29に交換し
、ビームスプリッタ29とビームスプリッタ7との間に
新たに無偏光のビームスプリフタ30を設け、ビームス
プリッタ30.新たな偏光板31.コリメータレンズ3
2、レーザダイオード33をビームスプリフタ29、偏
光板28.コリメータレンズ2.レーザダイオード1と
光学的に同様な位置関係に配置した以外は従来例と同じ
である。但し、ここでコリメータレンズ32の焦点距離
はコリメータレンズ2の焦点距離と異っており、第9図
の場合は短いので、コリメータレンズ32を経た光束C
(斜線部分)は光束aよりも細くなり、入射側のNAが
小さくなる。
FIG. 9 shows an optical system of the third embodiment, in which a polarizing plate 28 is arranged at the position of the light flux limiting aperture 14 of the first embodiment in accordance with the direction of polarization of the laser diode 1, and a polarizing beam splitter 3 is replaced with a non-polarizing beam splitter 29, a new non-polarizing beam splitter 30 is installed between the beam splitter 29 and the beam splitter 7, and the beam splitter 30. New polarizing plate 31. Collimator lens 3
2. The laser diode 33 is connected to a beam splitter 29, a polarizing plate 28. Collimator lens 2. It is the same as the conventional example except that it is arranged in an optically similar positional relationship to the laser diode 1. However, since the focal length of the collimator lens 32 is different from the focal length of the collimator lens 2 and is shorter in the case of FIG. 9, the luminous flux C passing through the collimator lens 32
(The shaded area) is narrower than the luminous flux a, and the NA on the incident side is smaller.

尚、試料6からの反射光のうちビームスプリγり29又
は30で反射した成分はレーザダイオード1又は33側
へ進むことになるが、λ/4蜘尋板4を二回通って偏光
方向が偏光板28又は31と直交した状態となるので、
レーザダイオード1又は33に戻ってバンクトークノイ
ズを生じることは無い、又、反射面が多いので、特に光
束C側の損失が多いが、ビームスプリッタ29及び30
の反射率を25%程度にすることで光束C側の反射損失
はある程度緩和される。又、光束が特にけられることは
ない、又、レーザダイオード、コリメータレンズ、偏光
板、ビームスプリフタで構成される投光系の数は、反射
損失をレーザ光量でカバーし得る範囲であれば二つ以上
いくつ設けても良い。
Note that the component of the reflected light from the sample 6 that is reflected by the beam splitter γ 29 or 30 will proceed to the laser diode 1 or 33 side, but it passes through the λ/4 spider plate 4 twice and the polarization direction is changed. Since it is perpendicular to the polarizing plate 28 or 31,
There is no bank talk noise that returns to the laser diode 1 or 33, and since there are many reflective surfaces, there is a lot of loss, especially on the beam C side, but the beam splitter 29 and 30
By setting the reflectance to about 25%, the reflection loss on the luminous flux C side can be alleviated to some extent. In addition, the luminous flux is not particularly eclipsed, and the number of light projection systems consisting of laser diodes, collimator lenses, polarizing plates, and beam splitters can be set to two as long as the reflection loss can be covered by the laser light intensity. You may provide more than one.

この例の場合、発振させるレーザをレーザダイオード及
び33で切り替えることにより、瞬時に微小変位計の特
性が変えられるという第−及び第二実施例には無い効果
がある。又、レーザダイオード1及び33を十分速い而
も各々異った周波数で変調をかけるか或いは同じ周波数
で高速で交互に点灯させることにより、微小変位計に高
分解能と広い測定範囲の両方の特性を同時に持たせるこ
とも可能である。
In the case of this example, by switching the laser to be oscillated by the laser diode and 33, there is an effect that the characteristics of the minute displacement meter can be instantaneously changed, which is not available in the first and second embodiments. Furthermore, by modulating the laser diodes 1 and 33 at sufficiently fast but different frequencies, or by lighting them alternately at high speed at the same frequency, the micro-displacement meter can have both high resolution and a wide measurement range. It is also possible to have them at the same time.

〔発明の効果〕〔Effect of the invention〕

上述の如く、本発明による光学式微小変位計は、一台の
微小変位計で測定対象、測定目的に応じて分解能、測定
範囲を任意に設定し得るので、複数の微小変位計を用途
別に用意する必要がなくなり、同一対象に対して異なる
レンジでの測定がほぼ同時にでき、インプロセス計測に
も応用し得るという実用上重要な利点を存している。
As mentioned above, in the optical micro-displacement meter according to the present invention, the resolution and measurement range can be arbitrarily set according to the measurement target and measurement purpose with one micro-displacement meter, so multiple micro-displacement meters can be prepared for each purpose. This has the important practical advantage of eliminating the need for multiple measurements, allowing measurements of the same object at different ranges almost simultaneously, and being applicable to in-process measurements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は零殉明による光学式微小変位計の第一実施例の
光学系を示す図、第2図は第一実施例の光束制限絞りの
斜視図、第3図は第一実施例の信号処理系のブロック図
、第4図はNAに応じた変位−出力関係を示す図、第6
図及び第7図は夫々光束制限絞りの他の例を示す斜視図
、第8図及び第9図は夫々第二実施例及び第三実施例の
光学系を示す図、第10図及び第11図は夫々従来例の
光学系及びフォトダイオード上の受光状態を示す図であ
る。 1・・・・レーザダイオード、2・・・・コリメータレ
ンズ、3・・・・偏光ビームスプリフタ、4・・・・λ
/4板、5・・・・対物レンズ、6・・・・試料、7・
・・・ビームスプリッタ、8,9・・・・臨界角プリズ
ム、10.11.12.13・・・・フォトダイオード
、14・・・・光束制限絞り、  ″″ 第2図 :1−4図 16図    オフ図 第8図 才9図 第10図      才11図 手続補正書(方式)       6 昭和60年 9月13日
Fig. 1 is a diagram showing the optical system of the first embodiment of the optical micro-displacement meter with zero exposure, Fig. 2 is a perspective view of the luminous flux limiting diaphragm of the first embodiment, and Fig. 3 is a diagram of the first embodiment. A block diagram of the signal processing system, Fig. 4 is a diagram showing the displacement-output relationship according to NA, Fig. 6
7 and 7 are perspective views showing other examples of the luminous flux limiting diaphragm, respectively, FIGS. 8 and 9 are views showing optical systems of the second and third embodiments, respectively, and FIGS. 10 and 11 The figures are diagrams showing the state of light reception on a conventional optical system and a photodiode, respectively. 1... Laser diode, 2... Collimator lens, 3... Polarizing beam splitter, 4... λ
/4 plate, 5...objective lens, 6...sample, 7...
...beam splitter, 8,9...critical angle prism, 10.11.12.13...photodiode, 14...luminous flux limiting aperture, '''' Figure 2: Figures 1-4 Figure 16 Off Figure 8 Figure 9 Figure 10 Figure 11 Procedural Amendment (Method) 6 September 13, 1985

Claims (1)

【特許請求の範囲】[Claims] 対物レンズの後方においてNAを変化させる手段を有し
ていることを特徴とする光学式微小変位計。
An optical micro-displacement meter comprising means for changing NA behind an objective lens.
JP10223785A 1985-04-17 1985-05-14 Optical minute displacement meter Pending JPS61259105A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP10223785A JPS61259105A (en) 1985-05-14 1985-05-14 Optical minute displacement meter
US06/852,845 US4732485A (en) 1985-04-17 1986-04-16 Optical surface profile measuring device
DE19863613209 DE3613209A1 (en) 1985-04-17 1986-04-17 OPTICAL SURFACE PROFILE MEASURING DEVICE

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10223785A JPS61259105A (en) 1985-05-14 1985-05-14 Optical minute displacement meter

Publications (1)

Publication Number Publication Date
JPS61259105A true JPS61259105A (en) 1986-11-17

Family

ID=14322028

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10223785A Pending JPS61259105A (en) 1985-04-17 1985-05-14 Optical minute displacement meter

Country Status (1)

Country Link
JP (1) JPS61259105A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058224A (en) * 2004-08-23 2006-03-02 Mitsutoyo Corp Measuring instrument

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006058224A (en) * 2004-08-23 2006-03-02 Mitsutoyo Corp Measuring instrument

Similar Documents

Publication Publication Date Title
US4634880A (en) Confocal optical imaging system with improved signal-to-noise ratio
US4732485A (en) Optical surface profile measuring device
JP4476195B2 (en) Polarization beam splitter apparatus, interferometer module, lithographic apparatus, and device manufacturing method
US5696589A (en) Optical caliper with compensation for specimen deflection and method
US7205518B2 (en) Method and arrangement for focusing in an optical measurement
CA2206212A1 (en) Phase shifting diffraction interferometer
CN105115444A (en) Detection device and detection method of off-axis parabolic mirror surface shape precision
US5309214A (en) Method for measuring distributed dispersion of gradient-index optical elements and optical system to be used for carrying out the method
US4932781A (en) Gap measuring apparatus using interference fringes of reflected light
USRE32660E (en) Confocal optical imaging system with improved signal-to-noise ratio
JPS61259105A (en) Optical minute displacement meter
JPS63144206A (en) Measuring method for body position
EP0128183B1 (en) Inspection apparatus and method
WO2003060589A1 (en) Auto focussing device and method
JPS5979104A (en) Optical device
JPS5897008A (en) Positioning method for semiconductor laser and collimator lens
JPH0338645Y2 (en)
JPS61292004A (en) Optical micro displacement gauge
RU2705177C1 (en) Autocollimation device for centering optical elements
JP2003507707A (en) Variable angle illuminated wafer inspection system
JPH0652165B2 (en) Interferometer
JPS6370110A (en) Distance measuring apparatus
JPS63148106A (en) Body position measuring instrument
RU2018112C1 (en) Device for measuring reflection and transmission coefficients
JPS60211304A (en) Measuring instrument for parallelism