JPS61258479A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61258479A
JPS61258479A JP10081785A JP10081785A JPS61258479A JP S61258479 A JPS61258479 A JP S61258479A JP 10081785 A JP10081785 A JP 10081785A JP 10081785 A JP10081785 A JP 10081785A JP S61258479 A JPS61258479 A JP S61258479A
Authority
JP
Japan
Prior art keywords
film
polysilicon film
source
drain regions
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10081785A
Other languages
Japanese (ja)
Inventor
Fujiki Tokuyoshi
徳吉 藤樹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP10081785A priority Critical patent/JPS61258479A/en
Publication of JPS61258479A publication Critical patent/JPS61258479A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • H01L29/66598Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET forming drain [D] and lightly doped drain [LDD] simultaneously, e.g. using implantation through the wings a T-shaped layer, or through a specially shaped layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To obtain uniform source and drain regions, by etching the side faces of a polysilicon film with the use of an insulation film as a mask, and ions of an impurity having the opposite type of conductivity to that of the substrate are implanted so as to form regions of said opposite type of conductivity on the semiconductor substrate except the region patterned with the polysilicon film. CONSTITUTION:A field oxide film 2 and a gate oxide film 3 are formed on a P-type silicon substrate 1. A polysilicon film 10 is then deposited thereon, and further an SiO2 film 11 is formed thereon. The portions of the SiO2 film 11 and the polysilicon film 10 not included in predetermined patterns are removed. The side faces of the polysilicon film 10 are etched away. Arsenic ions are implanted so as to provide N<+> type source and drain regions 12 and 13 on the silicon substrate 1. The source drain regions 12 and 13 are activated, and the side faces of the polysilicon film 10 are oxidized by thermal oxidation. In this manner, the source and drain regions can be formed with good reproducibility.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はMO8型半導体装置の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method of manufacturing an MO8 type semiconductor device.

〔従来の技術〕[Conventional technology]

近年MO8!J半導体半量導体装置Of9)ランジスタ
という)の高集積化、高密度化が促進され、素子の大き
さが小さくなるに従いゲート長が短く形成されるように
なってきている。このため、ソース及びドレイン領域が
接近し、ソースとドレイン領域の空乏層を介しての短絡
(パンチスルー現象)や、ホトキャリア効果によるしき
い値電圧(vth)の上昇等によりトランジスタ機能が
損なわれるという問題が生じていた。
In recent years MO8! The integration and density of semiconductor half-conductor devices (also referred to as transistors) have been promoted, and as the size of the device has become smaller, the gate length has become shorter. As a result, the source and drain regions become close to each other, resulting in a short circuit (punch-through phenomenon) through the depletion layer between the source and drain regions, and an increase in threshold voltage (vth) due to the photocarrier effect, which impairs the transistor function. A problem arose.

コノ対策とし’CL D D (Lightly Do
ped Drajn)構造のMO8トランジスタが提案
され実施されている。
Lightly Do
MO8 transistors of the ped Drajn) structure have been proposed and implemented.

第2図(a) 〜(d)はLDD構造のMOS)、F:
/ジスタの製造方法の一例を説明する走めの工程断面図
である。
Figure 2 (a) to (d) are LDD structure MOS), F:
FIG. 2 is a step cross-sectional view illustrating an example of a method for manufacturing a MOS transistor.

まず第2図(a)K示すように、P型シリコン基板1上
に、フィールド酸化[2、ゲート酸化膜3及びN型不純
物がドーグされたポリシリコン膜を形成したのち、公知
のホトリソグラフィ技術によりポリシリコン膜からなる
ゲート電極4を形成する。
First, as shown in FIG. 2(a)K, field oxidation [2], a gate oxide film 3, and a polysilicon film doped with N-type impurities are formed on a P-type silicon substrate 1, and then A gate electrode 4 made of a polysilicon film is then formed.

次に第2図(b)に示すように、CVD法により全面K
 S 10g膜5を堆積させる。
Next, as shown in FIG. 2(b), the entire surface is covered by the CVD method.
Deposit S 10g film 5.

次に第2図(C)に示すように5反応性イオンエ。Next, as shown in FIG. 2(C), 5 reactive ions were added.

チング(RIE)法によ、9SiO,膜5を工、チング
し、ゲート電極4の側面にのみ8i0tjl(サイドウ
オール)5aを残す。
The 9SiO film 5 is etched and etched by the etching (RIE) method, leaving an 8i0tjl (side wall) 5a only on the side surface of the gate electrode 4.

次に第2図(d)に示すように、全面にヒ素(A$)を
イオン注入しN十製のソース、ドレイン領域6゜7を形
成する。この際、サイドウオール5aの下部では、サイ
ドウオール5aがマスクとして働くため、注入されるA
3イオンは少なくなシ、ソース・ドレイン領域6.7の
他所よシも接合の深さは浅く形成される。
Next, as shown in FIG. 2(d), arsenic (A$) is ion-implanted into the entire surface to form source and drain regions 6.7 made of N0. At this time, since the sidewall 5a acts as a mask at the lower part of the sidewall 5a, the injected A
Since the number of 3 ions is small, the depth of the junction is shallower in the source/drain regions 6 and 7 than elsewhere.

このようにして形成されたソース、ドレイン領域6,7
の形状は、活性化のための熱処理を行っても大きく変る
ことはない。又、ソース・ドレイン領域が階段状に形成
されることにより、空乏層の形状も変化し、基板表面に
おける電界集中を防止することができ、その結果パンチ
スルー耐圧は改善される。更に1 ドレイン側における
電界集中も緩和されるため、ホトキャリア効果によるv
tbの上昇も抑制されたものとなる。
Source and drain regions 6 and 7 formed in this way
The shape does not change significantly even after heat treatment for activation. Furthermore, by forming the source/drain regions in a stepwise manner, the shape of the depletion layer also changes, making it possible to prevent electric field concentration on the substrate surface, and as a result, the punch-through breakdown voltage is improved. Furthermore, the electric field concentration on the drain side is also alleviated, so that v due to the photocarrier effect
The increase in tb is also suppressed.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の製造方法ではRIE法によりサイドウオール5a
を形成しているが、RIE法は、ウェハ内のエツチング
速度の均一性が悪く、サイドウオール5aを、均一に再
現性良く形成することは極めて困難である。その結果、
イオン注入法によシ形成されるLDD構造のN+型ソー
ス、ドレイン領域6,7の形状は不均一となる。このた
め、MOS)ランジスタの特性は安定せず、製造歩留が
悪いという欠点があった。
In the conventional manufacturing method, the sidewall 5a is formed by RIE method.
However, in the RIE method, the uniformity of the etching rate within the wafer is poor, and it is extremely difficult to form the sidewall 5a uniformly and with good reproducibility. the result,
The shapes of the N+ type source and drain regions 6 and 7 of the LDD structure formed by the ion implantation method are non-uniform. For this reason, the characteristics of the MOS transistor were unstable and the manufacturing yield was poor.

本発明の目的は、上記欠点を除去し、均一なソース・ド
レイン領域を有するLDD構造のMO8型半導体装置の
製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to eliminate the above-mentioned drawbacks and provide a method for manufacturing an MO8 type semiconductor device having an LDD structure and having uniform source and drain regions.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、−導電型半導体基板
上にゲート酸化膜、ポリシリコン膜及び絶縁膜とを順次
形成する工程と、所定パターン部以外の絶縁膜とポリシ
リコン膜とを除去する工程と、この絶縁膜をマスクとし
てポリシリコン膜の側面をエツチングする工程と、全面
に逆導電型の不純物をイオン注入し前記ポリシリコン膜
のパターン部以外の半導体基板上に逆導電型領域を形成
する工程とから構成される。
The method for manufacturing a semiconductor device of the present invention includes: - Steps of sequentially forming a gate oxide film, a polysilicon film, and an insulating film on a conductive semiconductor substrate; and removing the insulating film and the polysilicon film other than a predetermined pattern portion. a step of etching the side surface of the polysilicon film using this insulating film as a mask; and a step of ion-implanting impurities of the opposite conductivity type to the entire surface to form regions of the opposite conductivity type on the semiconductor substrate other than the patterned portion of the polysilicon film. It consists of the process of

本発明によれば、ソース・ドレイン領域を形成する不純
物のイオン注入は、ゲート電極となるポリシリコン膜上
にひさしを有する形状に形成された絶縁膜を通して行な
われる。このひさし状の絶縁膜は、ホトリソグラフィ技
術によシ精度よく、かつ再現性よく形成できるため、L
DD構造のソース・ドレイン領域を有するMOS)ラン
ジスタは均一な特性を有する甑のとなる。
According to the present invention, ion implantation of impurities to form source/drain regions is performed through an insulating film formed in a shape having a canopy on a polysilicon film serving as a gate electrode. This canopy-shaped insulating film can be formed with high accuracy and reproducibility using photolithography technology, so L
A MOS transistor having a source/drain region with a DD structure becomes a transistor with uniform characteristics.

〔実施例〕〔Example〕

次に本発明の実施例を図面を用いて説明する。 Next, embodiments of the present invention will be described using the drawings.

第1図(a)〜(d)は本発明の一実施例を説明するた
めの工種断面図である。
FIGS. 1(a) to 1(d) are cross-sectional views for explaining one embodiment of the present invention.

まず第1図(a)に示すように、P型シリコン基板1上
にフィールド酸化膜2及び厚さ約500Aのゲート酸化
膜3を形成したのち、CVD法を用いてH型不純物がド
ープされた厚さ約0.3μmのポリシリコン膜10を堆
積させ、更にその上にCVD法によシ厚さ0.1〜0.
2μmのSiへ膜11を形成する。続いて、ホトリソグ
ラフィ技術によシ所定パターン部以外のSiO□膜11
とポリシリコン膜10とを除去する。
First, as shown in FIG. 1(a), a field oxide film 2 and a gate oxide film 3 with a thickness of about 500 Å were formed on a P-type silicon substrate 1, and then H-type impurities were doped using the CVD method. A polysilicon film 10 with a thickness of about 0.3 μm is deposited, and a polysilicon film 10 with a thickness of 0.1 to 0.0 μm is deposited on top of it by CVD.
A film 11 is formed on Si with a thickness of 2 μm. Subsequently, using photolithography technology, the SiO
and polysilicon film 10 are removed.

次に第1図(b)に示すように、8i0.膜11をマス
クとし、CCt系反応ガスを用いるドライエ。
Next, as shown in FIG. 1(b), 8i0. A dryer using the film 11 as a mask and using a CCt-based reactive gas.

チング法によシポリシリコン膜10の側面を約0.3μ
m程エツチングする。
The side surface of the polysilicon film 10 is coated with a thickness of approximately 0.3 μm using the etch method.
Etch about m.

次に第1図(C)に示すように、150〜200 ke
Vの条件でA3イオンを約lXl0 1.6個/dの濃
度でイオン注入を行ない、シリコン基板l上にr型のソ
ース、ドレイン領域12.13を形成する。
Next, as shown in Fig. 1(C), 150 to 200 ke
A3 ions are implanted at a concentration of about 1.times.1.6 ions/d under the condition of V to form r-type source and drain regions 12.13 on the silicon substrate 1.

続いて不活性ガス雰囲気中で約1000℃に加熱し、ソ
ース、ドレイン領域12.13を活性化する。
Subsequently, the source and drain regions 12 and 13 are activated by heating to about 1000° C. in an inert gas atmosphere.

このようにして形成されたLDD構造のソース、ドレイ
ン領域12.13の深さは、深い部分で0.3〜0.4
μm浅い部分で0.1〜0.2μmとなる。
The depth of the source and drain regions 12.13 of the LDD structure thus formed is 0.3 to 0.4 in the deep part.
The depth is 0.1 to 0.2 μm in the shallow portion.

ソース、ドレイン領域12.13の断面形状は、パター
ニングされたポリシリコン膜10と、この上にひさしを
有する形状に形成された8i02膜11の形状と厚さ及
び、N型不純物のイオン注入条件によシ制御することが
でき、再現性よく形成できる。
The cross-sectional shape of the source and drain regions 12 and 13 depends on the shape and thickness of the patterned polysilicon film 10, the shape and thickness of the 8i02 film 11 formed in the shape of having an eave thereon, and the ion implantation conditions for N-type impurities. It can be well controlled and formed with good reproducibility.

次に第1図(d)に示すように、熱酸化によシポリシリ
コン、[10の側面を酸化する。この酸化によシボリシ
リコン膜lOの幅は約0.2μm減少する。
Next, as shown in FIG. 1(d), the side surfaces of the polysilicon [10] are oxidized by thermal oxidation. Due to this oxidation, the width of the wrinkled silicon film IO is reduced by about 0.2 μm.

従りて第1図<a>におけるパターニングは仁の膜幅等
の減少を考慮して行なう必要がある。
Therefore, the patterning shown in FIG. 1<a> must be performed with consideration given to the reduction in the film width of the grains, etc.

ポリシリコン膜10は、その表面に8i0.11が形成
されているために、この熱酸化によってもその膜厚を減
少させることはない。従って、従来の製造方法のように
1酸化による膜厚の減少を考慮して厚いポリシリコン膜
を形成する必要はない。
Since 8i0.11 is formed on the surface of the polysilicon film 10, the film thickness is not reduced by this thermal oxidation. Therefore, unlike conventional manufacturing methods, it is not necessary to form a thick polysilicon film in consideration of the reduction in film thickness due to mono-oxidation.

このため第1図(a)におけるポリシリコン膜のパター
ニングは、よシ精度よく行うことができる。
Therefore, the patterning of the polysilicon film in FIG. 1(a) can be performed with high precision.

続いてCVD法等によシ、リンシリケートガラス(PS
G)膜14を堆積させ、熱流動によシ平坦化処理を行な
ったのち、開孔部、Ω配線等を順次形成してMOBト2
ンジスタを完成させる。
Next, phosphorus silicate glass (PS
G) After depositing the film 14 and performing a flattening process using heat flow, the openings, Ω wiring, etc. are sequentially formed to form the MOB plate 2.
Complete the injista.

このように本発明の製造方法によれば、LDD構造のソ
ース・ドレイン領域を形成するために用いられる絶縁膜
が、ゲート電極となるポリシリコン膜上に、ひさしを有
して精度よく形成されるため、MOSトランジスタのソ
ース・ドレイン領域も精度及び再現性よく形成される。
As described above, according to the manufacturing method of the present invention, the insulating film used to form the source/drain regions of the LDD structure can be formed with high precision on the polysilicon film that will become the gate electrode. Therefore, the source and drain regions of the MOS transistor can also be formed with high accuracy and reproducibility.

なお、上記実施例においては、pgシリコン基板上にN
+型ソース・ドレイン領域を形成する場合について説明
したが、N型シリコン基板を用いてP+屋ソース・ドレ
イン領域を形成してもよく、その他事発明の要旨を逸脱
しない範囲での変更した操作を用いる事は可能である。
Note that in the above embodiment, N is formed on the pg silicon substrate.
Although the case of forming + type source/drain regions has been described, it is also possible to form P+ type source/drain regions using an N type silicon substrate, and other modifications may be made without departing from the gist of the invention. It is possible to use it.

〔発明の効果〕〔Effect of the invention〕

以上詳細Ka明したように1本発明によれば、LDD構
造の浅いソース・ドレイン領域を形成するための絶縁膜
をゲート電極上Kff度よく形成できるため、ソース・
ドレイン領域は再現性よく形成され′る。従って、特性
にばらつきがなく、歩留の向上したMO8型半導体装置
の製造方法が得られるのでその効果は大きい。
As explained in detail above, according to the present invention, the insulating film for forming the shallow source/drain regions of the LDD structure can be formed on the gate electrode with a high degree of Kff.
The drain region is formed with good reproducibility. Therefore, it is possible to obtain a method for manufacturing an MO8 type semiconductor device with no variation in characteristics and improved yield, which is highly effective.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の一実施例を説明するた
めの工程断面図、第2図(a)〜(d)は従来の半導体
装置の製造方法の一例を説明するための工程断面図であ
る。 1・・・・・・シリコン基板、2・・・・・・フィール
ド酸化膜、3・・・・・・ゲート酸化膜、4・・・・・
・ゲート電極、5・・・・・・8i01膜、6・・・・
・・ソース領域、7・・・・・・ドレイン領域、lO・
・・・・・ポリシリコン膜、11・・・・−8in、膜
、12・・・・・・ソース領域、13・・・・・・ドレ
イン領域、14・・・・・・PSG膜。 躬1図
FIGS. 1(a) to (d) are process cross-sectional views for explaining one embodiment of the present invention, and FIGS. 2(a) to (d) are for explaining an example of a conventional method for manufacturing a semiconductor device. FIG. 1...Silicon substrate, 2...Field oxide film, 3...Gate oxide film, 4...
・Gate electrode, 5...8i01 film, 6...
... Source region, 7... Drain region, lO.
...Polysilicon film, 11...-8 inch, film, 12...Source region, 13...Drain region, 14...PSG film. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板上にゲート酸化膜、ポリシリコン膜
及び絶縁膜とを順次形成する工程と、所定パターン部以
外の前記絶縁膜とポリシリコン膜とを除去する工程と、
前記絶縁膜をマスクとして前記ポリシリコン膜の側面を
エッチングする工程と、全面に逆導電型の不純物をイオ
ン注入し前記ポリシリコン膜のパターン部以外の半導体
基板上に反対導電型領域を形成する工程とを含むことを
特徴とする半導体装置の製造方法。
a step of sequentially forming a gate oxide film, a polysilicon film, and an insulating film on a semiconductor substrate of one conductivity type; a step of removing the insulating film and the polysilicon film other than a predetermined pattern portion;
A step of etching the side surface of the polysilicon film using the insulating film as a mask, and a step of ion-implanting an impurity of the opposite conductivity type to the entire surface to form an opposite conductivity type region on the semiconductor substrate other than the patterned portion of the polysilicon film. A method for manufacturing a semiconductor device, comprising:
JP10081785A 1985-05-13 1985-05-13 Manufacture of semiconductor device Pending JPS61258479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10081785A JPS61258479A (en) 1985-05-13 1985-05-13 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10081785A JPS61258479A (en) 1985-05-13 1985-05-13 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61258479A true JPS61258479A (en) 1986-11-15

Family

ID=14283896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10081785A Pending JPS61258479A (en) 1985-05-13 1985-05-13 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61258479A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172200A (en) * 1990-01-12 1992-12-15 Mitsubishi Denki Kabushiki Kaisha MOS memory device having a LDD structure and a visor-like insulating layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5172200A (en) * 1990-01-12 1992-12-15 Mitsubishi Denki Kabushiki Kaisha MOS memory device having a LDD structure and a visor-like insulating layer

Similar Documents

Publication Publication Date Title
JPH0347577B2 (en)
JPH0846201A (en) Semiconductor element and its preparation
JPS61179567A (en) Manufacture of self-aligning laminated cmos structure
US3514845A (en) Method of making integrated circuits with complementary elements
TW202209442A (en) Silicon carbide MOSFET device and manufacturing method thereof
JP2773221B2 (en) Semiconductor device
US5523605A (en) Semiconductor device and method for forming the same
JPH0370139A (en) Manufacture of semiconductor device
JPS61258479A (en) Manufacture of semiconductor device
US4653173A (en) Method of manufacturing an insulated gate field effect device
JPH06132299A (en) Insulating gate-type transistor and manufacture thereof
JPH05243264A (en) Manufacture of transistor
JPH0481327B2 (en)
JPH0369168A (en) Thin film field effect transistor
JPH06196707A (en) Manufacture of vertical type insulated-gate transistor
JPS63308382A (en) Manufacture of transistor with ldd structure
JPH01155660A (en) Manufacture of semiconductor device
JPS6156448A (en) Manufacture of complementary semiconductor device
JPS6039868A (en) Manufacture of semiconductor device
JPS6136974A (en) Manufacture of mos semiconductor device
JPH04360539A (en) Manufacture of semiconductor device
JPH0290628A (en) Manufacture of semiconductor device
JPH0567623A (en) Manufacture of semiconductor device
JPH0274042A (en) Manufacture of mis transistor
JPH02262340A (en) Semiconductor device and its manufacture