JPS61258416A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPS61258416A
JPS61258416A JP11076486A JP11076486A JPS61258416A JP S61258416 A JPS61258416 A JP S61258416A JP 11076486 A JP11076486 A JP 11076486A JP 11076486 A JP11076486 A JP 11076486A JP S61258416 A JPS61258416 A JP S61258416A
Authority
JP
Japan
Prior art keywords
compound semiconductor
heat treatment
arsine
gas
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11076486A
Other languages
Japanese (ja)
Inventor
Nobutoshi Matsunaga
松永 信敏
Susumu Takahashi
進 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP11076486A priority Critical patent/JPS61258416A/en
Publication of JPS61258416A publication Critical patent/JPS61258416A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To obtain an excellent compound semiconductor device having no defect and the like by a method wherein, after ions are implanted on a compound semiconductor layer, a heat treatment is performed in the prescribed atmosphere using the arsine of the prescribed atmosphere using the arsine of the prescribed partial pressure. CONSTITUTION:Zn is diffused by performing an ion implantation using an SiO2- Al2O3 double layer film as a mask for selective diffusion. The impurity diffused layer formed by said ion implantation finally reaches a layer 4 by performing a heat treatment. Then, another heat treatment is conducted for 30min in the atmosphere of 800 deg.C using hydrogen of 500cc/min as carrier gas and arsine AsH3 gas of 0.2cc/min. As the As in the compound semiconductor such as GaAs and the like is brought into almost equal status with the vapor pressure of the As of the arsine gas by the above-mentioned heat treatment, the As contained in GaAs is isolated or decomposed from a substrate 1 and each semiconductor layer, and the generation of empty holes can be suppressed. The arsine gas is in the best state when it is 1cc/min or less for hydrogen gas of 500cc/min.

Description

【発明の詳細な説明】 本発明はAsを含有する化合物半導体を用いた化合物半
導体装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a compound semiconductor device using a compound semiconductor containing As.

イオン打込み技術は、制御性の極めて高い不純物ドープ
方法として半導体デバイス製作に欠かせない技術である
が、打込みイオンのエネルギーによって半導体結晶に欠
陥が導入されるためその回復のために打込み後の熱処理
が必要である。特に化合物半導体の場合には、一般に構
成元素のうち少くとも一つが蒸気圧が高く、高温の熱処
理によってその元素の空格子点が多量に発生しデバイス
として用いることができなくなる。従来は、Si3N4
,5L02などを保護膜として熱処理を行なっていたが
、保護膜からの不純物の拡散、逆に膜への成分元素の拡
散、あるいは熱膨張係数の違いによりクラックが入るな
どの問題がある。又、熱処理雰囲気に成分元素を加えて
その元素の蒸発を抑え、結晶には特に保護膜を被着せず
に熱処理を行なうなどの提案がある。しかしA s H
3ガスとキャリアガスとの制御方法で結晶表面の変質が
性の良好な化合物半導体装置を製造できる化合物半導体
装置の製造方法を提供することにある。
Ion implantation is an extremely controllable impurity doping method that is indispensable for the production of semiconductor devices, but the energy of the implanted ions introduces defects into the semiconductor crystal, so post-implant heat treatment is required to recover them. is necessary. Particularly in the case of compound semiconductors, at least one of the constituent elements generally has a high vapor pressure, and high-temperature heat treatment generates a large amount of vacancies in that element, making it impossible to use it as a device. Conventionally, Si3N4
, 5L02, etc., as a protective film, but there are problems such as cracks occurring due to diffusion of impurities from the protective film, diffusion of component elements into the film, or differences in thermal expansion coefficients. There are also proposals to add component elements to the heat treatment atmosphere to suppress evaporation of the elements, and to perform heat treatment without specifically covering the crystal with a protective film. But A s H
An object of the present invention is to provide a method for manufacturing a compound semiconductor device, which can manufacture a compound semiconductor device with good quality change on the crystal surface by controlling three gases and a carrier gas.

上記目的を達成するための本発明の構成は、イオン打込
みののちにアルシン(AsH3)ガスが0.04〜0.
2容量パーセントの雰囲気中で800〜850℃の熱処
理を行なって所定の導電領域を設けて化合物半導体装置
を構成することにある。
The configuration of the present invention for achieving the above object is such that after ion implantation, arsine (AsH3) gas is injected in the range of 0.04 to 0.0.
A compound semiconductor device is constructed by performing heat treatment at 800 to 850° C. in an atmosphere of 2% by volume to provide a predetermined conductive region.

本発明は上記構成になるので、GaAsなどのAsを含
有する化合物半導体基板もしくは半導体層にイオン打込
みを行なったのちの上記所定の温度で熱処理を行なうと
A B Hzから分離したAs蒸気圧と結晶層からのA
sの蒸気圧とが相等しくなり、結局、結晶表面からのA
sの蒸発が抑えられる。
Since the present invention has the above configuration, when heat treatment is performed at the above predetermined temperature after ion implantation into a compound semiconductor substrate or semiconductor layer containing As such as GaAs, the As vapor pressure and crystal separated from A B Hz are A from layer
The vapor pressure of s becomes equal to that of A
Evaporation of s is suppressed.

実験によれば、半絶縁性GaAs結晶の電気的特性は8
00℃30分の熱処理に対しては水素キャリアガス中に
0.04%以上、850℃30分の熱処理に対しては0
.1%以上のA B H3ガスを加えれば全く変化しな
いことがわかった。これは明らかにAsの蒸発によりで
きたAs空孔が電気的に悪影響を及ぼしていたものが、
AsH3の導入により抑えられることを意味する。一方
、熱処理した結晶の表面状態はA 8 H3が不足の場
合には表面からのAsの蒸発により(100)面に対し
ては四角形のピットが見られる。またA s H3が過
剰の場合にもG a A s表面には細かい波状のパタ
ーンが見られ微細加工のために不都合である。従来As
H3に適正な分圧範囲があることは知られていなかった
。とくに、この傾向は特に高温での熱処理において著し
い。800℃30分の熱処理に対して特に好ましいA 
s H3濃度は0.04%以上、0.5%以下、825
℃30分では0.07%以上0.35%以下、850℃
30分では0.1%以上0.2%以下である。他の温度
に関しては、上記の値を内挿し目安とすれば十分である
。また、熱処理時間は通常5〜60分行なわれるが、こ
の時間内では上記AsH3濃度が適用される。以下、実
施例を用いて詳細に説明する。
According to experiments, the electrical properties of semi-insulating GaAs crystals are 8
0.04% or more in hydrogen carrier gas for heat treatment at 00°C for 30 minutes, and 0.04% for heat treatment at 850°C for 30 minutes.
.. It was found that there was no change at all if 1% or more of A B H3 gas was added. This is clearly because the As vacancies created by the evaporation of As were having an adverse electrical effect.
This means that it can be suppressed by introducing AsH3. On the other hand, when the surface of the heat-treated crystal is insufficient in A 8 H3, rectangular pits are observed on the (100) plane due to the evaporation of As from the surface. Furthermore, when As H3 is excessive, a fine wavy pattern is observed on the Ga As surface, which is inconvenient for microfabrication. Conventional As
It was not known that H3 had a proper partial pressure range. This tendency is particularly remarkable in heat treatment at high temperatures. Particularly preferred A for heat treatment at 800°C for 30 minutes
s H3 concentration is 0.04% or more and 0.5% or less, 825
0.07% or more and 0.35% or less in 30 minutes at 850°C
In 30 minutes, it is 0.1% or more and 0.2% or less. For other temperatures, it is sufficient to interpolate the above values and use them as a guide. Further, the heat treatment time is usually 5 to 60 minutes, and the above AsH3 concentration is applied within this time. Hereinafter, it will be explained in detail using examples.

(100)面を上面に持つn型G a A s基板(電
子濃度nzlo’ ”/cd)1面上に次の各層をスラ
イドボードを用いた周知の液相エピタキシャル法によっ
て形成する。
The following layers are formed on one surface of an n-type GaAs substrate (electron concentration nzlo'''/cd) having the (100) plane on the upper surface by a well-known liquid phase epitaxial method using a slide board.

第1の半導体層2はn型Ga、xAQAB(X ;0.
25〜0.35)層(nz5 X 10 ” /aJ)
を厚さ0.5〜2.5μmにする。ついで、第2の半導
体層3はn型G a A s層(nzl O” /ad
)を厚さ0.05〜0.15μmにする。ついで、第3
の半導体層4はp型Ga 1− X A Q As (
x ;0.25〜0.35)層(正孔濃度pz5X10
”/cd)を厚さ0.5〜1.5μmにする。ついで第
4の半導体層5はp型Ga 1 + X A Q A8
 (X ;0.25〜0.35)層(p=1 x 10
 ” /al、比抵抗〜600Ω・3)を厚さ0 、5
〜1 、5 μmにする。ついで第5の半導体層6はn
型G a A g(nz2 X 10 ” /a#) 
を厚さ0.2〜0.4μmにする。
The first semiconductor layer 2 is made of n-type Ga, xAQAB(X;0.
25~0.35) layer (nz5 x 10''/aJ)
to a thickness of 0.5 to 2.5 μm. Next, the second semiconductor layer 3 is an n-type GaAs layer (nzlO"/ad
) to a thickness of 0.05 to 0.15 μm. Then, the third
The semiconductor layer 4 is made of p-type Ga 1-
x; 0.25 to 0.35) layer (hole concentration pz5X10
”/cd) to a thickness of 0.5 to 1.5 μm.Then, the fourth semiconductor layer 5 is made of p-type Ga 1 + X A Q A8
(X; 0.25-0.35) layer (p=1 x 10
”/al, specific resistance ~600Ω・3) with thickness 0,5
~1.5 μm. Then, the fifth semiconductor layer 6 is n
Type G a A g (nz2 X 10”/a#)
to a thickness of 0.2 to 0.4 μm.

次いで、厚さ0.2μmのAQ203、および厚さ0.
3μmの5i02の二層の絶縁膜を周知のCVD (C
hsmical Vapor Deposition)
法で形成する。上記二層の絶縁膜あ半導体レーザー素子
の電極取出し部に対応する部分を幅6μmに開孔する0
食刻液は弗化水素と弗化アンモニウム混合液(1: 6
)を5i02用に、そしてリン酸をAQ203用に用い
た。コノSiO2−A Q 203二層膜が選択拡散用
マスクとなる。この開孔を通して周知のイオン打込み技
術によりZnを幅6μmで拡散する。この打込みによる
不純物拡散層は後述の熱処理によって最終的に層4に到
達する。
Next, AQ203 with a thickness of 0.2 μm and a layer with a thickness of 0.2 μm.
A two-layer insulating film of 5i02 with a thickness of 3 μm was deposited by well-known CVD (C
hsmical Vapor Deposition)
form by law. A hole with a width of 6 μm is made in the part of the two-layer insulating film corresponding to the electrode extraction part of the semiconductor laser element.
The etching solution is a mixture of hydrogen fluoride and ammonium fluoride (1:6
) was used for 5i02 and phosphoric acid for AQ203. The Kono SiO2-A Q203 two-layer film serves as a mask for selective diffusion. Through this opening, Zn is diffused in a width of 6 μm using a well-known ion implantation technique. The impurity diffusion layer formed by this implantation finally reaches layer 4 through heat treatment described below.

なお、イオン打込みの条件は80〜100 KeVでド
ープ量を5X1012/aJとし既そ1分間行なう、こ
のとき、約0.15μmの深さまでZnの高濃度領域が
デポジットされる。
The ion implantation conditions are 80 to 100 KeV and a doping amount of 5.times.10@12 /aJ for about 1 minute. At this time, a high concentration region of Zn is deposited to a depth of about 0.15 .mu.m.

次いで、キャリアガスとして水素(H2)が500cc
/min、アルシン(ASH3)ガスが0.2c、c/
minの800℃雰囲気中で上述の化合物半導体層を半
導体結晶基板1を既そ30分間熱処理を行なう。この熱
処理工程により、G a A s等の化合物半導体にお
けるAsは、上記アルシンガスのAsの蒸気圧とほぼ対
等となるため、上記GaAs中のAsは基板1および各
半導体層から遊離もしくは分解して空孔が発生するのを
抑えられることとなる。
Next, 500 cc of hydrogen (H2) was added as a carrier gas.
/min, arsine (ASH3) gas is 0.2c, c/min
The above-described compound semiconductor layer and semiconductor crystal substrate 1 are heat-treated in an atmosphere of 800° C. for 30 minutes. Through this heat treatment step, As in the compound semiconductor such as GaAs becomes almost equal to the vapor pressure of As in the arsine gas, so that As in the GaAs is liberated or decomposed from the substrate 1 and each semiconductor layer and becomes empty. This will prevent the formation of holes.

上記アルシンガスは、水素ガス500cc/ll1n゛
 に対してlcc/minまでが最も良好で、半導体層
に欠陥および歪などが導入されることが無かった。また
、水素ガスを100〜5000cc/n+inまで変化
させ、それぞれアルシンガスの流量を変化させて試作を
試みた処、アルシンガス流量が水素ガスに対して0.0
4〜0.2容量%が最も良好であった。さらに又、雰囲
気温度を750〜900℃まで変えて試作を試みても同
じように適用ができたが800〜850℃が最も良好で
あった。この温度範囲では、AsH3の不足に基づくピ
ットの発生、およびAsH3の過剰に基づく表面の荒れ
なども全く見られなかった。
The arsine gas was best at a rate of up to lcc/min with respect to hydrogen gas of 500cc/ll1n, and no defects or strains were introduced into the semiconductor layer. In addition, when we attempted to produce a prototype by varying the hydrogen gas from 100 to 5000 cc/n+in and changing the arsine gas flow rate, we found that the arsine gas flow rate was 0.0 compared to the hydrogen gas.
4 to 0.2% by volume was the best. Furthermore, even when trial production was attempted by changing the ambient temperature from 750 to 900°C, the same application was achieved, but 800 to 850°C was the best. In this temperature range, neither the occurrence of pits due to a lack of AsH3 nor the surface roughness due to an excess of AsH3 was observed.

この熱処理工程により、上述のイオン打込みによるZn
のデポジット層がおよぞ数μの深さまで拡散しp型頭域
13を形成する。この領域は電流を容易に流し易くする
ためもので第3半導体層4の中途まで拡散層が延びてい
る必要がある。しかし、第2半導体層3に到達して該層
3の活性効率を低下せしめないように予じめ温度、時間
、ドープ量などを調節されであることは勿論である。
Through this heat treatment step, the Zn
The deposit layer diffuses to a depth of approximately several microns to form a p-type head region 13. This region is intended to facilitate the flow of current, and the diffusion layer must extend to the middle of the third semiconductor layer 4. However, it goes without saying that the temperature, time, doping amount, etc. should be adjusted in advance so as not to reach the second semiconductor layer 3 and reduce the activity efficiency of the layer 3.

上記熱処理を行なう際の装置の様子を第2図に示す。キ
ャリアガスとアルシンは予じめ流量比により分圧されて
所定の値に希釈されたのち、炉体21中の反応管22内
に流入される。23は化合物半導体基板、24は上記基
板を保持する治具である。
FIG. 2 shows the state of the apparatus when performing the above heat treatment. The carrier gas and arsine are partially pressured and diluted to a predetermined value by a flow rate ratio in advance, and then flowed into the reaction tube 22 in the furnace body 21. 23 is a compound semiconductor substrate, and 24 is a jig for holding the substrate.

次いで上述の選択拡散用マスクを除去したのち、第1の
半導体層2に達する溝7を形成する。上記p型領域13
上、および上記基板1真面に半導体レーザー用の金属電
極を形成する。上記溝7で隔絶された他方の半導体層6
上にソース、ドレインおよびゲート電極9,11および
1oを形成する。
Next, after removing the above-described selective diffusion mask, a groove 7 reaching the first semiconductor layer 2 is formed. Said p-type region 13
A metal electrode for a semiconductor laser is formed on the top and directly on the substrate 1. The other semiconductor layer 6 separated by the groove 7
Source, drain and gate electrodes 9, 11 and 1o are formed thereon.

所定の配線を行なって、半導体レーザー素子と電界効果
トランジスタを結合させた化合物半導体装置が構成され
る。
By performing predetermined wiring, a compound semiconductor device in which a semiconductor laser element and a field effect transistor are combined is constructed.

この発光素子はドレイン電極11とレーザー素子のn側
電極12の間に4〜5vの電圧を印加することにより、
レーザー発振を行なわしめることができる。発振波長8
300人、しきい電流は約30〜80mAであった。こ
のように、半導体層4.5および6にイオン打込みによ
っても欠陥もしくは歪、外見上の不整合が生じないので
、しきい値電流の低い、良好な電気的特性の化合物半導
体装置が形成できた。
This light emitting element can be manufactured by applying a voltage of 4 to 5 V between the drain electrode 11 and the n-side electrode 12 of the laser element.
Laser oscillation can be performed. Laser wavelength 8
300 people, the threshold current was about 30-80 mA. In this way, no defects, distortions, or apparent mismatches are caused by ion implantation in the semiconductor layers 4.5 and 6, so a compound semiconductor device with low threshold current and good electrical characteristics can be formed. .

本発明の実施例では、レーザー素子の電極用導電層の拡
散層について述べたが、これに限らず、イオン打込み後
にアニールが必要な工程に広く適用できる。また、アニ
ールのキャリアガスとしてもN2の他。にN2.Arな
どの不活性ガスも適用できる。さらにまた、イオン打込
みの元素もZnに限らすSn、Cu、Si、Pなど導電
型あるいは用途により適宜選択されたものであっても適
用できる。さらにまた、基板がGaAsに限らず、In
GaAsP、GaAQAs、GaAsPなど一般にAs
を含んだ化合物半導体に同様の趣旨が適用できることは
当業者であれば容易に推察できるであろう。
In the embodiments of the present invention, a diffusion layer of a conductive layer for an electrode of a laser element has been described, but the present invention is not limited to this and can be widely applied to processes that require annealing after ion implantation. In addition to N2, it is also used as a carrier gas for annealing. N2. Inert gas such as Ar can also be applied. Furthermore, the element for ion implantation is not limited to Zn, but may be appropriately selected depending on the conductivity type or purpose, such as Sn, Cu, Si, or P. Furthermore, the substrate is not limited to GaAs.
Generally As, such as GaAsP, GaAQAs, and GaAsP
Those skilled in the art will easily infer that the same gist can be applied to compound semiconductors containing.

以上詳述したように1本発明は、化合物半導体層にイオ
ン打込みを行なった後、所定の雰囲気中で所定の分圧の
アルシンの熱処理を行なうことにより、欠陥等のない良
好な化合物半導体装置を得ることができるもので工業的
利益大なるものである。
As detailed above, one aspect of the present invention is to implant ions into a compound semiconductor layer and then heat-treat the compound semiconductor layer with arsine at a predetermined partial pressure in a predetermined atmosphere, thereby producing a good compound semiconductor device free of defects. The amount that can be obtained is of great industrial benefit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における化合物半導体装置の
概略断面図、第2図は本発明を実施するために用いた装
置の概略説明図である。 1・・・化合物半導体基板(GaAs) 、2〜6・・
・化合物半導体層、13・・・イオン打込み拡散領域、
8〜12・・・電極、7・・・溝。 ÷2 図
FIG. 1 is a schematic sectional view of a compound semiconductor device according to an embodiment of the present invention, and FIG. 2 is a schematic explanatory diagram of a device used to carry out the present invention. 1... Compound semiconductor substrate (GaAs), 2-6...
- Compound semiconductor layer, 13... ion implantation diffusion region,
8-12...electrode, 7...groove. ÷2 figure

Claims (1)

【特許請求の範囲】[Claims] 1、Asを含有する化合物半導体基板又は化合物半導体
層にイオン打込みにより導電領域を形成する化合物半導
体装置の製造方法において、上記導電領域はイオン打込
みの後に、800〜850℃の0.04〜0.2容量パ
ーセントのアルシンを含んだガス雰囲気中の熱処理によ
り形成されることを特徴とする化合物半導体装置の製造
方法。
1. In a method for manufacturing a compound semiconductor device in which a conductive region is formed by ion implantation in a compound semiconductor substrate or a compound semiconductor layer containing As, the conductive region is heated at 800 to 850° C. by 0.04 to 0.0° C. after ion implantation. 1. A method for manufacturing a compound semiconductor device, characterized in that the device is formed by heat treatment in a gas atmosphere containing 2% by volume of arsine.
JP11076486A 1986-05-16 1986-05-16 Manufacture of compound semiconductor device Pending JPS61258416A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11076486A JPS61258416A (en) 1986-05-16 1986-05-16 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11076486A JPS61258416A (en) 1986-05-16 1986-05-16 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS61258416A true JPS61258416A (en) 1986-11-15

Family

ID=14543978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11076486A Pending JPS61258416A (en) 1986-05-16 1986-05-16 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS61258416A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63160327A (en) * 1986-12-24 1988-07-04 Mitsubishi Monsanto Chem Co Annealing system for semiconductor wafer

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678120A (en) * 1979-11-30 1981-06-26 Fujitsu Ltd Manufacture of compound semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5678120A (en) * 1979-11-30 1981-06-26 Fujitsu Ltd Manufacture of compound semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63160327A (en) * 1986-12-24 1988-07-04 Mitsubishi Monsanto Chem Co Annealing system for semiconductor wafer

Similar Documents

Publication Publication Date Title
JP3330218B2 (en) Semiconductor device manufacturing method and semiconductor device
US5637528A (en) Semiconductor device manufacturing method including dry oxidation
JP3244980B2 (en) Method for manufacturing semiconductor device
JP5057903B2 (en) Method for manufacturing silicon carbide semiconductor device
JPH06112146A (en) Manufacture of diffusion type silicon element substrate
JPS61258416A (en) Manufacture of compound semiconductor device
JP2004039946A (en) Manufacturing method of semiconductor device
US3614829A (en) Method of forming high stability self-registered field effect transistors
JPH0817845A (en) Semiconductor device and manufacture thereof
JPH04245419A (en) Manufacture of semiconductor substrate
US4194927A (en) Selective thermal oxidation of As-containing compound semiconductor regions
KR100274351B1 (en) Method of gate oxide film in a semiconductor device
KR20000057975A (en) Method for manufacturing thin gate silicon oxide layer
JPH07221092A (en) Manufacture of semiconductor device
JP6509455B1 (en) Method of manufacturing III-V compound semiconductor device
JPH03235326A (en) Manufacture of semiconductor device
JPS62124736A (en) Silicon thin-film and manufacture thereof
JP2830386B2 (en) Method for producing compound semiconductor crystal having insulating layer on surface
JP2853226B2 (en) Semiconductor device and manufacturing method thereof
KR0167239B1 (en) Method of isolation film on a semiconductor device
JPS61256672A (en) Manufacture of semiconductor device
KR100472855B1 (en) Polycrystalline silicon thin film manufacturing method of semiconductor device
JPH02102520A (en) Vapor epitaxial deposition
KR960002105B1 (en) Making method of semiconductor device with pn junction
JPS63229812A (en) Semiconductor wafer