JPS61258023A - Production of pitch carbon yarn - Google Patents

Production of pitch carbon yarn

Info

Publication number
JPS61258023A
JPS61258023A JP9697485A JP9697485A JPS61258023A JP S61258023 A JPS61258023 A JP S61258023A JP 9697485 A JP9697485 A JP 9697485A JP 9697485 A JP9697485 A JP 9697485A JP S61258023 A JPS61258023 A JP S61258023A
Authority
JP
Japan
Prior art keywords
pitch
spinning
based carbon
space
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9697485A
Other languages
Japanese (ja)
Inventor
Ryuichi Hara
隆一 原
Masami Kagizaki
鍵崎 正己
Shigeki Tomono
茂樹 友納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kasei Corp
Original Assignee
Mitsubishi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kasei Corp filed Critical Mitsubishi Kasei Corp
Priority to JP9697485A priority Critical patent/JPS61258023A/en
Priority to DE8585107676T priority patent/DE3584693D1/en
Priority to EP85107676A priority patent/EP0166388B1/en
Publication of JPS61258023A publication Critical patent/JPS61258023A/en
Priority to US07/039,679 priority patent/US4818612A/en
Priority to US07/245,564 priority patent/US4923648A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Fibers (AREA)

Abstract

PURPOSE:To obtain pitch carbon yarn suppressing occurrence of wedge-shaped cracks extending in the fiber axis direction, by setting both packed layer parts and space parts right above spinning nozzles, passing spinning pitch through the packed part, the space part and the spinning nozzles in this order and spinning the spinning pitch. CONSTITUTION:Spinning pitch is passed through the packed layer 4, fed through the space parts 5 to the spinning nozzles 2 and spun. A fiber structure not causing cracks is obtained by setting the packed layers 4 in the feed holes 6 of spinnerets, variability of flow rate of pitch based on the difference in each of the feed holes 6 having the packed layer 4 is eliminated by the space parts 5 and the unevenness of fineness is not produced. The size of the space parts 5 is set in a range of 0.05-15sec, preferably 0.1-5sec by measuring retention time of the pitch.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はピッチ系炭素繊維の製造方法に関するものであ
り、より詳しくは、改善さf′L九強度を発現するピッ
チ系炭素繊維を安定して製造する方法に関するものであ
る。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing pitch-based carbon fiber, and more specifically, to a method for producing pitch-based carbon fiber that exhibits improved f'L9 strength. The present invention relates to a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

炭素繊維は、比強度、比弾性率が高い材料で。 Carbon fiber is a material with high specific strength and specific modulus.

高性能複合材料のフィラー繊維として最も注目されてお
り、中でもピッチ系炭素繊維は原料カ1潤沢である、炭
化工程の歩留が大きい、繊維の弾性率が高い、等ポリア
クリロニトリル系炭素繊維に比べて様々な利点を持って
いる。
Pitch-based carbon fibers are attracting the most attention as filler fibers for high-performance composite materials, and among them, pitch-based carbon fibers have an abundance of raw materials, a high yield in the carbonization process, and a high fiber elastic modulus compared to polyacrylonitrile-based carbon fibers. It has various advantages.

ところで、このような利点を有するピッチ系炭素繊維の
原料である紡糸ピッチは種々検討されている。
Incidentally, various types of spinning pitch, which is a raw material for pitch-based carbon fibers having such advantages, have been studied.

すなわち、従来紡糸ピッチとして使用していた等方質ピ
ッチの代りに、炭素質原料を加熱処理して、異方性が発
達し、配向しやすい分子種が形成されたピッチを使用す
ることにより、高特性のピッチ系炭素繊維が得ら“れる
ことが報告(Ir!公昭ダターr63u号)されて以来
、配向性の曳好な紡糸ピッチの調製について種々検討さ
れてき九。
In other words, instead of the isotropic pitch conventionally used as spinning pitch, by heat-treating the carbonaceous raw material and using pitch in which anisotropy develops and molecular species that are easily oriented are formed, Since it was reported that pitch-based carbon fibers with high properties could be obtained (Ir! Kosho Datar No. 63U), various studies have been conducted on the preparation of spinning pitch with good orientation.

周知の様に1重質油、タール、ピッチ等の炭素質原@を
J j O−j 00℃に加熱すると、それら物質中に
粒径が数ミクロンから数百ミクロンの、偏光下に光学的
異方性を示す小球体が生成する。そして、さらに加熱す
るとこれらの小球体は成長、合体し、ついには全体が光
学的異方性を示す状態となる。この異方性組織は炭素質
原料の熱重縮合反応により生成した平面状高分子芳香族
炭化水素が層状に積み重なり、配向しえもので、黒鉛結
晶構造の前駆体とみなされている。
As is well known, when carbonaceous raw materials such as heavy oil, tar, and pitch are heated to 00°C, particles with particle sizes ranging from several microns to several hundred microns are optically visible under polarized light. Small spheres exhibiting anisotropy are produced. When the material is further heated, these small spheres grow and coalesce, and finally the entire material exhibits optical anisotropy. This anisotropic structure is composed of layers of planar polymeric aromatic hydrocarbons produced by thermal polycondensation reactions of carbonaceous raw materials and is oriented, and is considered to be a precursor of graphite crystal structure.

この様な異方性組織を含む熱処理物は、一般的にはメソ
フェーズピッチと呼称されている。
A heat-treated product containing such an anisotropic structure is generally called mesophase pitch.

かかるメソフェーズピッチを紡糸ピッチとして使用する
方法としては、例えば1石油系ピッチを静置条件下で約
350〜≠jO℃で加熱処理し1go〜り0重量−のメ
ソフェーズを含有するピッチを得て、これを紡糸ピッチ
とする方法″が提案されている(4I開昭参タ一/P/
コア号)。
As a method for using such mesophase pitch as a spinning pitch, for example, 1 petroleum-based pitch is heat-treated at about 350 to ≠jO ℃ under stationary conditions to obtain a pitch containing 1 to 0 weight of mesophase. A method of using this as the spinning pitch has been proposed (4I Kaisho Santaichi/P/
core issue).

しかし、かかる方法により等方質の炭素質原料をメン化
するには長時間を要するので、予め炭素質原料を十分量
の溶媒で処理してその不溶分を得、それをコJo−14
00℃の温度て10分以下の短時間加熱処理して、高度
に配向され、−ズビツチを形成し、これを紡糸ピッチと
する方法が提案されている(特開昭5弘−IAD係2係
号7号 その他、高特性炭素繊維製造用の配向性のよい紡糸ピッ
チとしては、例えば、コールタールピッチ管テトラヒド
ロキノリン存在下に水添処理し、次いで、約v−50℃
で短時間加熱処理して得られる光学的に等方性でtoo
℃以上に加熱することによって異方性に変わる性質を有
するピッチ、所謂、プリメソフェーズピッチ(1!!!
開昭11−714121号)、或いは、メツフェーズピ
ッチをBirch還元法等により水素化処理して得らハ
る光学的に等方性で外力を加えるとその方向への配向性
を示すピッチ、所謂、ドーマントメソフェーズ(q#開
昭zy−toottt号)等が提案されている。
However, since it takes a long time to mentate an isotropic carbonaceous raw material by such a method, the carbonaceous raw material is treated with a sufficient amount of solvent in advance to obtain its insoluble matter, and then the carbonaceous raw material is treated with a sufficient amount of solvent.
A method has been proposed in which a heating treatment is carried out for a short time of 10 minutes or less at a temperature of 00°C to form a highly oriented -zubitch, and this is used as the spinning pitch (Japanese Patent Application Laid-Open No. 5-1989-IAD Section 2). No. 7 and other spinning pitches with good orientation for producing high-performance carbon fibers include, for example, coal tar pitch pipe hydrogenated in the presence of tetrahydroquinoline, and then approximately v-50°C.
Optically isotropic and too
A pitch that has the property of becoming anisotropic when heated above ℃, the so-called pre-mesophase pitch (1!!!
1983-714121), or a pitch obtained by hydrogenating metsuphase pitch by Birch reduction method etc., which is optically isotropic and exhibits orientation in that direction when external force is applied, so-called , dormant mesophase (q#kaishozy-toottt issue), etc. have been proposed.

この様な紡糸ピッチをノズルを通して溶融紡糸すること
によりピッチ繊維を得ること力1できる。次いで、この
ピッチ繊維を不融化、炭化。
Pitch fibers can be obtained by melt spinning such spinning pitch through a nozzle. Next, this pitch fiber is made infusible and carbonized.

さらに場合により黒鉛化する1JVcよってピッチ系の
高特性炭素繊維を得る事ができる。
Furthermore, pitch-based high-performance carbon fibers can be obtained by using 1JVc, which is optionally graphitized.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の方法により、上記の様な配向性のよい紡糸ピッチ
を用いて紡糸した場合、得られるピッチ繊維中の平面状
高分子炭化水素の積層構造が繊維断面内でラジアル配向
となりやすく、七の結果、その後の不融化処珂、炭化処
理の際に炭化収縮に起因する引張応力が繊維断面の周方
向に作用する六め、得られる炭素繊維の断面には繊維軸
方向に伸びるくさび状のクランクか発生し、炭素繊維の
商品的価値を損なう欠点か6つ九。
When spinning using a spinning pitch with good orientation as described above by the conventional method, the layered structure of planar polymeric hydrocarbons in the resulting pitch fibers tends to be radially oriented within the fiber cross section, resulting in During the subsequent infusibility treatment and carbonization, tensile stress due to carbonization shrinkage acts in the circumferential direction of the fiber cross section.6.The cross section of the resulting carbon fiber has a wedge-shaped crank extending in the fiber axis direction. There are six or nine drawbacks that occur and impair the commercial value of carbon fiber.

〔問題点を解決するための手段〕[Means for solving problems]

本発明名等は上記問題点に留意し、鋭意検討mに井許芒
女層を通過させることにより、上記欠点が克服されるこ
とを見い出し、この知見に基づいて本発明に到達した。
The present invention has been developed by paying attention to the above-mentioned problems, and through intensive study, it has been discovered that the above-mentioned drawbacks can be overcome by passing through the Igakuman layer, and based on this knowledge, the present invention has been achieved.

すなわち、本発明の目的は、多ホール紡糸において、各
ホールより均質な繊維径を維持しながら紡糸し、かつ繊
維断面構造が実質的にラジアル配向ではなく、繊維軸方
向に伸びるくさび状のクラックの発生か抑えられ六ピッ
チ系炭素繊維を安定的に製造することにある。
That is, an object of the present invention is to perform multi-hole spinning while maintaining a homogeneous fiber diameter from each hole, and to prevent the fiber cross-sectional structure from being substantially radially oriented, but with wedge-shaped cracks extending in the fiber axial direction. The objective is to stably produce six-pitch carbon fibers with suppressed generation.

すなわち、この目的は紡糸ピッチを多ホール紡糸ノズル
から溶融紡糸し、不融化処理を行ない1次いで炭化処理
tL、さらに必要に応じて黒鉛化処理することによりピ
ッチ系炭素繊維を製造する方法において、該紡糸ノズル
の直夷部に充填層と空間部を設け、該紡糸ピッチを該充
填層、空間部および該紡糸ノズルの順に流通させ、紡糸
することにより容易に達成される。
That is, this purpose is to produce a pitch-based carbon fiber by melt-spinning spinning pitch from a multi-hole spinning nozzle, performing infusibility treatment, first carbonization treatment tL, and further graphitization treatment if necessary. This can be easily achieved by providing a filled layer and a space directly in the spinning nozzle, and passing the spinning pitch through the filled layer, the space, and the spinning nozzle in this order to perform spinning.

以下、本発明の詳細な説明するに1本発明の紡糸ピッチ
としては配向しやすい分子種か形成されており、光学的
に異方性のピッチを与えるものであれば特に制限はなく
、前述のような従来の種々のものを使用することができ
る。
Hereinafter, the present invention will be described in detail.1 The spinning pitch of the present invention is not particularly limited as long as it forms a molecular species that is easily oriented and provides an optically anisotropic pitch. A variety of conventional ones can be used, such as.

しかし、それほど高度の比強度及び比弾性率妙I要求さ
れない場合は、アモルファスピッチを用いることもでき
る。、これらの紡糸ピッチを得る念めの炭素質原料とし
ては1例えば、石炭系のコールタール、コールタールピ
ッf、 石炭R化物1石油系の重質油、タール、ピッチ
等が挙げられる。これらの炭素質原料には通常フリーカ
ーボン、未溶解石炭、灰分などの不純物が含iれている
が、これらの不純物は濾過、遠心分離、あるいは溶剤を
使用する静置沈降分離などの周知の方法で予め除去して
2く頓が望ましい。
However, if a high degree of specific strength and specific modulus of elasticity is not required, amorphous pitch can also be used. Examples of carbonaceous raw materials to obtain these spinning pitches include coal-based coal tar, coal tarp, coal R compounds, petroleum-based heavy oil, tar, pitch, and the like. These carbonaceous feedstocks usually contain impurities such as free carbon, undissolved coal, and ash, and these impurities can be removed by well-known methods such as filtration, centrifugation, or static sedimentation using solvents. It is preferable to remove it in advance and put it in two containers.

また、前記炭素質原料を、例えば、加熱処理し念後特定
溶剤で可溶分を抽出するといつ走力法、あるいは水素供
与性溶剤、水素ガスの存在下に水添処理するといった方
法で予備処理を行なっておいても良い。
In addition, the carbonaceous raw material may be pretreated by, for example, heat-treated and then extracted with a specific solvent, followed by a running method, or by hydrogenation treatment in the presence of a hydrogen-donating solvent or hydrogen gas. You may also do this in advance.

本発明においては、前記炭素5R原料あるいは予備処理
を行なった炭素質原料を、通常JjO〜200℃、好ま
しくはJIO〜弘jaCで、2分〜!O時間、好ましく
はj分〜!時間、窒素、アルゴン等の不活性ガス雰囲気
下、或いは、吹き込み下に加熱処理することによって得
られる4′OS以上、特に70%以上の光学的異方性組
織を含むピッチが紡糸ピッチとして好適に使用できる。
In the present invention, the carbon 5R raw material or the pretreated carbonaceous raw material is usually heated at JJO to 200°C, preferably JIO to HirojaC, for 2 minutes or more! O hours, preferably j minutes~! Pitch containing an optically anisotropic structure of 4'OS or more, especially 70% or more, obtained by heat treatment under an inert gas atmosphere such as nitrogen or argon, or while blowing, is suitable as a spinning pitch. Can be used.

本発明でいう紡糸ピッチの光学的異方性組織割合は、常
温下偏光顕微鏡での紡糸ピッチ試料中の光学的異方性を
示す部分の面積割合として求めた値である。
The optically anisotropic texture ratio of a spinning pitch as used in the present invention is a value determined as the area ratio of a portion exhibiting optical anisotropy in a spinning pitch sample under a polarizing microscope at room temperature.

具体的には、例えばピッチ試料を数四角に粉砕したもの
を常法に従って直径約2cllIの樹脂の表面のほぼ全
面に試料片t−埋込み、表面を研磨後、表面全体tくま
なく偏光顕微鏡(toO倍率)下で観察し、試料の全表
面積に占める光学的異方性部分の面積の割合上測定する
事によって求める。
Specifically, for example, a pitch sample is ground into several squares, and a sample piece is embedded into almost the entire surface of a resin with a diameter of about 2 cllI according to a conventional method, and after polishing the surface, the entire surface is examined using a polarizing microscope ( It is determined by observing the sample under a magnification of 0 to O and measuring the ratio of the area of the optically anisotropic portion to the total surface area of the sample.

本発明においては、上記紡糸ピッチを充填I層を通過さ
せた後、空間部を経て紡糸ノズルへ供給しWJ糸する。
In the present invention, after the spinning pitch passes through the filling I layer, it is supplied to the spinning nozzle through the space to form a WJ yarn.

供給し紡糸する。Supply and spin.

第1図〜第μ図は本発明の充填層を設けた紡糸装置の紡
糸ノズル部付近の拡大図を示したものである。lは紡糸
口金、コは紡糸ノズル、3は充填層を支持する六めの金
網*”Fi充填層2よびよは空間部をそれぞれ示す。
FIGS. 1 to .mu. are enlarged views of the vicinity of the spinning nozzle of a spinning apparatus provided with a packed bed according to the present invention. 1 is a spinneret, C is a spinning nozzle, and 3 is a sixth wire mesh supporting the packed layer *"Fi packed layer 2 and a space, respectively.

第1図に示されるように充填層≠は、紡糸ノズルコとの
間に空間部5を設けて設置される。
As shown in FIG. 1, the filled bed≠ is installed with a space 5 provided between it and the spinning nozzle.

こζで充填層とは、紡糸ピッチ流通路内であって、紡糸
ノズルより上流部に配設され穴ものであり、溶融状態の
紡糸ピッチが該層を通過することにより、紡糸ピッチの
流れカJ細分化され、かつ該層を通過する間に紡糸ピッ
チのメソフェーズの積層状態が乱され、その結果実質的
にうる充t!s材としては、具体的にはJjO〜弘00
℃程度の温度に充分耐えられるような、ステンレス鋼、
銅、アルミニ9ム等の金[@料、ま斥はセラミック、ガ
ラス、砂、黒鉛等の無機質剃料の微細な破砕粉、微細粒
、微細粉の焼結体、あるいは上記材料の細繊維の不織布
もしくは織布更には、実質的に真球状の微小球体等であ
っ−t”、紡糸ピッチが通過する間に十分メソフェーズ
の積層状態を乱す力含与えるような形状のものが選ばれ
る。例えば、粉粒状の充填材を使用する場合には、珊瑚
樹(第5図参照)あるいはコンペイトウ状等の鋭利な突
起を有する微粒状(第6図参照)のものが好ましい。ま
た、球状充填材を使用する場合には、真球状のガラスピ
ーズ等を用いるのが好ましい。粉粒状あるいは球状の場
合の粒径はlOメツシュの篩は通過するが、3コ!メツ
シユの篩は通過しないような粒径、好ましくはSOメツ
シュの篩は通過するが100メツシユの篩を通過しない
ような粒径のものが用いられる。好ましい充填材の具体
例としては、メタルパウダーとよばれる珊瑚樹様の形状
をした金属粉、クラスと−ズ、コンペイトウ状の鋭利な
突起を有するセラミック微粒子。
Here, the packed bed is a hole provided in the spinning pitch flow path upstream of the spinning nozzle, and when the molten spinning pitch passes through the layer, the flow pattern of the spinning pitch is increased. During the J subdivision and passing through the layer, the stacking state of the mesophase of the spinning pitch is disturbed, and as a result, the mesophase is substantially saturated! Specifically, the S material is JjO~Hiro00.
Stainless steel that can withstand temperatures around ℃,
Copper, aluminum, etc. [@materials, materials] fine crushed powder, fine grains, sintered bodies of fine powder of inorganic razors such as ceramic, glass, sand, graphite, or fine fibers of the above materials. A nonwoven fabric or a woven fabric, or a substantially spherical microsphere or the like, is selected to have a shape that can sufficiently disturb the laminated state of the mesophase during the passage of the spinning pitch. For example, If a granular filler is used, it is preferable to use a coral tree (see Figure 5) or a fine granule with sharp protrusions (see Figure 6), such as a coral tree (see Figure 6).Also, use a spherical filler. In this case, it is preferable to use true spherical glass peas, etc. If the particles are powder or spherical, the particle size is such that they pass through a 10 mesh sieve but do not pass through a 3 mesh sieve. Preferably, the particle size used is such that it passes through an SO mesh sieve but does not pass through a 100 mesh sieve.Specific examples of preferred fillers include metal powder shaped like a coral tree called metal powder; Ceramic microparticles with sharp protrusions in the shape of a class.

及びステンレス製の鋭利な切り欠きを有する微細金網、
ガラスピーズ等が挙げられる。
and stainless steel fine wire mesh with sharp notches,
Examples include glass peas.

充填層≠の厚さは、充填材の種類や形状によって異なる
が、厚い方が好ましい方向であり。
The thickness of the filling layer≠ varies depending on the type and shape of the filling material, but the thicker the better.

1+粒度も細かい方が好ましい。しかし、あまり厚くす
ると紡糸ピッチの流通抵抗が大きくなり、ま念あまり薄
くすると所期の効果が得られないので1通常3〜300
1111.好ましくはj〜200■の範囲から選定され
る。
1+ It is preferable that the particle size is also fine. However, if it is too thick, the flow resistance of the spinning pitch will increase, and if it is made too thin, the desired effect will not be obtained.
1111. It is preferably selected from the range of j to 200 cm.

充填層弘と紡糸ノズルコとの間に空間部jを設置するこ
とは、繊度ムラ(各紡糸ノズル2から得られるピッチ繊
維の直径の分布)を小さくして糸切れを防止する上で重
要である。即ち、充填層参を紡糸口金の導入孔を内に設
けることにより繊維構造をクラックの生じない好ましい
方向に制御できるが、多ホールの紡糸口金の場合は、充
填層≠が紡糸ノズルコの入口直前にあると、充填層の構
成の各導入孔毎の差が各紡糸ノズルから吐出されるピッ
チの流量の変動の原因となり易く繊度ムラの原因となる
。ところが、充填層≠と紡糸ノズルλとの間に空間部j
を設けることにより、前記した繊度ムラは大幅に改善さ
れる。
Providing the space j between the packed bed and the spinning nozzle is important in reducing uneven fineness (distribution of diameters of pitch fibers obtained from each spinning nozzle 2) and preventing yarn breakage. . In other words, the fiber structure can be controlled in a preferable direction without cracks by providing the inlet hole of the spinneret in the packed bed, but in the case of a multi-hole spinneret, the packed layer is located just before the inlet of the spinning nozzle. If so, the difference in the structure of the packed bed for each introduction hole tends to cause fluctuations in the pitch flow rate discharged from each spinning nozzle, resulting in uneven fineness. However, there is a space j between the packed bed≠ and the spinning nozzle λ.
By providing this, the above-mentioned fineness unevenness can be significantly improved.

空間部jの大きさは、紡糸ピッチが充填層グを通過後紡
糸ノズルコに達する迄の所要時間即ち充填層弘末端から
紡糸ノズル2入口上端迄の内容積を紡糸ピッチの吐出量
で除し念値で規定され、該時間は0.0!〜/j秒、好
ましくはo、i−よ秒の範囲から選定される。換言すれ
ば、空間部でのピッチの滞留時間がO,Oj〜15秒と
なるようにノズルの構造を設定する必要がある。
The size of the space j is calculated by dividing the time required for the spinning pitch to reach the spinning nozzle after passing through the packed bed, that is, the internal volume from the end of the packed bed to the upper end of the inlet of the spinning nozzle 2, by the discharge rate of the spinning pitch. The time is 0.0! It is selected from the range of ~/j seconds, preferably o, i-seconds. In other words, it is necessary to set the structure of the nozzle so that the pitch residence time in the space is O, Oj ~ 15 seconds.

紡糸ノズルとしては特に限定されないが、例えば孔径が
o、os〜OJ燗、長さが0.0/Nj閣の範囲の紡糸
ノズルが使用される。
Although the spinning nozzle is not particularly limited, for example, a spinning nozzle having a hole diameter in the range of o, os to OJ and a length in the range of 0.0/Nj is used.

なお、紡糸ノズルとは紡糸ピッチが紡糸される直前に流
通し、かつ糸条径を規定する細孔部を意味し、その孔径
とは紡糸ピッチを吐出する細孔の径を意味する。本発明
で用いられる紡糸ノズルは例えば上記範囲の条件を満足
する直管状のもの、紡糸ノズルの中間部が拡大された形
状のもの、あるいは紡糸ノズル下部が拡大された形状の
もの々どのいずれの形状の紡糸ノズルも使用できる。
Note that the term "spinning nozzle" refers to a pore portion through which the spinning pitch flows just before spinning and that defines the yarn diameter, and the pore diameter refers to the diameter of the pore through which the spinning pitch is discharged. The spinning nozzle used in the present invention may have any shape, such as a straight tube that satisfies the conditions in the above range, a spinning nozzle with an enlarged middle part, or an enlarged lower part of the spinning nozzle. A spinning nozzle can also be used.

また、紡糸ピッチは充填層弘を経て紡糸ノズル2より吐
出され紡糸されるが、充填層弘を設けることにより紡糸
ピッチの吐出に際し、紡糸ピッチに通常25鮨・G以上
、好ましくは!り・G以上、更に好ましくは10〜・G
以上の圧力を加えて紡糸を行なうこと方できる。
In addition, the spinning pitch is discharged from the spinning nozzle 2 through a packed bed for spinning, but by providing the packed bed, the spinning pitch is usually 25 G or more, preferably 25 G or more! ri・G or more, more preferably 10~・G
Spinning can be performed by applying the above pressure.

〔作 用〕[For production]

本発明においては、溶融状態の紡糸ピッチが充填層弘を
通過するごとにより、紡糸ピッチの流れを細分化し、か
つ充填層参に訃いてメンフェーズの積層状態が乱され、
繊維断面構造が実質的にラジアル配向でないピッチ繊維
ひいてはピッチ系炭素繊維が得られるものと考えられる
In the present invention, each time the molten spinning pitch passes through the packed bed, the flow of the spinning pitch is divided into smaller pieces, and the stacked state of the menphase is disturbed by passing through the packed bed.
It is thought that pitch fibers and pitch-based carbon fibers whose fiber cross-sectional structure is not substantially radially oriented can be obtained.

〔本発明の効果〕[Effects of the present invention]

したがって、充填層≠により紡糸ピッチの流動性が改善
されるとともに、紡糸時における上記範囲の加圧操作に
より、紡糸温度で紡□糸ビツチから発生するガスあるい
は気泡の生成が抑制される六め、紡糸安定性が向上し、
改善されえ特性を有するピッチ繊維を単孔間に繊度ムラ
なく均質な繊維として長時間安定して製造できる。
Therefore, the fluidity of the spinning pitch is improved by the packed bed≠, and the production of gas or bubbles generated from the spinning bit at the spinning temperature is suppressed by the pressurizing operation in the above range during spinning. Improved spinning stability,
Pitch fibers with improved properties can be stably produced over a long period of time as homogeneous fibers with no uneven fineness between single holes.

かくして、得られたピッチ繊維を不融化、炭化必要に応
じて黒鉛化することにより、ランダム配向あるいはオニ
オンライク配向の繊維断面構造を有し、繊維軸方向に伸
びるくさび状のクラックのない、高特性のピッチ系炭素
繊維を得ることができる。
By making the pitch fibers thus obtained infusible, carbonizing them, and graphitizing them if necessary, they have a fiber cross-sectional structure with random orientation or onion-like orientation, and high properties without wedge-shaped cracks extending in the fiber axis direction. pitch-based carbon fiber can be obtained.

ここでオニオンライク配向とは、繊維断面積の主たる部
分が同心円状の分子配同性金有するものであり、一部%
特に外周部か後続の炭化あるいは黒鉛化処理によりクラ
ックを生じない程度のラジアル配向しているものも含む
。まfc。
Here, onion-like orientation is one in which the main part of the fiber cross-sectional area has concentric molecular isotropic gold, and a small percentage
In particular, it also includes those in which the outer peripheral portion is radially oriented to such an extent that no cracks occur during subsequent carbonization or graphitization treatment. Mafc.

これらの繊維断面構造は偏光顕微鏡で測定したものであ
る。
These fiber cross-sectional structures were measured using a polarizing microscope.

〔実施例〕〔Example〕

以下実施例を挙げて本発明を具体的に説明する。 The present invention will be specifically explained below with reference to Examples.

実施例1 温度≠よ0℃、水素圧力ijo〜・Gに維持され九オー
トクレーブに、コールタールピッチと水添された芳香族
油を重量比//Iの割合で連続で濾過して固形物をとり
除いたP液を減圧下蒸留して残渣ピッチを得た。この残
渣ピッチを4430℃で窒素ガスバブリング下/≠O分
加熱処理した。得られ九メソフェーズピッチの異方性割
合はioo%であった。
Example 1 Coal tar pitch and hydrogenated aromatic oil were continuously filtered at a weight ratio of //I to remove solids in an autoclave maintained at a temperature of 0°C and a hydrogen pressure of ~.G. The removed P liquid was distilled under reduced pressure to obtain residual pitch. This residual pitch was heat-treated at 4430° C. under nitrogen gas bubbling for ≠0 minutes. The anisotropy ratio of the nine mesophase pitches obtained was ioo%.

次に、第1図に示すような構造の紡糸口金l(紡糸ノメ
ルコの孔径0.Jms、長さ0.4m、ホール数lコ0
)金用い、その各導入孔乙に200メツシユのステンレ
ス製金網3を空間部jにおけるピッチの滞留時間が2秒
となる位置に敷き。
Next, a spinneret 1 having a structure as shown in FIG.
) A 200-mesh stainless steel wire mesh 3 was placed in each of the introduction holes B at a position where the residence time of the pitch in the space J was 2 seconds.

更にその上部に6o−iooメツシュの大きさに篩分け
された珊瑚a4様の形をしたステンレス製のメタルパウ
ダー弘を約rImの厚さに充填した。このノズルに約3
〜・Gの圧力下で通水試触をすることにより各紡糸ノズ
ルλの通過水量を測定しその流量の変動係数を下記の式
を用いて計算し念所り、コ慢であつ六。
Furthermore, stainless steel metal powder in the shape of coral A4, which had been sieved to a size of 6o-ioo mesh, was filled on the top to a thickness of about rIm. This nozzle has about 3
The amount of water passing through each spinning nozzle λ was measured by testing the flow of water under a pressure of ~.

変動係数=、f】ヱ7;75−− x=個々の測定値 i=個々の測定値の算術平均値 n;サンプル数 次いで、この紡糸口金を用いて前記メンフェーズピッチ
を3ノ!〜3t0℃の温度範囲で溶融紡糸した。何れの
場合も最適の温度に2いて糸の巻取り速度を変えること
により糸径lOpm迄のピッチ繊維を長時間にわたり繊
度ムラなく安定的に得ることができた。
Coefficient of variation =, f]ヱ7;75-- x = Individual measured value i = Arithmetic mean value of individual measured values n; Number of samples Then, using this spinneret, the above-mentioned menphase pitch was prepared by 3 times. Melt spinning was carried out in the temperature range of ~3t0°C. In either case, pitch fibers with a yarn diameter of up to 1 Opm could be stably obtained over a long period of time without uneven fineness by keeping the temperature at the optimum temperature and changing the winding speed of the yarn.

336℃の条件で溶融紡糸して得られたピッチ繊維を空
気中310℃で不融化し、さらにアルゴン雰囲気下/e
θθ℃で炭化して炭素繊維を得意。得られ念炭素繊維の
物性を測定した。結果上以下に示す。なお、*印の変動
係数は、光学顕微鏡を用いて測定し次単糸lJO本の直
径値を前記の式を用いて求めた値であり、他の物性値は
、単糸30本の測定値の平均である。
Pitch fibers obtained by melt spinning at 336°C are infusible at 310°C in air, and then heated under an argon atmosphere/e.
Specializes in carbon fiber by carbonizing at θθ℃. The physical properties of the obtained carbon fiber were measured. The results are shown below. The coefficient of variation marked with * is the value obtained by measuring the diameter of 1JO single yarns using an optical microscope using the above formula, and the other physical property values are the measured values of 30 single yarns. is the average of

平均繊維径       タ、θμ 平均引張り強Ill’     306綽/+!j平均
引張り弾性率    2弘ton/mj* 繊維径の変動係数    !、2チ 比較例を 比較の九めに、実施例1に用いたと同じ紡糸口金に金網
を敷かないこと以外は実施例1と全く同様にしてメタル
パウダーを充填した。即ち、紡糸口金の構成は第1図に
おいて金網3が取除かれ、空間部にもメタルパウダーが
充填された状態となる。この紡糸口金を実施例1と同様
の通水実験を実施した所、流量の変動係数は33.5係
であった。
Average fiber diameter ta, θμ Average tensile strength Ill' 306/+! j Average tensile modulus 2 ton/mj* Coefficient of variation of fiber diameter! In the ninth comparative example, metal powder was filled in the same manner as in Example 1, except that the same spinneret used in Example 1 was not covered with a wire mesh. That is, the configuration of the spinneret is as shown in FIG. 1 with the wire mesh 3 removed and the space also filled with metal powder. When this spinneret was subjected to the same water flow experiment as in Example 1, the coefficient of variation of the flow rate was 33.5.

次にこの紡糸口金を用いて、実施例1で用いたと同じピ
ッチを実施例1と同一の条件で紡糸し、更に炭化処理を
行なつ穴。得らt′L六炭素繊量の少ない紡糸ノズルに
ついては、紡糸性が悪く、安定し念繊維のトウが得られ
なかつ九。
Next, using this spinneret, the same pitch as used in Example 1 was spun under the same conditions as in Example 1, and the holes were further subjected to carbonization treatment. As for spinning nozzles with a small amount of carbon fibers, the spinning properties were poor and a stable tow of fibers could not be obtained.

平均繊維径       !、2μ 平均引張り強度    コタ7 k17ml平均引張り
弾性率    、2≠torVWl繊維径の変動係数 
  3!、0チ 参考例1〜3 第1図に示す構造の紡糸口金l(紡糸ノズル−の孔径0
.3!m、長さ0.6wm、ホール数lコのの各導入孔
JKλOOメツシュのステンレス製金網3t−1空間部
jにおけるピッチの滞留時間が第1表に示す時間となる
位置に敷き、その上部に、第1表に示す充填材を約r■
の厚さに充填した。
Average fiber diameter! , 2μ Average tensile strength Kota 7 k17ml Average tensile modulus, 2≠torVWl Coefficient of variation of fiber diameter
3! , 0chi Reference Examples 1 to 3 A spinneret l having the structure shown in FIG.
.. 3! 3 m, length 0.6 wm, number of holes 1 each inlet hole JKλOO mesh stainless steel wire mesh 3t-1 is laid at a position where the residence time of the pitch in the space j is the time shown in Table 1, and on the top thereof , the filler shown in Table 1 is about r■
Filled to a thickness of .

次に実施例1と同様の通水試験を行ない流動の変動係数
を求めた。得られ北結果を第1表に
Next, a water flow test similar to that in Example 1 was conducted to determine the coefficient of variation of flow. The obtained results are shown in Table 1.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第グ図は本発明で用いられる紡糸装置の種々の
態様に訃ける紡糸口金付近部の拡大断面概略図である。 第1図〜第7図は本発明に用いられる剪断F材の一例の
拡大略図である。 l;紡糸口金    コ;紡糸ノズル 3;金網      ≠;充填層 j;空間部     6:導入孔 出 願 人  三菱化成工業株式会社 代 理 人  弁理士 要否用  − (ほか1名) 第 2恥 第3図 第5図 第70 ○○○ ○○ 晃4呂 第1り図
FIGS. 1 to 3 are enlarged sectional schematic views of the vicinity of the spinneret in various embodiments of the spinning apparatus used in the present invention. 1 to 7 are enlarged schematic diagrams of an example of the sheared F material used in the present invention. l; Spinneret C; Spinning nozzle 3; Wire mesh ≠; Filled layer j; Space 6: Introductory hole Figure 5 Figure 70 ○○○ ○○ Akira 4ro 1st drawing

Claims (6)

【特許請求の範囲】[Claims] (1)紡糸ピッチを多ホールの紡糸ノズルから溶融紡糸
し、不融化処理を行ない、次いで炭化処理し、さらに必
要に応じて黒鉛化処理することによりピッチ系炭素繊維
を製造する方法において、該紡糸ノズルの直上部に、充
填層と空間部を設け、該紡糸ピッチを該充填層、空間部
および該紡糸ノズルの順に流通させ紡糸することを特徴
とするピッチ系炭素繊維の製造方法。
(1) A method for producing pitch-based carbon fibers by melt-spinning spinning pitch from a multi-hole spinning nozzle, subjecting it to infusibility treatment, then carbonization treatment, and further graphitization treatment as necessary, comprising: A method for producing pitch-based carbon fibers, which comprises providing a filled layer and a space directly above a nozzle, and spinning the spinning pitch by flowing the spinning pitch through the filled layer, the space, and the spinning nozzle in this order.
(2)空間部でのピッチの滞留時間が0.05〜15秒
となるように紡糸ピッチを流通させることを特徴とする
特許請求の範囲第1項記載のピッチ系炭素繊維の製造方
法。
(2) The method for producing pitch-based carbon fibers according to claim 1, characterized in that the spinning pitch is distributed so that the residence time of the pitch in the space is 0.05 to 15 seconds.
(3)紡糸ピッチが40%以上の光学的異方性を示すピ
ッチであることを特徴とする特許請求の範囲第1項又は
第2項記載のピッチ系炭素繊維の製造方法。
(3) The method for producing a pitch-based carbon fiber according to claim 1 or 2, wherein the spinning pitch is a pitch exhibiting optical anisotropy of 40% or more.
(4)充填層が金属材料または無機質材料の破砕粉、細
粒、微細粉焼結体、不織布もしくは織布からなることを
特徴とする特許請求の範囲第1〜3項の何れかに記載の
ピッチ系炭素繊維の製造方法。
(4) The filling layer according to any one of claims 1 to 3, characterized in that the filling layer is made of crushed powder, fine particles, fine powder sintered body, nonwoven fabric, or woven fabric of a metal material or an inorganic material. A method for producing pitch-based carbon fiber.
(5)充填層が珊瑚樹様の構造をした金属粉からなるこ
とを特徴とする特許請求の範囲第1〜3項の何れかに記
載のピッチ系炭素繊維の製造方法。
(5) The method for producing pitch-based carbon fibers according to any one of claims 1 to 3, wherein the filling layer is made of metal powder having a coral tree-like structure.
(6)充填層が金属材料または無機質材料の球状充填材
からなることを特徴とする特許請求の範囲第1〜3項の
何れかに記載のピッチ系炭素繊維の製造方法。
(6) The method for producing pitch-based carbon fibers according to any one of claims 1 to 3, wherein the filling layer is made of a spherical filler made of a metal material or an inorganic material.
JP9697485A 1984-06-26 1985-05-08 Production of pitch carbon yarn Pending JPS61258023A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP9697485A JPS61258023A (en) 1985-05-08 1985-05-08 Production of pitch carbon yarn
DE8585107676T DE3584693D1 (en) 1984-06-26 1985-06-21 METHOD FOR THE PRODUCTION OF CARBON FIBERS OF THE LEFT TYPE.
EP85107676A EP0166388B1 (en) 1984-06-26 1985-06-21 Process for the production of pitch-type carbon fibers
US07/039,679 US4818612A (en) 1984-06-26 1987-04-20 Process for the production of pitch-type carbon fibers
US07/245,564 US4923648A (en) 1984-06-26 1988-09-19 Process for the production of pitch-type carbon fibers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9697485A JPS61258023A (en) 1985-05-08 1985-05-08 Production of pitch carbon yarn

Publications (1)

Publication Number Publication Date
JPS61258023A true JPS61258023A (en) 1986-11-15

Family

ID=14179187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9697485A Pending JPS61258023A (en) 1984-06-26 1985-05-08 Production of pitch carbon yarn

Country Status (1)

Country Link
JP (1) JPS61258023A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988909A (en) * 1982-09-30 1984-05-23 アモコ、コ−ポレ−ション Physical conversion of latent intermediate molecule to oriented molecule
JPS6170015A (en) * 1984-04-27 1986-04-10 Tousoku Seimitsu Kogyo Kk Spinning machine for carbon yarn

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988909A (en) * 1982-09-30 1984-05-23 アモコ、コ−ポレ−ション Physical conversion of latent intermediate molecule to oriented molecule
JPS6170015A (en) * 1984-04-27 1986-04-10 Tousoku Seimitsu Kogyo Kk Spinning machine for carbon yarn

Similar Documents

Publication Publication Date Title
US4016247A (en) Production of carbon shaped articles having high anisotropy
EP0166388B1 (en) Process for the production of pitch-type carbon fibers
US4115527A (en) Production of carbon fibers having high anisotropy
JPS5818421A (en) Preparation of carbon fiber
US4913889A (en) High strength high modulus carbon fibers
US5037697A (en) Carbon fiber and process for producing the same
JPH0370012B2 (en)
JPS61186520A (en) Production of pitch carbon yarn
JPS61258023A (en) Production of pitch carbon yarn
JPH0545685B2 (en)
JPH0561367B2 (en)
JPH0718057B2 (en) Pitch-based fiber manufacturing method
JPH0788604B2 (en) Method for manufacturing pitch-based carbon fiber
JPS60104528A (en) Preparation of carbon fiber
JPH0781211B2 (en) Carbon fiber manufacturing method
JPS6224036B2 (en)
JPS5936726A (en) Precursor pitch fiber for carbon fiber
JPH0663135B2 (en) Pitch-based carbon fiber manufacturing method
JPH0663136B2 (en) Pitch-based carbon fiber manufacturing method
JP4343312B2 (en) Pitch-based carbon fiber
JPS60259631A (en) Production of pitch carbon fiber
JPH042687B2 (en)
EP0387829B1 (en) Carbon fibers and non-woven fabrics
JP3055295B2 (en) Pitch-based carbon fiber and method for producing the same
JPH0811844B2 (en) Method for producing pitch-based carbon fiber