JPS61256723A - Formation of x-ray mask - Google Patents

Formation of x-ray mask

Info

Publication number
JPS61256723A
JPS61256723A JP60099216A JP9921685A JPS61256723A JP S61256723 A JPS61256723 A JP S61256723A JP 60099216 A JP60099216 A JP 60099216A JP 9921685 A JP9921685 A JP 9921685A JP S61256723 A JPS61256723 A JP S61256723A
Authority
JP
Japan
Prior art keywords
layer
mask
resin layer
substrate
electron beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60099216A
Other languages
Japanese (ja)
Inventor
Masashi Miyagawa
昌士 宮川
Yasuhiro Yoneda
泰博 米田
Shunichi Fukuyama
俊一 福山
Kota Nishii
耕太 西井
Azuma Matsuura
東 松浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60099216A priority Critical patent/JPS61256723A/en
Publication of JPS61256723A publication Critical patent/JPS61256723A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Abstract

PURPOSE:To obtain a mask of submicron level when forming an X-ray mask of a predetermined shape on an Si substrate by laminating a Ta film, an Si resin layer and an electron beam resist layer on the substrate, among which only the resist layer has a predetermined mask shape, and removing the exposed parts of the laminated films by etching. CONSTITUTION:When the mask 5 of a predetermined shape whose uppermost layer consists of an Si resin layer is formed on an Si substrate 1, a Ta film 2, and an Si resin layer 3 such as of metyl silsesquioxane are laminated firstly over the entire surface of the substrate 1. The substrate is put in a parallel flat type dry etching device to modify the surface of the layer 3. Next, the surface is coated with an electron beam resist layer 4 such as of chlorometylated polystylene and the layer 4 is made into a pattern 5 of a predetermined shape by exposure and development. By using this as a mask, the underlying Si layer 3 and Ta film 2 are removed by etching utilizing plasma or the like, so that the surface of the substrate 1 is exposed among the patterns 5. Thus, the pattern 5 of submicron level can be obtained and the reduction of stress of the Ta film 2 becomes possible.

Description

【発明の詳細な説明】 〔概要〕 X線マスクの材料として使用されるタンタル(Ta) 
*金(Au)などの重金属は電子線の照射を受けるとこ
れを反射させるが、この散乱電子のために微細パターン
の形成が難しい。
[Detailed Description of the Invention] [Summary] Tantalum (Ta) used as a material for X-ray masks
*Heavy metals such as gold (Au) reflect electron beams when irradiated with them, but these scattered electrons make it difficult to form fine patterns.

本発明は重金属膜の上にシリコン樹脂層よりなる散乱電
子の吸収層を設けることによりサブミクロンパターンの
形成が可能なX線マスクの形成方法である。
The present invention is a method for forming an X-ray mask that can form a submicron pattern by providing a scattered electron absorbing layer made of a silicone resin layer on a heavy metal film.

〔産業上の利用分野〕[Industrial application field]

本発明はX線マスクパターンの形成方法に関する。 The present invention relates to a method for forming an X-ray mask pattern.

大量の情報を高速に処理する情報処理技術の要望を満た
すために情報処理装置の主構成体である半導体装置は集
積化が進んでいる。
2. Description of the Related Art In order to meet the demand for information processing technology that processes large amounts of information at high speed, semiconductor devices, which are the main components of information processing devices, are becoming increasingly integrated.

すなわち半導体チップの最大面積は殆ど変わらないにも
拘わらず、構成素子数は増加し、rcよりLSIへ、L
SIよりVLSIへと高集積化が行われている。
In other words, although the maximum area of a semiconductor chip remains almost the same, the number of components increases, and from RC to LSI, LSI
Higher integration is being achieved from SI to VLSI.

かかる集積化は単位素子の小形化により行われているが
、この小形化は半導体層形成技術、薄膜形成技術などと
共に写真食刻技術(ホトリソグラフィ)の進歩に負うと
ころが大きい。
Such integration is achieved by miniaturizing unit elements, and this miniaturization is largely due to advances in photolithography as well as semiconductor layer formation technology and thin film formation technology.

ここで写真食刻技術は被処理基板の上に感光性レジスト
を被覆し、これに光あるいは電離放射線を照射して選択
的に露光せしめるもので、露光部と非露光部とが現像液
に対して溶解度の差を生ずるのを利用してレジストパタ
ーンが作られる。
Photo-etching technology involves coating a photosensitive resist on the substrate to be processed and selectively exposing it by irradiating it with light or ionizing radiation.The exposed and unexposed areas are exposed to a developer. A resist pattern is created by taking advantage of the difference in solubility caused by the difference in solubility.

そして、このレジストパターンをマスクとしてドライエ
ツチング或いはウェットエツチングを行って被処理基板
を選択エツチングし、微細なパターンを形成するもので
ある。
Then, using this resist pattern as a mask, dry etching or wet etching is performed to selectively etch the substrate to be processed, thereby forming a fine pattern.

さて、半導体集積回路は高集積化と共にパターン幅が1
μm以下の所謂るサブミクロンパターンの形成が必要で
あるが、光源として紫外線を使用する従来のパターン形
成法ではかかる微細パターンの形成は不可能であり、こ
れに代わって電子線のような電離放射線を使用して微細
なパターンを描画して選択露光し、選択エツチングする
ことが行われている。
Now, as semiconductor integrated circuits become more highly integrated, the pattern width increases to 1.
Although it is necessary to form a so-called submicron pattern with a size of less than μm, it is impossible to form such a fine pattern using conventional pattern forming methods that use ultraviolet light as a light source. A method is used to draw fine patterns, selectively expose them to light, and selectively etch them.

ここでX線を使用する写真食刻技術は波長が5〜15人
のソフトX線を光の代わりに用い、マスクを通してレジ
ストを露光する方式であり、電子ビーム露光に較べて一
度に全面積の露光ができ、露光時間が短く、電子線のよ
うに電子の散乱がなく、切れのよい微細パターンを作る
ことができ、また特別な真空を用いなくともよい。
The photo-etching technology that uses X-rays uses soft X-rays with a wavelength of 5 to 15 people instead of light, and exposes the resist through a mask. It can be exposed to light, the exposure time is short, there is no scattering of electrons unlike with electron beams, sharp fine patterns can be created, and there is no need to use a special vacuum.

然し、X線用のマスクの使用が必要となる。However, it requires the use of an X-ray mask.

すなわち微細パターンを窓開けした重金属からなるマス
クが必要になる。
In other words, a mask made of heavy metal with fine patterns cut out is required.

〔従来の技術〕[Conventional technology]

X線マスクの材料としてはX線を透過しない材料である
ことが必要で重金属が選ばれ、加工のし易さからTa、
Auなどが使われている。
The material for the X-ray mask must be a material that does not transmit X-rays, so heavy metals are selected, and Ta, Ta,
Au etc. are used.

然し、この金属を被処理基板とし、この上に電子線に対
して感度のある電子線レジストを塗布した後、電子線を
走査して微細パターンを描画しても重金属は従来被処理
基板として用いられているシリコン(Si)やアルミニ
ウム(AI)に較べて電子の反射係数が大きく、電子が
反射して散乱するために微細パターンの形成ができない
However, even if this metal is used as a substrate to be processed, an electron beam resist sensitive to electron beams is coated on it, and a fine pattern is drawn by scanning with an electron beam, heavy metals cannot be conventionally used as substrates to be processed. The reflection coefficient of electrons is larger than that of silicon (Si) and aluminum (AI), which are commonly used, and electrons are reflected and scattered, making it impossible to form fine patterns.

そのために二層構造のレジストプロセスが提案されてい
る。
For this purpose, a two-layer resist process has been proposed.

すなわち、被処理基板の上に有機物よりなる樹脂層を設
け、この上に電子線に対して感度の高いレジスト層を設
ける。
That is, a resin layer made of an organic substance is provided on a substrate to be processed, and a resist layer that is highly sensitive to electron beams is provided on this resin layer.

そして電子線を走査して微細パターンを描画すると電子
は被処理基板に達して反射が起こるが、樹脂層で吸収さ
れるため、上部にあるレジスト層に達するものは少なく
、そのため微細パターンのレジストマスクが形成される
When an electron beam is scanned to draw a fine pattern, the electrons reach the substrate to be processed and are reflected, but since they are absorbed by the resin layer, few of them reach the resist layer on top, so the resist mask for the fine pattern is formed.

然し、そのためには樹脂層の膜厚を2.5〜3.0μm
と厚く作る必要があり、このように樹脂層が厚いとレジ
スト層をマスクとしてドライエツチングを行う場合に樹
脂層がアンダーカットされてパターン精度が低下すると
云う問題がある。
However, for this purpose, the thickness of the resin layer must be 2.5 to 3.0 μm.
If the resin layer is thus thick, there is a problem that when dry etching is performed using the resist layer as a mask, the resin layer is undercut and pattern accuracy is reduced.

また散乱電子のエネルギを低下させるために重金属から
なる被処理基板の上に二酸化硅素(5iO2)層を電子
吸収層として形成し、この上に電子線に対し感度のよい
レジスト層を設けることが検討されている。
In addition, in order to reduce the energy of scattered electrons, it is considered that a silicon dioxide (5iO2) layer is formed as an electron absorption layer on the substrate to be processed made of heavy metal, and a resist layer that is sensitive to electron beams is provided on top of this. has been done.

然し、基板としてよく使用されるTa等の金属は非常に
割れ易い金属であり、この上にsio z Nをスパッ
タ法などで形成すると被処理基板に応力が発生してクラ
ックが発生し易く、そのため内部応力の厳密な制御を必
要とすると云う問題がある。
However, metals such as Ta, which are often used as substrates, are very easily broken, and if sio z N is formed thereon by sputtering, stress will be generated on the substrate to be processed and cracks will easily occur. There is a problem in that it requires strict control of internal stress.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

以上記したようにX線マスク材料として重金属を使用す
る必要があるが、電子線を走査して上層の電子線レジス
トにサブミクロンパターンを描画する際、重金属からの
反射電子によって電子線レジストが感光して微細パター
ンが得られないと云う問題がある。
As mentioned above, it is necessary to use heavy metals as X-ray mask materials, but when scanning with an electron beam to draw a submicron pattern on the upper layer of electron beam resist, the electron beam resist is exposed to light by the reflected electrons from the heavy metal. However, there is a problem in that fine patterns cannot be obtained.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

上記の問題は重金属膜上にシリコン樹脂層よりなる散乱
電子の吸収層を設けた後、該層上に電子線レジスト層を
形成し、これに電子線の描画を行って後に現像してレジ
ストパターンを作り、該レジストパターンをマスクとし
てシリコン樹脂層および重金属膜と順次選択エッチして
重金属からなるマスクを得ることを特徴とするX線マス
クの形成方法により解決することができる。
The above problem can be solved by providing a scattered electron absorbing layer made of a silicone resin layer on a heavy metal film, then forming an electron beam resist layer on the layer, drawing an electron beam on this layer, and then developing it to form a resist pattern. This problem can be solved by a method for forming an X-ray mask, which is characterized in that a silicone resin layer and a heavy metal film are sequentially selectively etched using the resist pattern as a mask to obtain a mask made of heavy metal.

〔作用〕[Effect]

本発明は被処理マスク金属と電子線レジスト層の間にシ
リコン樹脂層を設け、散乱電子を吸収することより被処
理マスク金属からなるサブミクロンマスクを実現するも
のである。
The present invention realizes a submicron mask made of the mask metal to be processed by providing a silicone resin layer between the mask metal to be processed and the electron beam resist layer and absorbing scattered electrons.

また更に完全にはこのシリコン樹脂層の上に非感光性樹
脂層を設け、この上に電子線レジスト層を設けることに
より、散乱電子が電子線レジスト層に達するのを完全に
阻止するものである。
Furthermore, by providing a non-photosensitive resin layer on this silicone resin layer and providing an electron beam resist layer on top of this, scattered electrons are completely prevented from reaching the electron beam resist layer. .

すなわち本発明はシリコン樹脂が電子を吸収する能力が
優れていると共に層形成が容易で、また被処理マスク金
属に応力を殆ど発生させない性質を利用するものである
That is, the present invention utilizes the properties of silicone resin, which has an excellent ability to absorb electrons, is easy to form a layer, and hardly generates stress on the mask metal to be processed.

〔実施例〕〔Example〕

本発明に使用するシリコン樹脂層は第1図(A)〜(D
)に示すようなシリコン樹脂を用いて形成される。
The silicone resin layer used in the present invention is shown in FIGS.
) is formed using a silicone resin as shown in .

すなわちメチルシルセスキオキサン(−船名ポリラダー
オキシシロキサン)、メチルシロキサン。
Namely, methylsilsesquioxane (-ship name polyladder oxysiloxane), methylsiloxane.

フェニルシロキサン、メチルフェニルシルセスキオキサ
ンなどである。
These include phenylsiloxane and methylphenylsilsesquioxane.

以後、被処理マスク金属としてTaを用い、0.21J
m幅のようなサブミクロンマスクの形成例を説明する。
Hereafter, using Ta as the mask metal to be processed, 0.21J
An example of forming a submicron mask having a width of m will be described.

実施例1: に1構造) Si基板1の上にスパッタ法によりTa膜2を約0゜8
μmの厚さに形成し、この上にメチルシルセスキオキサ
ン(日本合成ゴム社:商品名PLO3−M)からなるシ
リコン樹脂層3を0.4 μmの厚さに形成した。〔第
2図(A)〕 その方法はPLOS−Mのシクロへギサノン溶液をスピ
ンコード法で塗布した後、200℃で1時間に互って加
熱し硬化させた。
Example 1: (1 structure) A Ta film 2 is deposited on a Si substrate 1 at a thickness of approximately 0°8 by sputtering.
A silicone resin layer 3 made of methylsilsesquioxane (Japan Synthetic Rubber Co., Ltd., trade name PLO3-M) was formed thereon to a thickness of 0.4 μm. [Figure 2 (A)] The method was to apply a cyclohegisanone solution of PLOS-M by a spin cord method, and then heat it at 200° C. for 1 hour to cure it.

次ぎにかかる試料を平行平板型ドライエ・7チング装置
に入れ、酸素(02)ガスを導入し、ガス圧力8Pa(
パスカル)、印加電力密度0.33W/cm2゜処理時
間1分の条件でプラズマ処理を行ってシリコン樹脂層3
の表面を改質し、濡れ性を回復させた。
Next, the sample was placed in a parallel plate dry etching device, oxygen (02) gas was introduced, and the gas pressure was 8 Pa (
Pascal), applied power density 0.33 W/cm2°, processing time 1 minute, and plasma treatment was performed to form silicone resin layer 3.
The surface was modified to restore wettability.

このシリコン樹脂層3の上にスピンコード法でクロロメ
チル化ポリスチレン(東洋曹達社:商品名CMS−EX
)を塗布し、窒素(N2)気流中で100℃で30分プ
リベークして厚さ0.6 μmの電子線レジスト層4を
形成した。〔第2図(B)〕次ぎにこの電子線レジスト
層4に電子線を加速電圧20KVの条件で走査して微細
パターンの描画を行った後、試料をアセトンに60秒間
浸漬して現像し、更にイソプロパツールに30秒浸して
リンス処理を行った。
Chloromethylated polystyrene (Toyo Soda Co., Ltd.: trade name CMS-EX) is coated on top of this silicone resin layer 3 using a spin code method.
) and prebaked at 100° C. for 30 minutes in a nitrogen (N2) stream to form an electron beam resist layer 4 with a thickness of 0.6 μm. [Figure 2 (B)] Next, after drawing a fine pattern by scanning the electron beam resist layer 4 with an electron beam at an acceleration voltage of 20 KV, the sample was immersed in acetone for 60 seconds to develop it. Furthermore, rinsing treatment was performed by immersing it in isopropanol for 30 seconds.

その結果0.5 μmラインアンドスペースのレジスト
パターン5を形成することができた。
As a result, a resist pattern 5 of 0.5 μm line and space could be formed.

なお、パターンの描画感度は20μC/CnI2であっ
た。〔第2図(C)〕 次ぎにレジストパターン5をマスクとしてフレオン(C
Fa )ガスを用い、ガス圧8Pa、印加電力密度0.
33W/cm2.処理時間4分の条件でプラズマエツチ
ングしてシリコン樹脂層3にパターンを転写した。〔第
2図(D)〕 次ぎに塩素(C1,z)ガスと四塩化炭素(C(:la
 )の濃度比が1:1の混合ガスを用い、ガス圧8Pa
Note that the pattern drawing sensitivity was 20 μC/CnI2. [Figure 2 (C)] Next, Freon (C) is applied using the resist pattern 5 as a mask.
Fa ) gas was used, the gas pressure was 8 Pa, and the applied power density was 0.
33W/cm2. The pattern was transferred to the silicone resin layer 3 by plasma etching with a processing time of 4 minutes. [Figure 2 (D)] Next, chlorine (C1,z) gas and carbon tetrachloride (C(:la
) using a mixed gas with a concentration ratio of 1:1 and a gas pressure of 8 Pa.
.

印加電力密度0.33W/cm2.処理時間3分の条件
でプラズマエツチングしてTa膜2にパターンを転写し
た。〔第2図(E)〕 以上の結果、0.5μmラインアンドスペースのザブミ
クロンTaパターンを形成できた。
Applied power density 0.33W/cm2. The pattern was transferred to the Ta film 2 by plasma etching with a processing time of 3 minutes. [FIG. 2(E)] As a result of the above, a 0.5 μm line-and-space Zabumicron Ta pattern could be formed.

実施例2: (三層構造) Si基板1の上、にスパッタ法によりTa膜2を約0゜
8μmの厚さに形成し、この上にメチルシルセスキオキ
サン(日本合成ゴム社:商品名PLO3−M)からなる
シリコン樹脂層3を0.4 μmの厚さに形成した。
Example 2: (Three-layer structure) A Ta film 2 with a thickness of about 0°8 μm was formed on the Si substrate 1 by sputtering, and methyl silsesquioxane (Japan Synthetic Rubber Co., Ltd.: trade name) was deposited on top of this. A silicone resin layer 3 made of PLO3-M) was formed to a thickness of 0.4 μm.

その方法はPLO3−Mのシクロヘキサノン溶液をスピ
ンコード法で塗布した後、200℃で1時間に互って加
熱し硬化させた。
The method was to apply a cyclohexanone solution of PLO3-M using a spin code method, and then heat it at 200° C. for 1 hour to cure it.

次ぎにかかる試料を平行平板型ドライエツチング装置に
入れ、酸素(02)ガスを導入し、ガス圧力8Pa(パ
スカル)、印加電力密度0.33W/cm2゜処理時間
1分の条件でプラズマ処理を行ってシリコン樹脂層3の
表面を改質し、濡れ性を回復させた。
Next, the sample was placed in a parallel plate dry etching device, oxygen (02) gas was introduced, and plasma treatment was performed under the conditions of a gas pressure of 8 Pa (pascal), an applied power density of 0.33 W/cm2°, and a treatment time of 1 minute. The surface of the silicone resin layer 3 was modified to restore wettability.

このシリコン樹脂層3の上にポリp−ヒドロキシスチレ
ン(丸善石油:商品名POP−6829)と0−タレゾ
ールノボラック樹脂(住友化学:商品名スミエポキシE
SCN−195−6)とからなる非感光性樹脂層6を厚
さ0.5μmの厚さに形成した。
Poly p-hydroxystyrene (Maruzen Oil Co., Ltd.: trade name POP-6829) and 0-talesol novolac resin (Sumitomo Chemical Co., Ltd.: trade name Sumiepoxy E) are placed on this silicone resin layer 3.
A non-photosensitive resin layer 6 consisting of SCN-195-6) was formed to have a thickness of 0.5 μm.

この形成方法は2:1の重量比に混合したもののシクロ
ヘキサン溶液をスピンコード法でシリコン樹脂層3の上
に塗布し200℃で1時間加熱して硬化させたものであ
る。〔第3図(A)〕次ぎにこの上にシリル化ポリメチ
ルシルセスキオキサン(平均重量分子1t33000.
分散度1.36)からなる電子線レジスト層7を0.2
μ川の厚さに形成した。
In this formation method, a cyclohexane solution mixed at a weight ratio of 2:1 is applied onto the silicone resin layer 3 by a spin code method, and then heated at 200° C. for 1 hour to harden it. [Figure 3 (A)] Next, silylated polymethylsilsesquioxane (average weight molecule 1t33000.
The electron beam resist layer 7 having a dispersion degree of 1.36) has a dispersity of 0.2
Formed to the thickness of the μ river.

この形成法はシリル化ポリメチルシルセスキオキサンの
4−メチル−2−ペンタノン溶液をスピンコード法で塗
布し、N2気流中で80℃で20分間プリベークした。
In this formation method, a 4-methyl-2-pentanone solution of silylated polymethylsilsesquioxane was applied by a spin cord method, and prebaked at 80° C. for 20 minutes in a N2 stream.

これにより非感光性樹脂層6と電子線レジスト層7とか
らなる二層構造のレジスト層が形成された。〔第3図(
B)〕 パターン形成法としては、 実施例1と同様に電子線を走査して微細パターンを電子
線レジスト層7に描画した後、4−メチル−2−ペンタ
ノンとイソプロパツールの混合液(混合比2:8)に3
0秒浸漬して現像した後、イソプロパツールに30秒浸
漬してリンスした。〔第3図(C)〕 次ぎに試料を平行平板型ドライエツチング装置に入れ、
0□ガスを導入し、ガス圧力2Pa、印加電力密度0.
22W/cm2.処理時間5分の条件でプラズマエツチ
ングを行うことによりレジストパターン8を非感光性樹
脂層6に転写し、これにより0.3μmラインアンドス
ペースの二層構造レジストパターンが形成された。〔第
3図(D)〕次ぎにエツチングガスをCCI 4とCF
、の1:1の混合ガスに切り換え、ガス圧力8Pa、印
加電力密度0.33W/cm2.処理時間10分の条件
でプラズマエツチングを行うことによりシリコン樹脂層
3とTa膜2とを一緒にエツチング処理することによす
0.3 μmラインアンドスペースのTaパターンを作
ることができた。〔第3図(E)〕 〔発明の効果〕 以上記したように本発明の実施によりサブミクロンパタ
ーンの形成が可能になり、またシリコン樹脂層の形成に
おいてはTa基板内に応力を生ずることはないので収率
よくX線パターンを作ることができる。
As a result, a resist layer having a two-layer structure consisting of the non-photosensitive resin layer 6 and the electron beam resist layer 7 was formed. [Figure 3 (
B)] As a pattern forming method, after drawing a fine pattern on the electron beam resist layer 7 by scanning an electron beam in the same manner as in Example 1, a mixed solution (mixture) of 4-methyl-2-pentanone and isopropanol was applied. ratio 2:8) to 3
After being immersed for 0 seconds and developed, it was immersed in isopropanol for 30 seconds and rinsed. [Figure 3 (C)] Next, the sample was placed in a parallel plate type dry etching device,
0□ Gas was introduced, the gas pressure was 2 Pa, and the applied power density was 0.
22W/cm2. The resist pattern 8 was transferred to the non-photosensitive resin layer 6 by plasma etching for a processing time of 5 minutes, thereby forming a two-layer resist pattern with 0.3 μm lines and spaces. [Figure 3 (D)] Next, the etching gas is CCI 4 and CF.
, the gas pressure was 8 Pa, and the applied power density was 0.33 W/cm2. By performing plasma etching for a processing time of 10 minutes, it was possible to form a 0.3 μm line-and-space Ta pattern by etching the silicone resin layer 3 and the Ta film 2 together. [Figure 3 (E)] [Effects of the Invention] As described above, by implementing the present invention, it is possible to form submicron patterns, and stress is not generated in the Ta substrate during the formation of the silicon resin layer. Since there is no X-ray pattern, it is possible to create an X-ray pattern with high yield.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に適用が可能なシリコン樹脂、第2図(
A)〜(E)は二層構造マスクの製造プロセス、 第3図(A)〜(E)は三層構造マスクの製造プロセス
、 である。 図において、 1はSt基板、       2はTa膜、3はシリコ
ン樹脂層、 4.7は電子線レジスト層、 5.8はレジストパターン、 6は非感光性樹脂層、 である。 構匿氏       ん 凧 1止し尺12  ノ士ル冬長1エフェ;lし榎A?祇明
に歳用不°町負まρ レリコン潴す指部 1 図 %2図      第3図
Figure 1 shows silicone resin that can be applied to the present invention, Figure 2 (
A) to (E) are the manufacturing process of a two-layer structure mask, and FIGS. 3A to 3E are the manufacturing process of a three-layer structure mask. In the figure, 1 is an St substrate, 2 is a Ta film, 3 is a silicone resin layer, 4.7 is an electron beam resist layer, 5.8 is a resist pattern, and 6 is a non-photosensitive resin layer. Kite 1 stop length 12 noshiru winter long 1 efe; lshienoki A? Gimei ni saiyo fu°machi negative ρ Relicon's finger part 1 Figure % 2 Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)重金属膜上にシリコン樹脂層(3)よりなる散乱
電子の吸収層を設けた後、該層上に電子線レジスト層(
4)を形成し、これに電子線の描画を行って後に現像し
てレジストパターン(5)を作り、該レジストパターン
(5)をマスクとしてシリコン樹脂層(3)および重金
属膜と順次選択エッチして重金属からなるマスクを得る
ことを特徴とするX線マスクの形成方法。
(1) After providing a scattered electron absorption layer consisting of a silicone resin layer (3) on the heavy metal film, an electron beam resist layer (
4) is drawn with an electron beam and then developed to form a resist pattern (5), and using the resist pattern (5) as a mask, the silicone resin layer (3) and the heavy metal film are sequentially selectively etched. A method for forming an X-ray mask, the method comprising obtaining a mask made of heavy metal.
(2)重金属膜上にシリコン樹脂層(3)よりなる散乱
電子の吸収層を設けた後、該層上に非感光性樹脂層(6
)と電子線レジスト層(7)とを形成し、これに電子線
の描画を行って後に現像してレジストパターン(8)を
作り、該レジストパターン(8)をマスクとして非感光
性樹脂層(6)、シリコン樹脂層(3)および重金属膜
と順次選択エッチして重金属からなるマスクを得ること
を特徴とするX線マスクの形成方法。
(2) After providing a scattered electron absorption layer consisting of a silicone resin layer (3) on the heavy metal film, a non-photosensitive resin layer (6
) and an electron beam resist layer (7) are formed, which are subjected to electron beam drawing and later developed to form a resist pattern (8). Using the resist pattern (8) as a mask, a non-photosensitive resin layer ( 6) A method for forming an X-ray mask, which comprises sequentially selectively etching the silicone resin layer (3) and the heavy metal film to obtain a mask made of heavy metal.
JP60099216A 1985-05-10 1985-05-10 Formation of x-ray mask Pending JPS61256723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60099216A JPS61256723A (en) 1985-05-10 1985-05-10 Formation of x-ray mask

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60099216A JPS61256723A (en) 1985-05-10 1985-05-10 Formation of x-ray mask

Publications (1)

Publication Number Publication Date
JPS61256723A true JPS61256723A (en) 1986-11-14

Family

ID=14241460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60099216A Pending JPS61256723A (en) 1985-05-10 1985-05-10 Formation of x-ray mask

Country Status (1)

Country Link
JP (1) JPS61256723A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004518990A (en) * 2000-09-18 2004-06-24 マイクロニック レーザー システムズ アクチボラゲット Double layer reticle material and method of manufacturing the same
TWI769312B (en) * 2017-09-19 2022-07-01 日商Jsr股份有限公司 Resist pattern formation method and substrate processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004518990A (en) * 2000-09-18 2004-06-24 マイクロニック レーザー システムズ アクチボラゲット Double layer reticle material and method of manufacturing the same
TWI769312B (en) * 2017-09-19 2022-07-01 日商Jsr股份有限公司 Resist pattern formation method and substrate processing method

Similar Documents

Publication Publication Date Title
US5652084A (en) Method for reduced pitch lithography
KR930000293B1 (en) Fine pattern forming method
JPS61256723A (en) Formation of x-ray mask
JP2006093693A (en) Fine processing method, and semiconductor element and magnetic head fabricated by the same
JPH07335519A (en) Formation of pattern
JP3293803B2 (en) Method of forming fine pattern and method of manufacturing semiconductor device
WO1983003485A1 (en) Electron beam-optical hybrid lithographic resist process
JPH08339985A (en) Pattern forming method for very fine processing, and very fine processing method using the pattern forming method
JPS61260242A (en) Formation of resist pattern
JPH03283418A (en) Resist pattern forming method
JPH02156244A (en) Pattern forming method
JP2506133B2 (en) Pattern formation method
JPH08328258A (en) Formation of pattern
JP3257126B2 (en) Pattern formation method
JPS588131B2 (en) Manufacturing method of semiconductor device
JPH05160105A (en) Wet etching method
JP2666420B2 (en) Method for manufacturing semiconductor device
JPH0513325A (en) Pattern formation method
JPH05315244A (en) Manufacture of semiconductor device
JPS6225424A (en) Pattern forming method
JP2002207300A (en) Method of manufactured semiconductor and semiconductor
JPS61129645A (en) Formation of electron beam resist pattern
JPH01218021A (en) Formation of fine pattern
JPS5968744A (en) Manufacture of photomask
JPH05142788A (en) Formation of resist pattern