JPS6125622A - Oxygen permselective membrane - Google Patents

Oxygen permselective membrane

Info

Publication number
JPS6125622A
JPS6125622A JP14461484A JP14461484A JPS6125622A JP S6125622 A JPS6125622 A JP S6125622A JP 14461484 A JP14461484 A JP 14461484A JP 14461484 A JP14461484 A JP 14461484A JP S6125622 A JPS6125622 A JP S6125622A
Authority
JP
Japan
Prior art keywords
oxygen
membrane
permeable membrane
phenolic hydroxyl
selective permeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14461484A
Other languages
Japanese (ja)
Inventor
Takafumi Kajima
孝文 鹿嶋
Yukihiro Saito
斉藤 幸廣
Shiro Asakawa
浅川 史朗
Midori Kawahito
川人 美登利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP14461484A priority Critical patent/JPS6125622A/en
Publication of JPS6125622A publication Critical patent/JPS6125622A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To obtain an oxygen permselective membrane of large permeability, high in oxygen selectivity and membrane strength and can be made to very thin membrane by using macromolecule in which a part or whole of hydroxyl group of phenol is substituted by alkyl group. CONSTITUTION:Macromolecule containing hydroxyl group of phenol as principal constituting unit of polyhydroxystyrene, novolak etc. is used. Mixture of macromolecule made by substituting a part of whole of this hydroxyl group of phenol and polydimethyl siloxane of polymerization degree of 3-60 is used as an oxygen permselective membrane. This material has oxygen permeability coefficient of 5.6X10<-9>-5.5X10<-8>cccm/sec.cm<2>.cmHG and oxygen nitrogen permeability coefficient ratio of PO2/PN2=2.2-2.9.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は内燃機関、製鉄工業、燃焼機器、廃棄物処理、
医療機器2食品工業等の分野において多大な貢献が期待
できる酸素選択性透過膜に関するものである。
[Detailed description of the invention] Industrial fields of application The present invention is applicable to internal combustion engines, steel industry, combustion equipment, waste treatment,
Medical Device 2 This relates to an oxygen-selective permeable membrane that is expected to make a significant contribution in the food industry and other fields.

従来例の構成とその問題点 高分子を主成分とする有機フィルムは、これまでは主に
気体バリヤーとして多く用いられてきた。
Structures of conventional examples and their problems Organic films mainly composed of polymers have been used mainly as gas barriers.

近年、気体の種類による気体透過性の相違を利用したガ
ス分離や濃縮、特に空気から酸素あるいは窒素ガスを分
離濃縮する酸素富化膜が脚光を浴びている。
In recent years, gas separation and concentration that take advantage of differences in gas permeability depending on the type of gas, particularly oxygen enrichment membranes that separate and concentrate oxygen or nitrogen gas from air, have been in the spotlight.

これまで高分子を用いないで空気を分離する方法として
は、ゼオライトあるいは特殊カーボンを利用したものが
ある。これは、021 N2ガスの吸脱着性の相違を利
用したものであるが、これらの方法は吸脱着のプロセス
が連続的に行なえないばかりではなく、装置が複雑にな
るという欠点がある。
Until now, methods for separating air without using polymers include methods that use zeolite or special carbon. This method takes advantage of the difference in the adsorption and desorption properties of 021N2 gas, but these methods have the drawback that not only can the adsorption and desorption process not be carried out continuously, but the equipment is complicated.

一方、高分子を用いた空気分離としては、主に二つの方
法がある。一つは、ポリエチレン、ポリスチレン、ポリ
エチレンテレフタレートあるいはポリスルホン等の中空
繊維を用いる方法である(%開昭49−10192号公
報、特公昭49−81298号公報等参照)。
On the other hand, there are mainly two methods for air separation using polymers. One is a method using hollow fibers such as polyethylene, polystyrene, polyethylene terephthalate, or polysulfone (see % JP-A-49-10192, Japanese Patent Publication No. 49-81298, etc.).

もう一つは、オルガノシロキサンーポリカーボネ′−ト
共重合体等の超薄膜を用いる方法である(米国特許第3
980456号明細書、同第3874986号明細書参
照)。中空繊維を用いる方法は、単位面積当りの膜表面
積を大きくし、透過流量を増大させるものであるが、実
用上の透過量を得るためには、まだ大型であシ簡便では
ない。それに対し超薄膜の場合は、透過流量が膜厚に反
比例することを利用して透過量を増大させているもので
あり、膜厚が薄くなればなる程、コンパクトな分離装置
が可能となる。このことは、均一膜中を気体が通過する
時、その量は一般的に次式で表わされるという事実に基
づいている。
The other method uses ultra-thin films such as organosiloxane-polycarbonate copolymers (U.S. Pat.
(See specification No. 980456 and specification No. 3874986). The method using hollow fibers increases the membrane surface area per unit area and increases the permeation flow rate, but it is still too large and convenient to obtain a practical permeation amount. On the other hand, in the case of ultra-thin membranes, the amount of permeation is increased by utilizing the fact that the permeation flow rate is inversely proportional to the membrane thickness, and the thinner the membrane thickness, the more compact the separation device becomes possible. This is based on the fact that when gas passes through a homogeneous membrane, the amount is generally expressed as:

F、、、P、JP−A/L F;透過流量(c#l/5ec) P;気体透過係数(C−・cm/crl”MX・cMX
H9)JP 、圧力差(ctHF) A;膜面積(cd) L;膜厚(α) 上記の式でA、l!:dPは、気体分離に必要な外的な
装置に依存しており、一定の限界がある。結局透過流量
Fを増大させるためには、Pが大きくかつ膜厚りをでき
るだけ薄く出来る材料を導入することが必要である。ポ
リジメチルノロキサンとポリカーボネートの共重合体は
、アメリカのゼネラルエレクトリック社で初めて開発さ
れたものである。その後、省エネルギー化か更に推進さ
れる中で、より酸素選択透過性が高く、膜強度も良好で
しかも極薄膜化可能な膜材料の研究が進められている。
F,,,P,JP-A/L F; Permeation flow rate (c#l/5ec) P; Gas permeability coefficient (C-・cm/crl”MX・cMX
H9) JP, pressure difference (ctHF) A; membrane area (cd) L; membrane thickness (α) In the above formula, A, l! :dP is dependent on the external equipment required for gas separation and has certain limitations. After all, in order to increase the permeation flow rate F, it is necessary to introduce a material that has a large P and can make the film thickness as thin as possible. A copolymer of polydimethylnoroxane and polycarbonate was first developed by General Electric Company in the United States. Since then, as energy conservation has been further promoted, research has been progressing on membrane materials that have higher oxygen selective permeability, good membrane strength, and can be made into extremely thin membranes.

現在、酸素選択透過性の高い材料はいろいろ考えられて
おシ、実用化も行なわれるに至ってはいるがまだ充分で
はなく、より選択透過性の高い材料を開発することが、
今後の発展の大きなポイントである。
At present, various materials with high oxygen permselectivity are being considered, and although some have been put into practical use, they are still insufficient, and it is necessary to develop materials with even higher permselectivity.
This is a major point for future development.

発明の目的 本発明は、以上のような従来の問題点を解決するために
成されたもので、主として酸素選択性が高く、その透過
量も大きく、膜強度も強い、極薄膜化可能な酸素選択性
透過膜を提供することを目的とする。
Purpose of the Invention The present invention has been made in order to solve the above-mentioned problems of the conventional art. The purpose is to provide a selectively permeable membrane.

発明の構成 この目的を達成させるために本発明は、主構成単位とし
てフェノール性水酸基を含み、前記フェノール性水酸基
の一部あるいは全部がアルキル基によって置換されてい
る高分子より成る酸素選択性透過膜を提供するものであ
る。
Structure of the Invention In order to achieve this object, the present invention provides an oxygen-selective permeable membrane comprising a polymer containing a phenolic hydroxyl group as a main structural unit, and in which some or all of the phenolic hydroxyl groups are substituted with an alkyl group. It provides:

本発明のフェノール性水酸基を含む高分子としてはポリ
ヒドロキシスチレ/あるいはノボラック等を用いた。置
換基のアルキル基は、CH3゜CHCH・ ・・・C2
2H46,C23H4□。
As the polymer containing phenolic hydroxyl groups of the present invention, polyhydroxystyrene/or novolac, etc. were used. The alkyl group of the substituent is CH3゜CHCH・...C2
2H46, C23H4□.

26I 3 アj C24H49,C25H51を用いた。また、硅素−酸
素結合を主構成単位とする共重合体の主成分であるポリ
ジメチルンロキサンは、重合度nが3〜60のものを使
用した。他の重合度の場合、反応性及び強度面に問題が
生じると考えられる。これらを用いて得られた、本発明
による材料の酸素選択透過特性は次のようである。
26I 3 Aj C24H49, C25H51 were used. Further, polydimethylsiloxane, which is the main component of the copolymer having silicon-oxygen bonds as the main constitutional unit, had a degree of polymerization n of 3 to 60. In the case of other polymerization degrees, problems may arise in terms of reactivity and strength. The oxygen selective permeation characteristics of the material according to the present invention obtained using these materials are as follows.

酸素透過係数 P02=6.6×10〜5+6×1O−
8(CCφ釧/式簀d・鍋H,9) また、窒素と酸素の透過係数の比、Po2/PN2はP
O2/ PN2= 2.2〜2.9 実施例の説明 以下に、本発明の実施例を比較例とともに詳述するが、
これらは本発明を説明するためのものであって、それに
限定されるものではない。
Oxygen permeability coefficient P02=6.6×10~5+6×1O-
8 (CCφ Kushi/shikikan d/pot H, 9) Also, the ratio of nitrogen and oxygen permeability coefficients, Po2/PN2, is P
O2/PN2=2.2-2.9 Description of Examples Examples of the present invention will be described in detail below along with comparative examples.
These are for illustrating the present invention and are not intended to limit it.

〈実施例1〉 (工程1) 市販のポリヒドロキンスチレン129 (MOS 70
0 、0.1 mol)をエタノ−k 200 mlに
加え、加熱攪拌溶解させる。その後、水酸化ナトリウム
のアルコール溶液(0,01mol〜Oo99mol)
を注ぎ、ナトリウム化する。次にハロゲン化アルキル(
アルキル基はCH3〜C26H51テ添加量は0.1m
o/以下)を加えてポリヒドロキンスチレンを部分的に
アルキル化した。
<Example 1> (Step 1) Commercially available polyhydroquinestyrene 129 (MOS 70
0.0, 0.1 mol) was added to 200 ml of ethanol-k, and the mixture was heated and stirred to dissolve. Then, an alcoholic solution of sodium hydroxide (0.01 mol to Oo99 mol)
Pour and sodiumize. Next, the alkyl halide (
The alkyl group is CH3~C26H51 and the amount added is 0.1m
o/or less) to partially alkylate the polyhydroquinestyrene.

(工程2) 実施例1で得られたアルキル化ポリヒドロキシスチレン
(アルキル基、C16H33でアルキル化率60%のも
の)3Iとポリスルホン(Mω中6.000)3.9 
をクロルベン9フ300熱攪拌溶解させる。次に、予め
合成したポリジメチルシロキサン(重合度n=1o )
を4g添加して約1hr加熱攪拌し、その反応溶液を、
メタノール21中に注ぎ沈澱を得た。それをテトラヒド
ロフランに溶解させ、水−メタノール混合溶媒にて再沈
精製を繰り返し、乾燥させて、目的物を得た。低真空測
定にて、その特性を調べたところPo2が5.71×1
0PO27/PN2−2.62であった。
(Step 2) Alkylated polyhydroxystyrene obtained in Example 1 (alkyl group, C16H33, alkylation rate 60%) 3I and polysulfone (6.000 in Mω) 3.9
Dissolve chlorbenne with stirring at 300°C for 9 hours. Next, pre-synthesized polydimethylsiloxane (degree of polymerization n=1o)
Add 4g of and heat and stir for about 1 hour, and the reaction solution is
The mixture was poured into methanol 21 to obtain a precipitate. It was dissolved in tetrahydrofuran, repeated reprecipitation purification with a water-methanol mixed solvent, and dried to obtain the desired product. When its characteristics were investigated through low vacuum measurement, Po2 was 5.71×1
It was 0PO27/PN2-2.62.

ポリジメチルシロキサンの重合度nは3〜60について
好適な結果が得られた。
Suitable results were obtained when the degree of polymerization n of polydimethylsiloxane was 3 to 60.

く比較例1〉 実施例1と同様に、ポリヒドロキシスチレン同様中8,
700をアルキル化せずに、そのままを用いて実施例1
と同様の操作にて合成を行なった。
Comparative Example 1> Similarly to Example 1, polyhydroxystyrene was
Example 1 using 700 as it is without alkylating it.
Synthesis was carried out in the same manner.

但し、クロルベンゼンだけでは溶解性が悪く、100m
1の1.4−ジオキサンを加えた。得られた材料の特性
は次のようであった。
However, chlorobenzene alone has poor solubility and 100 m
1 of 1,4-dioxane was added. The properties of the obtained material were as follows.

PO2=4 −02 X 10  ( C C −傭,
/SeC II Crl ” C1nHjj )P O
 2 / P N 2−2 − 24これにより、アル
キル化されたポリヒドロキ/レンを用いた実施例の方が
P。2並びに選択係数が高くなっていることが、実施例
1と比較例1との比較により明らかである。
PO2=4 -02
/SeC II Crl ”C1nHjj )P O
2/P N 2-2-24 Therefore, the example using alkylated polyhydroxy/lene has higher P. It is clear from a comparison between Example 1 and Comparative Example 1 that the selection coefficient and selection coefficient are higher.

く比較例2〉 予めトリメチルシリル化されたポリヒドロキシスチレン
(Mω中8,700トリメチルシリル化率60%)を用
いて実施例1と同様の操作にて合成を行なった。得られ
た材料の特性は次のとうりである。
Comparative Example 2> Synthesis was carried out in the same manner as in Example 1 using polyhydroxystyrene which had been trimethylsilylated in advance (8,700 trimethylsilylation ratio in Mω: 60%). The properties of the obtained material are as follows.

P()2=4.50X10  (CC−crn/S!I
C・ctl−anHg)Po2/PN2=2.31 これは比較例1に対しては良好な結果であるがやはり、
実施例1で合成したアルキル化ヒドロキシスチレンを用
いたものの方が良い値を示している。
P()2=4.50X10 (CC-crn/S!I
C・ctl-anHg)Po2/PN2=2.31 This is a good result for Comparative Example 1, but again,
The one using the alkylated hydroxystyrene synthesized in Example 1 shows better values.

〈実施例2〉 ポリヒドロキシスチレン同様、次にノボラックを部分的
にアルキル化し、実施例1の工程1と同様の操作にて合
成を行なった。次にアルキル化ノボラックを用いて工程
2のごとく合成した結果、次のような結果を与えた。
<Example 2> Similar to polyhydroxystyrene, novolac was then partially alkylated and synthesized in the same manner as in step 1 of Example 1. Next, synthesis was performed as in step 2 using an alkylated novolac, and the following results were obtained.

P()2= 5 、60X 10  ( CC ・cm
/ Sec −crl ・cmHji )Po2/PN
2=2.7 〈比較例3〉 ノボラックを部分的に60%トリメチルンリル化し、実
施例2と同様な操作で合成した。その特性は次のようで
ある。
P()2=5,60X10(CC・cm
/Sec-crl・cmHji)Po2/PN
2=2.7 <Comparative Example 3> Novolak was partially trimethylated to 60% and synthesized in the same manner as in Example 2. Its characteristics are as follows.

P()2=4.0X10  (CC−c1n/SeC・
csf−cmH,9)Po2/′PN2二2.35 一iた、同様に、ノボラックをその一11合成に用いた
場合の結果は次のとうりであった。
P()2=4.0X10 (CC-c1n/SeC・
csf-cmH,9)Po2/'PN222.35 Similarly, when novolac was used in the synthesis, the results were as follows.

P()2= 4 、 OOX 10  ( CC 、c
nX/5ec−crl・、H,9 )PQ2/PN2−
2.3。
P()2=4, OOX10(CC,c
nX/5ec-crl・,H,9)PQ2/PN2−
2.3.

いずれの場合も実施例の方が酸素透過係数,窒素と酸素
の透過係数の比ともに優れた値を示した。
In all cases, the examples showed superior values in both the oxygen permeability coefficient and the ratio of nitrogen and oxygen permeability coefficients.

発明の効果 以上説明したように本発明は、ポリヒドロキシスチレン
、ノボラック等のようにフェノール性水酸基を持つ高分
子を部分的又は全部アルキル化するもので、酸素透過係
数及び選択係数が高く、膜強度が強い極薄膜が得られる
Effects of the Invention As explained above, the present invention partially or completely alkylates polymers having phenolic hydroxyl groups, such as polyhydroxystyrene and novolac, and has a high oxygen permeability coefficient and selectivity coefficient, and a high membrane strength. An ultra-thin film with strong properties can be obtained.

Claims (6)

【特許請求の範囲】[Claims] (1)フェノール性水酸基を主構成単位とする高分子よ
りなり、前記フェノール性水酸基の一部または全部がア
ルキル基に置換されていることを特徴とする酸素選択性
透過膜。
(1) An oxygen-selective permeable membrane comprising a polymer having phenolic hydroxyl groups as its main constituent units, wherein some or all of the phenolic hydroxyl groups are substituted with alkyl groups.
(2)フェノール性水酸基を含む高分子がポリヒドロキ
シスチレンであることを特徴とする特許請求の範囲第1
項記載の酸素選択性透過膜。
(2) Claim 1, characterized in that the polymer containing phenolic hydroxyl groups is polyhydroxystyrene.
Oxygen-selective permeable membrane as described in .
(3)フェノール性水酸基を含む高分子がノボラックで
あることを特徴とする特許請求の範囲第1項記載の酸素
選択性透過膜。
(3) The oxygen selective permeable membrane according to claim 1, wherein the polymer containing a phenolic hydroxyl group is novolac.
(4)アルキル基が、炭素数1〜25個より成ることを
特徴とする特許請求の範囲第1項記載の酸素選択性透過
膜。
(4) The oxygen selective permeable membrane according to claim 1, wherein the alkyl group has 1 to 25 carbon atoms.
(5)フェノール性水酸基を含む高分子が、硅素−酸素
結合を主構成単位とする共重合体によって置換されてい
ることを特徴とする特許請求の範囲第1項記載の酸素選
択性透過膜。
(5) The oxygen-selective permeable membrane according to claim 1, wherein the polymer containing a phenolic hydroxyl group is substituted with a copolymer whose main constituent unit is a silicon-oxygen bond.
(6)硅素−酸素結合を主構成単位とする共重合体が、
重合度3〜60であるポリジメチルシロキサンを主成分
とすることを特徴とする特許請求の範囲第5項記載の酸
素選択性透過膜。
(6) A copolymer whose main constituent unit is silicon-oxygen bond is
The oxygen selective permeable membrane according to claim 5, characterized in that the main component is polydimethylsiloxane having a degree of polymerization of 3 to 60.
JP14461484A 1984-07-12 1984-07-12 Oxygen permselective membrane Pending JPS6125622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14461484A JPS6125622A (en) 1984-07-12 1984-07-12 Oxygen permselective membrane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14461484A JPS6125622A (en) 1984-07-12 1984-07-12 Oxygen permselective membrane

Publications (1)

Publication Number Publication Date
JPS6125622A true JPS6125622A (en) 1986-02-04

Family

ID=15366122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14461484A Pending JPS6125622A (en) 1984-07-12 1984-07-12 Oxygen permselective membrane

Country Status (1)

Country Link
JP (1) JPS6125622A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017688A (en) * 2008-07-14 2010-01-28 Kurita Water Ind Ltd Advanced treatment method of biologically-treated water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010017688A (en) * 2008-07-14 2010-01-28 Kurita Water Ind Ltd Advanced treatment method of biologically-treated water

Similar Documents

Publication Publication Date Title
JPS5892448A (en) Element for selective permeation of gas
JPH0551331B2 (en)
JPH03193126A (en) Sulfonated hexafluorobisphenol-a polysulfone film and fluid separation process
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
JPS6253211B2 (en)
JPS6125622A (en) Oxygen permselective membrane
JPS61125424A (en) Separating membrane of mixed gas
JPH0365223B2 (en)
JPS6230524A (en) Permselective membrane
JPS633644B2 (en)
JPS61200833A (en) Carbon dioxide permselective membrane
JPS61120616A (en) Oxygen permselective membrane
JPH0575450B2 (en)
JPS62110729A (en) Permselective compound film for gas
JPS6279831A (en) Gas permeation film
JPH041654B2 (en)
JPS61146320A (en) Gas permeable membrane
JP3637390B2 (en) Organic compound separation membrane and organic compound separation method using the separation membrane
JPS61277430A (en) Composite membrane
KR0166150B1 (en) Water permeable separation membrane and manufacturing method thereof
JPS5814925A (en) Gas-permeable membrane
JPH0534048B2 (en)
JPH0559775B2 (en)
JPS59112803A (en) Gas permselective membrane
JPH0440223A (en) Gas separation composite membrane