JPS62110729A - Permselective compound film for gas - Google Patents

Permselective compound film for gas

Info

Publication number
JPS62110729A
JPS62110729A JP25135085A JP25135085A JPS62110729A JP S62110729 A JPS62110729 A JP S62110729A JP 25135085 A JP25135085 A JP 25135085A JP 25135085 A JP25135085 A JP 25135085A JP S62110729 A JPS62110729 A JP S62110729A
Authority
JP
Japan
Prior art keywords
polymer
gas permeable
composite membrane
permeable composite
selective gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25135085A
Other languages
Japanese (ja)
Inventor
Yukihiro Saito
斉藤 幸廣
Susumu Yoshimura
吉村 進
Shiro Asakawa
浅川 史朗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP25135085A priority Critical patent/JPS62110729A/en
Publication of JPS62110729A publication Critical patent/JPS62110729A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To improve separability and permselectivity for gas of permselective compound film for gas by allowing electrolytically oxidized or reduced polymer to be present on the surface or in the inside of amorphous polymer film having uniform or fine porous structure and >=180 deg.C glass transition point. CONSTITUTION:Permselective compound film is prepd. by forming oxidized or reduced body of polymer by electrolytic process on the surface or in the inside of amorphous polymer film having uniform or fine porous structure and >=180 deg.C glass transition point. Preferred amorphous polymer is acetylenic polymer expressed by the formula I (where R1 is H atom, halogen atom, or alkyl group; R2 is trialkylsilyl group, alkyl group, or phenyl group). Preferred electrolytically oxidized or reduced polymer is pyrrole or a reduced product thereof expressed by the formula II (where X is BF4, ClO4, SO4, AsF6, I, etc.).

Description

【発明の詳細な説明】 産業上の利用分野 本発明は選択気体透過複合膜に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a selective gas permeable composite membrane.

従来の技術 最近、気体混合物の分離濃縮を選択気体透過膜で行なう
ことが積極的に検討されている。例えば空気より酸素を
選択的に透過させて酸素富化空気を得、燃焼システムあ
るいは医療への応用、さらには石炭、天然ガス等を原料
に、水蒸気改質や熱分解等の処理により得られる合成ガ
ス、又は製鉄所等の廃ガスから水素を選択的に透過させ
一酸化炭素、メタン等のガスと分離、精製し、これらガ
スを利用するC1化学用分離膜への応用、更には天然ガ
スからの選択透過によるヘリウムの回収等がある。これ
らに使用される選択気体透過膜に必要な特性は、気体選
択性と気体透過性が共に大きく、かつ耐熱性、機械的強
度が大きいこと、さらには耐薬品性を有することである
2. Description of the Related Art Recently, the use of selective gas permeable membranes to separate and concentrate gas mixtures has been actively studied. For example, oxygen-enriched air can be obtained by selectively permeating oxygen from air, and it can be used in combustion systems or medical applications. Furthermore, it can be synthesized by steam reforming, thermal decomposition, etc. using coal, natural gas, etc. as raw materials. Application to C1 chemical separation membranes that selectively permeate hydrogen from gas or waste gas from steel plants, separate it from gases such as carbon monoxide and methane, purify it, and use these gases, and furthermore, from natural gas. Recovery of helium by selective permeation of The properties required of the selective gas permeable membranes used in these applications are that they have high gas selectivity and gas permeability, high heat resistance, high mechanical strength, and chemical resistance.

発明が解決しようとする問題点 現在まで知られている11“、・1分子の気体透過特性
は一般的に気体透過性が向−1夕1−ると選択性が低下
し、−力選択性が大きくなると透過性が低くなるという
ように、選択性と透過性は相反する関係にある。
Problems to be Solved by the Invention 11. The gas permeability characteristics of a single molecule are generally such that as the gas permeability increases, the selectivity decreases, and the force selectivity decreases. Selectivity and permeability are in a contradictory relationship; the larger the value, the lower the permeability.

例えば気体透過性が優れるポII トリメヂルシリルプ
口ピン(PMSP)は酸素透過係数 1’02が1.6
0XIOcc−m/cd−scc−ml1gと非常に大
きい透過性を示すが、一方酸素と窒素の透過係数比αは
約1.4と低い。この4U旧に次ぐ透過性の高い材*′
1としてシリコーンゴムが知られているがこの材料のP
O2は6.OX 10 ’CC−m乙Hd −scc 
−mll gてαは約2.0である。
For example, PO II trimedylsilyl spout pin (PMSP), which has excellent gas permeability, has an oxygen permeability coefficient of 1'02 of 1.6.
It exhibits a very high permeability of 0XIOcc-m/cd-scc-ml1g, but on the other hand, the permeability coefficient ratio α of oxygen and nitrogen is as low as about 1.4. This material has the second highest permeability after the old 4U*'
Silicone rubber is known as 1, but the P of this material
O2 is 6. OX 10' CC-m Otsu Hd -scc
-mllg and α is approximately 2.0.

これらの月利に対し選択性の優れる利料としてポリフェ
ニレンオキサイド(,1,” I)O)がある。この材
料のαは約4.0と選択性は約2倍に向上する一方その
透過性は1.’02−’2.8X100−9cc−/c
4・scc−ml1gと低くなってしまう。
Polyphenylene oxide (,1,"I)O) is a material with excellent selectivity for these monthly materials. α of this material is about 4.0, which improves the selectivity by about twice, while its permeability is 1.'02-'2.8X100-9cc-/c
It will be as low as 4.scc-ml1g.

このように気体選択性と透過性がいずれも優れた高分子
はまだ存在せず、従って選択透過膜の気5ベー、゛ 体透過性に合わせて用途開発を行なっているのが現状で
ある。
A polymer with such excellent gas selectivity and permeability does not yet exist, and therefore applications are currently being developed based on the gas and body permeability of selectively permeable membranes.

本発明は上記問題点を解決するもので、気体分離性と気
体透過性の両特性に優れた選択気体透過複合膜の提供を
目的とするものである。
The present invention is intended to solve the above-mentioned problems, and aims to provide a selective gas permeable composite membrane that is excellent in both gas separation properties and gas permeability.

問題点を解決するための手段 本発明は上記目的を達成するためになされたもので、均
質もしくは微孔質のガラス転移温度(Tg)が180℃
以上のアモルファス高分子膜の表面才たは内部に電解重
合高分子を存在させた選択気体透過複合膜を提供するも
のである。
Means for Solving the Problems The present invention has been made to achieve the above object, and the present invention has been made in order to achieve the above object.
The present invention provides a selective gas permeable composite membrane in which an electrolytically polymerized polymer is present on the surface or inside the amorphous polymer membrane described above.

作    用 本発明はかかる構成にすることにより、高気体透過性で
かつ高分離性の複合膜が得られた。
Function The present invention has such a structure, thereby providing a composite membrane with high gas permeability and high separation performance.

すなわち酸素透過係数が10.’77−1O−9cc−
/d−seccmHgオーダーで、かつ酸素と窒素の透
過係数比(P02/PN2)αが3.0〜7.0と従来
の材料にはない画期的な特性を示した。
That is, the oxygen permeability coefficient is 10. '77-1O-9cc-
/d-seccmHg order, and the permeability coefficient ratio of oxygen and nitrogen (P02/PN2) α was 3.0 to 7.0, showing revolutionary characteristics not found in conventional materials.

なお本発明のアモルファス高分子膜材料としては一般式
が、 6ベー 几1 (但し、R1は水素原子、ハロゲン原子、アルキル基の
いずれかで示され、■1.2はトリアルキルシリル基、
アルキル−基、フェニル基より成る群より選ばれる)で
示されるアセチレン高分子もしくはポリフェニレンオキ
サイドあるいはポリスルホンが適当であり、一方電解重
合高分子としてはポリピロール、ポリアニリン、もしく
はポリヂオフェンの酸化体または還元体のいずれかが好
適である。
The amorphous polymer membrane material of the present invention has the following general formula:
Suitable are acetylene polymers, polyphenylene oxides, or polysulfones (selected from the group consisting of alkyl groups and phenyl groups), while electrolytically polymerized polymers include polypyrrole, polyaniline, or polydiophene oxidized or reduced forms. is preferable.

また電解重合高分子はアモルファス高分子膜の表面また
は内部に設ければ良く、その手段としては電解重合法で
高分子の酸化体、還元体のどちらを選択的に行うことが
できる。
Further, the electrolytically polymerized polymer may be provided on the surface or inside of the amorphous polymer membrane, and the electrolytic polymerization method can be used to selectively produce either an oxidized form or a reduced form of the polymer.

実施例 以下に本発明の実施例を詳細に説明する。Example Examples of the present invention will be described in detail below.

高分子膜材料としてポリトリメチルシリルプロピン(重
量平均分子量Mw÷60万) (PM、81勺を用いこ
の材料の4重量%トルエン溶液を調整後、7ペー/ 流延法により均一な表面のネサガラス板上に製膜を行な
う。次いでこのネサガラス板のPMSP膜で被覆されて
いない端をシーリング用の常温硬化性シリコーン接着剤
で被覆した後、電解重合用の電極とする。電解重合溶液
としてはアクリロニトリルを溶媒とし1モルのピロール
に対して電解質としてテトラブチルアンモニウムバーク
ロシートヲ025モルの組成とした。対極としては白金
板を用い、電解重合溶液を陽極として電解を行ないPM
SPと電解重合体との複合膜を作製した。このようにし
て得られたフィルムは黒色化し、ネサ面の部分は導伝性
を示す複合膜を与えた。気体透過性は酸素透過係数po
2が約4.OX 10 ’ cc −cm/cdl −
sec−cmI−Igでα(Po2/PN2)は5.0
まで達した。
Polytrimethylsilylpropyne (weight average molecular weight Mw ÷ 600,000) (PM, 81 mm) was used as the polymer membrane material, and after preparing a 4% by weight toluene solution of this material, 7 pages/Nesa glass plate with a uniform surface was obtained by the casting method. A film is formed on top of the Nesa glass plate.Then, the end of this Nesa glass plate that is not covered with the PMSP film is coated with a room temperature curing silicone adhesive for sealing, and then used as an electrode for electrolytic polymerization.Acrylonitrile is used as the electrolytic polymerization solution. The composition was 1 mole of pyrrole as a solvent and 0.25 mole of tetrabutylammonium barcrosheet as an electrolyte.A platinum plate was used as a counter electrode, and electrolysis was performed using the electrolytic polymerization solution as an anode.
A composite membrane of SP and electrolytic polymer was produced. The film thus obtained had a black color and the Nesa surface area provided a composite membrane exhibiting conductivity. Gas permeability is oxygen permeability coefficient po
2 is about 4. OX 10' cc - cm/cdl -
α(Po2/PN2) is 5.0 for sec-cmI-Ig
reached.

また同一条件で複合化した膜を還元した後でもこの気体
透過性は殆んど変わらなかった。
Furthermore, even after the composite membrane was reduced under the same conditions, this gas permeability remained almost unchanged.

同じ条件でアモルファス高分子と電解重合体を変化させ
た場合の結果を以下の表に示す。
The table below shows the results when the amorphous polymer and electrolytic polymer were changed under the same conditions.

以下余白 いずれの場合も高い酸素透過係数と、高い透過係数比が
得られた。
In both cases, high oxygen permeability coefficients and high permeability coefficient ratios were obtained.

なお本発明のアモルファス高分子としては、ガラス転移
温度が180℃以上であれば良く、この場合ミクロボイ
ドの存在により、電解重合体を内部または表面にトラッ
プでき複合化が可能になる。
The amorphous polymer of the present invention only needs to have a glass transition temperature of 180° C. or higher, and in this case, the presence of microvoids allows the electrolytic polymer to be trapped inside or on the surface, making it possible to form a composite.

発明の効果 以上要するに本発明は均質もしくは微孔質のガラス転移
温度が180℃以−にのアモルファス高分子膜の表面ま
たは内部に屯1リイ重合品分子を存在させた選択気体透
過複合膜を提供するもので高気体透9ベージ 過性でかつ高分離性の選択気体透過複合膜を得ることが
できる。
Effects of the Invention In short, the present invention provides a selective gas permeable composite membrane in which molecules of a monomer polymer are present on the surface or inside of a homogeneous or microporous amorphous polymer membrane having a glass transition temperature of 180°C or higher. By doing so, a selective gas permeable composite membrane having high gas permeability and high separation property can be obtained.

Claims (7)

【特許請求の範囲】[Claims] (1)均質もしくは微孔質のガラス転移温度が180℃
以上のアモルファス高分子膜の表面または内部に電解重
合高分子を存在させることを特徴とする選択気体透過複
合膜。
(1) Homogeneous or microporous glass transition temperature is 180℃
A selective gas permeable composite membrane characterized in that an electrolytically polymerized polymer is present on or inside the amorphous polymer membrane described above.
(2)アモルファス高分子膜の一般式が ▲数式、化学式、表等があります▼ (但し、R_1は水素原子、ハロゲン原子、アルキル基
のいずれかで示され、R_2はトリアルキルシリル基、
アルキル基、フェニル基より成る群より選ばれる)で示
されるアセチレン高分子である特許請求の範囲第1項記
載の選択気体透過複合膜。
(2) The general formula of the amorphous polymer film is ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (However, R_1 is a hydrogen atom, halogen atom, or alkyl group, R_2 is a trialkylsilyl group,
The selective gas permeable composite membrane according to claim 1, which is an acetylene polymer represented by an alkyl group or a phenyl group.
(3)アモルファス高分子膜がポリフェニレンオキサイ
ドである特許請求の範囲第1項記載の選択気体透過複合
膜。
(3) The selective gas permeable composite membrane according to claim 1, wherein the amorphous polymer membrane is polyphenylene oxide.
(4)アモルファス高分子膜がポリスルホンである特許
請求の範囲第1項記載の選択気体透過複合膜。
(4) The selective gas permeable composite membrane according to claim 1, wherein the amorphous polymer membrane is polysulfone.
(5)電解重合高分子の一般式が ▲数式、化学式、表等があります▼ (但し、Xは酸化重合体のカウンターイオンでBF_4
、ClO_4、SO_4、BF_3、AsF_6、I、
Br、I_2より成る群より選ばれる)で示されるポリ
ピロールもしくは、この還元体である特許請求の範囲第
1項記載の選択気体透過複合膜。
(5) The general formula of electropolymerized polymers is ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ (However, X is the counter ion of the oxidized polymer, BF_4
, ClO_4, SO_4, BF_3, AsF_6, I,
The selective gas permeable composite membrane according to claim 1, which is polypyrrole (selected from the group consisting of Br, I_2) or its reduced form.
(6)電解重合高分子が、ポリアニリンの酸化体もしく
は還元体のどちらかであることを特徴とする特許請求の
範囲第1項記載の選択気体透過複合膜。
(6) The selective gas permeable composite membrane according to claim 1, wherein the electrolytically polymerized polymer is either an oxidized or reduced polyaniline.
(7)電解重合高分子が、ポリチオフェンの酸化体もし
くは還元体のどちらかであることを特徴とする特許請求
の範囲第1項記載の選択気体透過複合膜。
(7) The selective gas permeable composite membrane according to claim 1, wherein the electrolytically polymerized polymer is either an oxidized or reduced polythiophene.
JP25135085A 1985-11-08 1985-11-08 Permselective compound film for gas Pending JPS62110729A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25135085A JPS62110729A (en) 1985-11-08 1985-11-08 Permselective compound film for gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25135085A JPS62110729A (en) 1985-11-08 1985-11-08 Permselective compound film for gas

Publications (1)

Publication Number Publication Date
JPS62110729A true JPS62110729A (en) 1987-05-21

Family

ID=17221517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25135085A Pending JPS62110729A (en) 1985-11-08 1985-11-08 Permselective compound film for gas

Country Status (1)

Country Link
JP (1) JPS62110729A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01293101A (en) * 1988-05-21 1989-11-27 Mitsubishi Kasei Corp Composite separation membrane
US5045357A (en) * 1987-12-09 1991-09-03 Mitsubishi Rayon Company, Ltd. Process for preparing a membranous gas separator
US5096586A (en) * 1990-08-28 1992-03-17 Regents Of The University Of California Membranes having selective permeability
US5707423A (en) * 1996-06-14 1998-01-13 Membrane Technology And Research, Inc. Substituted polyacetylene separation membrane

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5045357A (en) * 1987-12-09 1991-09-03 Mitsubishi Rayon Company, Ltd. Process for preparing a membranous gas separator
US5154740A (en) * 1987-12-09 1992-10-13 Mitsubishi Rayon Co., Ltd. Membranous gas separator
JPH01293101A (en) * 1988-05-21 1989-11-27 Mitsubishi Kasei Corp Composite separation membrane
US5096586A (en) * 1990-08-28 1992-03-17 Regents Of The University Of California Membranes having selective permeability
US5358556A (en) * 1990-08-28 1994-10-25 The Regents Of The University Of California Membranes having selective permeability
US5707423A (en) * 1996-06-14 1998-01-13 Membrane Technology And Research, Inc. Substituted polyacetylene separation membrane

Similar Documents

Publication Publication Date Title
Nikolaeva et al. The performance of affordable and stable cellulose-based poly-ionic membranes in CO2/N2 and CO2/CH4 gas separation
US3780496A (en) Sulfonated polyxylene oxide as a permselective membrane for gas separations
EP0546056B1 (en) Membranes having selective permeability
EP0426118B1 (en) Sulfonated hexafluoro bis-A polysulfone membranes and process for fluid separations
JPH04277024A (en) Semitransparent membrane based on predeter- mined sulfonated substituted polysulfone polymer
JPH0551331B2 (en)
US4759776A (en) Polytrialkylgermylpropyne polymers and membranes
JP2509962B2 (en) Polyimide separation membrane
Higashimura et al. Gas permeability of polyacetylenes with bulky substituents
CA1294093C (en) Polyphosphazene fluid separation membranes
US5045357A (en) Process for preparing a membranous gas separator
JPH07114935B2 (en) Polyarylate separation membrane
Zhu et al. Controllable hydrogen-bonded poly (dimethylsiloxane)(PDMS) membranes for ultrafast alcohol recovery
JPS62110729A (en) Permselective compound film for gas
JPS588506A (en) Selective separation membrane
JPS62183837A (en) Gas permeable membrane
JPH0534048B2 (en)
US5494989A (en) Acetylenic copolymers and membranes thereof
JPH02261513A (en) Method for controlling gas permeability
Wang et al. Macromolecular Design for Oxygen/Nitrogen Permselective Membranes-Top-Performing Polymers in 2020. Polymers 2021; 13: 3012
JPS61146320A (en) Gas permeable membrane
JPS59183802A (en) Permselective membrane for separation of gas
JPH01119324A (en) Preparation of gas separation membrane
JPS62110728A (en) Permselective compound film for gas
EP0336999A2 (en) Reactive posttreatment for gas separation membranes