JPH02261513A - Method for controlling gas permeability - Google Patents

Method for controlling gas permeability

Info

Publication number
JPH02261513A
JPH02261513A JP8158589A JP8158589A JPH02261513A JP H02261513 A JPH02261513 A JP H02261513A JP 8158589 A JP8158589 A JP 8158589A JP 8158589 A JP8158589 A JP 8158589A JP H02261513 A JPH02261513 A JP H02261513A
Authority
JP
Japan
Prior art keywords
gas
voltage
membrane
oxygen
permeation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8158589A
Other languages
Japanese (ja)
Inventor
Yoshiharu Tsujita
義治 辻田
Akira Takizawa
彰 滝澤
Takatoshi Kinoshita
隆利 木下
Takeo Shimizu
清水 剛夫
Yoshiyuki Miyaki
義行 宮木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP8158589A priority Critical patent/JPH02261513A/en
Publication of JPH02261513A publication Critical patent/JPH02261513A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)

Abstract

PURPOSE:To easily control the velocity of permeation of gas through a membrane and the selectivity of permeation with electricity at about room temp. by bringing electrodes into contact with both sides of the membrane made of an electrically conductive polymer and impressing voltage between the electrodes. CONSTITUTION:Electrodes are brought into contact with both sides of a membrane made of an electrically conductive polymer, e.g., a polymer of a heterocyclic arom. compd. such as pyrrole or its deriv. and voltage is impressed between the electrodes. The velocity of permeation of gas and the selectivity of permeation can easily be controlled with electricity at about room temp. The gas is not especially limited and may be oxygen, hydrogen, CO2, CO, gaseous halogen such as chlorine or org. gas.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、導電性高分子膜を利用した気体透過性制御方
法に関するものである。本発明の方法は、酸素など気体
の濃縮や分離あるいは気体の流量の調整などに有用であ
る。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a gas permeability control method using a conductive polymer membrane. The method of the present invention is useful for concentrating or separating gases such as oxygen or adjusting the flow rate of gases.

[従来の技術] 膜により酸素等の気体を他の気体から分離する方法はこ
れまで数多く研究されてきた。たとえば、特定の気体の
選択透過性を向上させたり、気体透過速度を向上させる
ため、様々な高分子膜の開発やそれらの物理的処理や化
学修飾による改質が行われている。(文献例、妹尾学、
木村尚史共著、「新機能材料“膜”」、工業調査会、1
983年;清水、斉藤、中耕共著、「新しい機能膜」、
講談社、1984年)これら従来の高分子膜を用いた気
体分離は、膜の両面間の気体の濃度差(圧力差)を駆動
力とする分子拡散に基づくものであった。
[Prior Art] Many studies have been conducted on methods of separating gases such as oxygen from other gases using membranes. For example, in order to improve the permselectivity of a specific gas or the gas permeation rate, various polymer membranes have been developed and modified through physical treatment or chemical modification. (Literature examples, Manabu Seno,
Co-authored with Naofumi Kimura, “New Functional Material “Membrane””, Kogyo Kenkyukai, 1
983; co-authored by Shimizu, Saito, and Nakako, "New Functional Membrane",
(Kodansha, 1984) Gas separation using these conventional polymer membranes was based on molecular diffusion using the gas concentration difference (pressure difference) between the two sides of the membrane as a driving force.

一方、液体電解質を用いて空気から酸素を分離する方法
が提案されている(U、S、   3,888.749
)。この場合、液体電解質をポンプで送って分離が行わ
れるが、酸素はイオンの形で移動するとされている。さ
らに、固体電解質膜を用いて、水素の分離(Prepr
ints、  Fuel  Div、   A、C,S
、、   Vol、20゜No、2.、Ap r i 
1.  1975)や酸素の分離(U、S、   4,
131,514)を行なう方法が知られている。これら
の場合、無機膜を用いてこれに電気を流して分離が行な
われるが、数百から千℃の温度で行なう必要があり、使
用できる場所や条件が限定される。
On the other hand, a method of separating oxygen from air using a liquid electrolyte has been proposed (U, S, 3,888.749
). In this case, the separation is carried out by pumping a liquid electrolyte, and the oxygen is said to be transferred in the form of ions. Furthermore, using a solid electrolyte membrane, hydrogen separation (Prepr.
ints, Fuel Div, A, C, S
,, Vol, 20°No, 2. , Ap r i
1. 1975) and oxygen separation (U, S, 4,
131,514) is known. In these cases, separation is carried out by using an inorganic membrane and passing electricity through it, but this must be carried out at a temperature of several hundred to 1,000 degrees Celsius, which limits the locations and conditions under which it can be used.

〔本発明が解決しようする課題] 本発明の目的は、室温に近い温度で、安価で容易に気体
透過性を制御する方法を提供することにある。
[Problems to be Solved by the Present Invention] An object of the present invention is to provide an inexpensive and easy method for controlling gas permeability at a temperature close to room temperature.

〔課題を解決するための手段] 本発明者らは、電流を通すという導電性高分子膜の特性
を利用して膜面に垂直な方向に電圧を負荷することによ
り酸素等の気体の透過性を容易に制御可能であることを
見出だし本発明に到達した。
[Means for Solving the Problems] The present inventors utilized the property of a conductive polymer membrane to conduct electric current to improve the permeability of gases such as oxygen by applying a voltage in a direction perpendicular to the membrane surface. The inventors have discovered that this can be easily controlled, and have arrived at the present invention.

すなわち、本発明は、導電性高分子膜の両面に電極を接
触させ、電極に電圧を負荷することによる導電性高分子
膜の気体透過性制御方法を提供するものである。
That is, the present invention provides a method for controlling gas permeability of a conductive polymer membrane by bringing electrodes into contact with both sides of the conductive polymer membrane and applying a voltage to the electrodes.

[作用] 以下本発明をさらに詳細に説明する。[Effect] The present invention will be explained in more detail below.

本発明で用いる導電性高分子膜とは、ピロール、チオフ
ェン、フラン、インドール、セレノフェン、テルロフェ
ン等のへテロ環状芳香族化合物あるいはこれらの誘導体
の重合物からなる膜、ポリアセチレンやポリ(1,6−
へブタジイン)等あるいはこれらの誘導体であるポリア
セチレン系の高分子からなる膜、ポリバラフェニレン、
ポリフェニレンビニレン、ポリフェニレンサルファイド
等ポリフェニレン系の高分子からなる膜、アニリン、ア
ミノピレンなど芳香族アミン類を重合して得られるイオ
ン性の高分子からなる膜、ポリアセン、ポリフェナント
レン等の一般にラダーポリマーと呼ばれている高分子か
らなる膜である(文献、吉村進著、「導電性ポリマー」
、高分子学会綿、共立出版)。これらの高分子は化学的
重合(触媒重合)あるいは電解重合(電気化学的重合)
あるいは気相重合あるいは固相反応等公知の手法によっ
て重合することができる。
The conductive polymer film used in the present invention refers to a film made of a heterocyclic aromatic compound such as pyrrole, thiophene, furan, indole, selenophene, tellurophene or a polymer of a derivative thereof, polyacetylene or poly(1,6-
membranes made of polyacetylene-based polymers such as hebutadiin) or their derivatives, polyvaraphenylene,
Membranes made of polyphenylene-based polymers such as polyphenylene vinylene and polyphenylene sulfide; membranes made of ionic polymers obtained by polymerizing aromatic amines such as aniline and aminopyrene; and membranes made of ionic polymers such as polyacene and polyphenanthrene, which are generally called ladder polymers. (Reference, Susumu Yoshimura, “Conductive Polymer”)
, Polymer Science Society of Japan, Kyoritsu Publishing). These polymers can be produced by chemical polymerization (catalytic polymerization) or electrolytic polymerization (electrochemical polymerization).
Alternatively, polymerization can be carried out by a known method such as gas phase polymerization or solid phase reaction.

これらの導電性高分子はドーピングにより高導電性−を
付与して用いてもよく、ドーピングなしで用いてもよい
These conductive polymers may be used after being given high conductivity by doping, or may be used without doping.

上記の導電性高分子は単独で膜に成形して使用すること
もできるが、機械的強度および機能の向上のため、種々
の支持体と複合化して用いられる。
The above-mentioned conductive polymers can be used alone in the form of a membrane, but in order to improve mechanical strength and functionality, they are used in combination with various supports.

この場合の支持体としては、イオン交換膜、種々の天然
および合成高分子膜、多孔質ガラス、多孔質セラミック
などがある。
Supports in this case include ion exchange membranes, various natural and synthetic polymer membranes, porous glasses, porous ceramics, and the like.

化学的重合法の一つである化学的酸化重合は、水あるい
は有機溶媒中で、ルイス酸、ハロゲン単体、過酸化物、
金属酸などの酸化剤を多孔性の支持体を用いた隔膜法で
上記のモノマーと接触させて行われる。あるいは、これ
ら酸化剤を含む支持体にモノマーの蒸気を接触させるこ
とによっても導電性高分子膜を得ることができる。
Chemical oxidative polymerization, which is one of the chemical polymerization methods, uses Lewis acids, simple halogens, peroxides,
This is carried out by bringing an oxidizing agent such as a metal acid into contact with the above monomer using a diaphragm method using a porous support. Alternatively, a conductive polymer film can also be obtained by bringing monomer vapor into contact with a support containing these oxidizing agents.

一方、電解酸化重合では、高分子膜で被覆した電極を用
いて上記のモノマーを通電子接触させることにより導電
性高分子膜が得られる。
On the other hand, in electrolytic oxidative polymerization, a conductive polymer film is obtained by bringing the above monomer into contact with electricity through an electrode covered with a polymer film.

複合化の他の方法として、上記のへテロ環状芳香族化合
物を側鎖に持つポリスチレン等の高分子に電解酸化によ
り同じへテロ環状芳香族化合物をグラフト重合すること
も可能である。
As another method of conjugation, it is also possible to graft polymerize the same heterocyclic aromatic compound to a polymer such as polystyrene having the above-mentioned heterocyclic aromatic compound in its side chain by electrolytic oxidation.

本発明において、透過性が制御可能な気体とは、酸素、
窒素、水素、二酸化炭素、−酸化炭素、塩素等のハロゲ
ンガス、有機性のガスなどであり特に限定されるもので
はない。
In the present invention, gases whose permeability can be controlled include oxygen,
Examples include nitrogen, hydrogen, carbon dioxide, carbon oxide, halogen gas such as chlorine, organic gas, and are not particularly limited.

本発明において、導電性高分子膜により気体透過性を制
御するには、その膜の両面に接触させて配置した多孔性
の電極を介して負荷する電圧を調整すればよい。この操
作は、膜の両面間に気体の圧力差がある状態で行っても
よいが、圧力差のない状態で行なってもよい。
In the present invention, in order to control gas permeability using a conductive polymer membrane, it is sufficient to adjust the voltage applied through porous electrodes placed in contact with both surfaces of the membrane. This operation may be performed in a state where there is a gas pressure difference between the two sides of the membrane, or may be performed in a state where there is no pressure difference.

ここで使用する電極としては、銅、白金、金、ニッケル
、ステンレス、酸化金属被覆金属等である。
The electrodes used here include copper, platinum, gold, nickel, stainless steel, and metals coated with metal oxides.

気体の透過速度および透過の選択性は電圧の負荷により
急激に変化し、負荷の停止により元の値に戻る。そして
、変化の程度は電圧が高0程大きく、使用する膜の導電
性が大きい程大きい。また、同じ電圧では、膜の両面間
に気体の圧力差が小さい程気体の透過性の変化の割合が
大きい。
The gas permeation rate and permeation selectivity change rapidly with voltage loading and return to their original values when the load is removed. The degree of change increases as the voltage increases, and the degree of change increases as the conductivity of the membrane used increases. Furthermore, at the same voltage, the smaller the gas pressure difference between the two sides of the membrane, the greater the rate of change in gas permeability.

本発明において、こうした気体透過性の制御は室温付近
の温度で行うことができるが、室温以外の温度でおこな
ってもよい。
In the present invention, such gas permeability control can be performed at a temperature around room temperature, but may also be performed at a temperature other than room temperature.

[実施例] 以下、本発明をさらに詳細に説明するために実施例を示
すが、本発明は以下の実施例に特に限定されるものでは
ない。
[Examples] Examples are shown below to explain the present invention in more detail, but the present invention is not particularly limited to the following examples.

実施例1 溶媒として水を用いてピロール(0゜LM)とピロール
の酸化剤である塩化鉄(III)  (0,4M)を、
ヌクレオボア社のミクロフィルター(孔径、0.05μ
m;空孔率、1.2%)による隔膜法で、4℃にて48
時間化学的酸化重合することによりポリピロール膜を作
製した。得られた膜はピロールモノマーなどの未反応物
を除去するために蒸溜水中24時間洗浄した後、真空乾
燥して測定に供した。この膜の導電率は約73 / c
 mであった。
Example 1 Using water as a solvent, pyrrole (0°LM) and iron(III) chloride (0.4M), which is an oxidizing agent for pyrrole, were
Nucleobore's micro filter (pore size, 0.05μ
m; porosity, 1.2%) by the diaphragm method at 4°C.
A polypyrrole film was prepared by chronochemical oxidative polymerization. The obtained membrane was washed in distilled water for 24 hours to remove unreacted substances such as pyrrole monomer, and then dried under vacuum and subjected to measurement. The conductivity of this film is approximately 73/c
It was m.

ポリピロール膜の両面に銅メツシユを押え付けて膜を固
定し、気体透過実験装置を組立てた。ここでは気体とし
て酸素を用いた。一定の酸素圧力下(低圧側はほとんど
真空とした)、酸素の膜透過が定常状態に達した後、電
圧(3v)の負荷により生じる気体の透過量の変化をバ
ラトロン圧力計を用いて測定した。この時、酸素圧力の
高い側を陽極とし、低い側を陰極とした。気体透過速度
は支持膜の空孔率(1,2%)で補正した値を用いた。
A gas permeation experimental device was assembled by pressing copper mesh onto both sides of the polypyrrole membrane to fix the membrane. Here, oxygen was used as the gas. After oxygen permeation through the membrane reached a steady state under a constant oxygen pressure (the low pressure side was almost a vacuum), the change in gas permeation caused by applying a voltage (3V) was measured using a Baratron pressure gauge. . At this time, the side with higher oxygen pressure was used as the anode, and the side with lower oxygen pressure was used as the cathode. For the gas permeation rate, a value corrected by the porosity (1, 2%) of the support membrane was used.

酸素透過速度は電圧の負荷により急激に増加し、負荷の
停止により元の値に戻った。そして、この変化の割合は
気体の圧力が低い方が高い方より大きかった。図1に、
電圧負荷前後の酸素透過係数および電圧負荷前後の透過
係数の比を気体の圧力に対してプロットした。圧力が低
い時、電圧負荷前後の透過係数の比は3程度になってお
り、電圧負荷により大きく酸素透過速1度が変化したこ
とが分る。
The oxygen permeation rate increased rapidly with voltage loading and returned to its original value when the loading was stopped. The rate of this change was greater when the gas pressure was low than when it was high. In Figure 1,
The oxygen permeability coefficient before and after voltage loading and the ratio of the permeability coefficient before and after voltage loading were plotted against the gas pressure. When the pressure is low, the ratio of the permeability coefficient before and after the voltage load is approximately 3, indicating that the oxygen permeation rate changes significantly by 1 degree due to the voltage load.

実施例2 実施例1で用いたものと同じポリピロール膜を用い、酸
素圧力を10cmHgに固定し、電圧を変化させて電圧
負荷前後の透過係数の変化を観察した。図2にこの結果
を示す。電圧負荷前後の透過係数の比は電圧の増加に伴
い増加していることが分る。
Example 2 Using the same polypyrrole membrane as used in Example 1, the oxygen pressure was fixed at 10 cmHg, the voltage was varied, and changes in the permeability coefficient before and after voltage loading were observed. Figure 2 shows the results. It can be seen that the ratio of the transmission coefficients before and after voltage loading increases as the voltage increases.

実施例3 重合の温度を調整することによりいくつかの導電性の異
なるポリピロール膜を得た。これらを用いて、酸素圧力
を10cmHg、電圧を3vに固定し、電圧負荷前後の
透過係数の変化を観察した。
Example 3 Several polypyrrole films with different conductivities were obtained by adjusting the polymerization temperature. Using these, the oxygen pressure was fixed at 10 cmHg and the voltage was fixed at 3 V, and changes in the permeability coefficient before and after voltage loading were observed.

図3にこの結果を示す。電圧負荷前後の透過係数の比は
膜の導電性の増加に伴い増加していることが分る。
Figure 3 shows the results. It can be seen that the ratio of permeability coefficients before and after voltage loading increases as the conductivity of the membrane increases.

実施例4 実施例1で用いたものと同じポリピロール膜を用い、3
Vの電圧を負荷した時、電圧負荷前後の酸素と窒素の透
過係数の比を測定した。図4にこの結果を示す。酸素と
窒素の透過係数の比は電圧負荷によりかなり増加したこ
とが分る。
Example 4 Using the same polypyrrole film as that used in Example 1, 3
When a voltage of V was applied, the ratio of oxygen and nitrogen permeability coefficients before and after the voltage was applied was measured. Figure 4 shows the results. It can be seen that the ratio of oxygen and nitrogen permeability coefficients increased significantly with voltage loading.

[発明の効果] 以上説明したように、本発明により、電気を用いて室温
付近で容易に気体の透過速度および透過の選択性を制御
することが可能になった。
[Effects of the Invention] As explained above, according to the present invention, it has become possible to easily control gas permeation rate and permeation selectivity near room temperature using electricity.

図1から4は本発明の各実施例におけるデータを示す。1 to 4 show data for each embodiment of the invention.

P:標準状態における気体の透過係数 (ecsTPcM  / cm2 seccmHg  
)p:気体の・圧力(co+Hg) P :電圧を負荷した時の透過係数 n P  :電圧を負荷しない時の透過係数of’f V:負荷する電圧(volt) Pv:電圧Vを負荷した時の透過係数 P  :電圧を負荷しない時の透過係数−O P   :3Vの電圧を負荷した時の透過係数■−3 σ:膜の導電率(S/0m) P :酸素の透過係数 P :窒素の透過係数
P: Gas permeability coefficient under standard conditions (ecsTPcM/cm2 seccmHg
)p: Pressure of gas (co+Hg) P: Permeability coefficient n when voltage is applied P: Permeability coefficient of'f when no voltage is applied V: Applied voltage (volt) Pv: When applied voltage V Permeability coefficient P: Permeability coefficient when no voltage is applied -O P: Permeability coefficient when a voltage of 3V is applied -3 σ: Conductivity of membrane (S/0m) P: Oxygen permeability coefficient P: Nitrogen transmission coefficient of

Claims (1)

【特許請求の範囲】[Claims] 導電性高分子膜の両面に電極を接触させ、電極に電圧を
負荷することによる導電性高分子膜の気体透過性制御方
法。
A method for controlling gas permeability of a conductive polymer membrane by bringing electrodes into contact with both sides of the conductive polymer membrane and applying voltage to the electrodes.
JP8158589A 1989-04-03 1989-04-03 Method for controlling gas permeability Pending JPH02261513A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8158589A JPH02261513A (en) 1989-04-03 1989-04-03 Method for controlling gas permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8158589A JPH02261513A (en) 1989-04-03 1989-04-03 Method for controlling gas permeability

Publications (1)

Publication Number Publication Date
JPH02261513A true JPH02261513A (en) 1990-10-24

Family

ID=13750400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8158589A Pending JPH02261513A (en) 1989-04-03 1989-04-03 Method for controlling gas permeability

Country Status (1)

Country Link
JP (1) JPH02261513A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH067627A (en) * 1991-08-20 1994-01-18 Mitsubishi Electric Corp Humidity controller
US5358556A (en) * 1990-08-28 1994-10-25 The Regents Of The University Of California Membranes having selective permeability
US5547494A (en) * 1995-03-22 1996-08-20 Praxair Technology, Inc. Staged electrolyte membrane
WO2003067145A1 (en) * 2002-01-18 2003-08-14 Sony Corporation Electrochemical device and gas storage apparatus
JP2008168176A (en) * 2007-01-09 2008-07-24 Tokai Rubber Ind Ltd Separation apparatus using conductive polymer, and process for separation using it

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5358556A (en) * 1990-08-28 1994-10-25 The Regents Of The University Of California Membranes having selective permeability
JPH067627A (en) * 1991-08-20 1994-01-18 Mitsubishi Electric Corp Humidity controller
US5547494A (en) * 1995-03-22 1996-08-20 Praxair Technology, Inc. Staged electrolyte membrane
WO2003067145A1 (en) * 2002-01-18 2003-08-14 Sony Corporation Electrochemical device and gas storage apparatus
JP2008168176A (en) * 2007-01-09 2008-07-24 Tokai Rubber Ind Ltd Separation apparatus using conductive polymer, and process for separation using it
JP4751840B2 (en) * 2007-01-09 2011-08-17 東海ゴム工業株式会社 Separation apparatus using conductive polymer and separation method using the same

Similar Documents

Publication Publication Date Title
He et al. Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors
Lawson et al. Oxygen reduction at Nafion film‐coated platinum electrodes: Transport and kinetics
Wang et al. Preparation, properties and applications of polypyrroles
Zeng et al. Polyvinylpyrrolidone-based semi-interpenetrating polymer networks as highly selective and chemically stable membranes for all vanadium redox flow batteries
Pellegrino The Use of Conducting Polymers in Membrane‐Based Separations: A Review and Recent Developments
Li et al. Hydrophilic porous poly (sulfone) membranes modified by UV-initiated polymerization for vanadium flow battery application
WO2003062493A1 (en) Acid-base proton conducting polymer blend membrane
WO2002080294A1 (en) Solid polymer type fuel cell
Liu et al. Synthesis, characterization and electrochemical transport properties of the poly (ethyleneglycol)–grafted poly (vinylidenefluoride) nanoporous membranes
US5045357A (en) Process for preparing a membranous gas separator
Jiang et al. Optimization and synthesis of plasma polymerized proton exchange membranes for direct methanol fuel cells
JPH0830276B2 (en) Solid electrolyte material, its manufacturing method and its electrochemical use
JP4336777B2 (en) Surface-modified inorganic porous body and fuel cell using the porous body as an electrolyte
JPH02261513A (en) Method for controlling gas permeability
Zhai et al. Poly (vinylidene fluoride) with grafted 4-vinylpyridine polymer side chains for pH-sensitive microfiltration membranes
JP2007503707A (en) Fullerene electrolytes for fuel cells
Funt et al. Electrochemical characteristics of electrodes coated with films of poly (vinyl-p-benzoquinone) and its copolymer with styrene
JP5673922B2 (en) Cross-linked aromatic polymer electrolyte membrane, production method thereof, and polymer fuel cell using cross-linked aromatic polymer electrolyte membrane
WO2021123316A1 (en) A method for producing a gas separation article and use thereof
Tishchenko et al. Electrical resistance and diffusion permeability of microporous polyethylene membranes modified with polypyrrole and polyaniline in solutions of electrolytes
JP6609560B2 (en) Membranes for proton exchange membrane fuel cells
Batrinescu et al. Conductive polymer-based membranes
CA2072077A1 (en) Ultrathin-film composite membrane
JP7345195B2 (en) Microbial fuel cell separator
JP2002298869A (en) Solid polymer fuel cell