JPS61253102A - Cross helical rolling mill - Google Patents

Cross helical rolling mill

Info

Publication number
JPS61253102A
JPS61253102A JP9435585A JP9435585A JPS61253102A JP S61253102 A JPS61253102 A JP S61253102A JP 9435585 A JP9435585 A JP 9435585A JP 9435585 A JP9435585 A JP 9435585A JP S61253102 A JPS61253102 A JP S61253102A
Authority
JP
Japan
Prior art keywords
rolls
reeling
roll
rolled material
axial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9435585A
Other languages
Japanese (ja)
Other versions
JPH0563241B2 (en
Inventor
Koichi Kuroda
浩一 黒田
Kazuyuki Nakasuji
中筋 和行
Chihiro Hayashi
千博 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP9435585A priority Critical patent/JPS61253102A/en
Publication of JPS61253102A publication Critical patent/JPS61253102A/en
Publication of JPH0563241B2 publication Critical patent/JPH0563241B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B13/00Metal-rolling stands, i.e. an assembly composed of a stand frame, rolls, and accessories
    • B21B13/008Skew rolling stands, e.g. for rolling rounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/20Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a non-continuous process,(e.g. skew rolling, i.e. planetary cross rolling)

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metal Rolling (AREA)

Abstract

PURPOSE:To improve the accuracy of a diametral size by setting the length in the reeling part of each cone type roll of a cross helical rolling mill by a mathematical expression thereby executing rolling while bringing each part of the axial direction of a rolling material into contact with the reeling part at a prescribed number of times or above. CONSTITUTION:The rolls 1, 2, 3 are rotated in arrow directions and while the rolling material 4 engaged between these rolls is rotated around the axial center thereof at hot, the material is moved in the axial longitudinal direction. The walking size l at the axial length of the reeling parts 1c, 2c, 3c of the rolls 1, 2, 3 is set under the conditions of the equation in such a manner that the respective parts of the material 4 in the longitudinal direction thereof contacts >=7 times in total with the reeling parts 1c, 2c, 3c of the rolls 1, 2, 3 in the process of passing between the rolls 1, 2, 3. In the equation, (d) is the set outside diameter, B is an angle of inclination and (m) is the number of the disposed rolls. The equation is set by determining the number of contacts at >=7 times and may be set by taking production efficiency into consideration as the accuracy of the diametral accuracy is improved up to the specified level but not above the same.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は丸IF鋼、中空棒鋼等の円形断面金属材の製造
に通した傾斜圧延機に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an inclined rolling mill for producing circular cross-section metal materials such as round IF steel and hollow steel bars.

〔従来技術〕[Prior art]

丸棒鋼、中空棒鋼等は一般にはカリバーロールによる圧
延工程を経て製造されるが、設備費低減等を目的として
傾斜圧延機を用いる方法が試みられている。
Round steel bars, hollow steel bars, etc. are generally manufactured through a rolling process using caliber rolls, but methods using inclined rolling mills have been attempted for the purpose of reducing equipment costs.

この7i法に用いる傾斜圧延機は従来パスライン周りに
臨んで3個又は4個のロールを配設し、その軸心線は、
同側の軸端が周方向の同じ側へ向くように傾斜せしめ、
且つ同側の軸端が前記パスライン側へ向けて接近又は離
反するよう傾斜(交叉)せしめ得るようにしてあり、前
記ロールの傾斜角、交叉角が夫々所定の条件を満足する
よう設定して構成されている(特開昭59−4902号
)。
Conventionally, the inclined rolling mill used in the 7i method has three or four rolls facing around the pass line, whose axis is
Inclined so that the shaft ends on the same side face the same side in the circumferential direction,
In addition, the shaft ends on the same side can be inclined (crossed) so as to approach or move away from the pass line side, and the inclination angle and crossing angle of the rolls are set so as to satisfy predetermined conditions, respectively. (Japanese Unexamined Patent Publication No. 59-4902).

〔従来技術の問題点〕[Problems with conventional technology]

ところで上述した如き従来の傾斜圧延機にあっては、圧
延材の長手方向に!l!l!旋状のスパイラル条痕がま
ま発生し、成品の寸法精度が低下するなどの問題があっ
た。
By the way, in the conventional inclined rolling mill as mentioned above, in the longitudinal direction of the rolled material! l! l! There were problems such as the formation of spiral scratches, which reduced the dimensional accuracy of the finished product.

〔問題点を解決するための手段〕[Means for solving problems]

本発明者等は上述した如きスパイラル条痕の解消手段に
つき実験研究を行った結果、各コーン型ロールにおける
リーリング長さと密接な関係にあり、リーリング部長さ
が一定長以上となること、換言すれば、圧延材が傾斜圧
延機のロール間を通過する過程で圧延材はその軸心縁周
りに回転しつつ軸長方向に移動する、所謂螺進移動する
が、これによって圧延材の軸長方向の各部は各ロールと
順次的に接触するが、このロールのリーリング部に対す
る接触回数が所定以上となると成品の軸長方向各部の直
径のばらつきが極めて少なくなること、また接触回数を
所定以上とするためのロール条件としてはり−リング部
の長さを大きくするのが効果的であるかり−リング部を
余り長くすることはミル剛性の低下によって逆にスパイ
ラル条痕が発生するため、リーリング部の長さには上限
があり、従ってその設定には接触回数に対する影響要素
であるロールの傾斜角、ロールによる圧延材設定外径、
ロール数等を勘案して設定する必要があることを知見し
た。ちなみに従来のコーン型ロールを用いた30−ル型
の傾斜圧延機におけるロールの寸法仕様例(直径20m
mの棒材を得るのに用いるロール)はバレル長:120
鶴、リーリング部長さ:30m、ゴージ部直径:  1
2tas程度であって圧延材の長手方向各部とり−リン
グ部との接触回数はロール傾斜角12°の場合4.5回
程度である。
The inventors of the present invention conducted experimental research on means for eliminating the spiral scratches as described above, and found that there is a close relationship with the reeling length of each cone type roll, and that the reeling length is a certain length or more. Then, in the process of the rolled material passing between the rolls of the inclined rolling mill, the rolled material rotates around its axial center edge and moves in the axial length direction, so-called spiral movement, which causes the axial length of the rolled material to change. Each part in the axial direction contacts each roll sequentially, but if the number of times the roll contacts the reeling part exceeds a predetermined value, the variation in the diameter of each part in the axial direction of the product will become extremely small. It is effective to increase the length of the beam-ring part as a roll condition to achieve this.If the ring part is made too long, spiral marks will occur due to a decrease in mill rigidity, so reeling There is an upper limit to the length of the part, and its setting is determined by the factors that influence the number of contacts, such as the inclination angle of the roll, the outside diameter of the rolled material set by the roll,
We found that it is necessary to set this by taking into consideration the number of rolls, etc. By the way, an example of roll dimension specifications for a 30-roll type inclined rolling mill using conventional cone-type rolls (diameter 20m)
The roll used to obtain m bars has a barrel length of 120
Crane, reeling length: 30m, gorge diameter: 1
2tas, and the number of times each part of the rolled material contacts the ring part in the longitudinal direction is about 4.5 times when the roll inclination angle is 12 degrees.

表1は本発明者等によるロール条件と成品の直径寸法精
度との関係を求めた試験結果を示している。供試材とし
ては345Cを素材とする直径50鶴。
Table 1 shows the results of tests conducted by the present inventors to determine the relationship between roll conditions and diameter dimensional accuracy of finished products. The sample material is 50 cranes in diameter made of 345C.

60mm、 705mの棒材を用い、これを1200℃
に加熱し、延伸比を4として延伸圧延を行い軸長方向各
部の直径を検出した0表1中結果を示す欄のQ印は成品
の直径偏差が±0.05ta以内、Δ印は±0.05f
i〜±0.10m以内、X印は±0.10mm以上を示
している。
Using a 60mm, 705m bar, it was heated to 1200℃.
The diameter of each part in the axial direction was detected by heating at a stretching ratio of 4 and detecting the diameter of each part in the axial direction.0 In the column showing the results in Table 1, the Q mark indicates that the diameter deviation of the finished product is within ±0.05ta, and the Δ mark indicates ±0. .05f
i is within ±0.10 m, and the X mark indicates ±0.10 mm or more.

なお、リーリング部での接触回数は圧延材の軸方向速度
成分および回転方向速度成分を試験圧延中に測定してこ
れより求めた値を示しである。
Note that the number of times of contact at the reeling portion is a value obtained by measuring the axial velocity component and rotational velocity component of the rolled material during test rolling.

(以下余白) 表   1 表1から明らかなように、成品の寸法精度は各種条件の
うち、リーリング部に対する圧延材の軸長方向各部の接
触回数と密接な関係にあり、接触回数が7回以上では成
品の直径寸法精度が極めて良好となっていることが解る
(Leaving space below) Table 1 As is clear from Table 1, among various conditions, the dimensional accuracy of the product is closely related to the number of times each part of the rolled material in the axial direction contacts the reeling part, and the number of contacts is 7. It can be seen from the above that the diameter dimensional accuracy of the finished product is extremely good.

本発明はかかる知見に基づきなされたものであって、そ
の目的とするところはロールのリーリング部の長さを所
定値以上に設定し、圧延材の軸長方向各部がリーリング
部に対し所定回数以上接触せしめることによって、直径
寸法精度の大幅な向上を図り得るようにした傾斜圧延機
を提供するにある。
The present invention has been made based on this knowledge, and its purpose is to set the length of the reeling part of the roll to a predetermined value or more, so that each part in the axial direction of the rolled material is set to a predetermined length with respect to the reeling part. It is an object of the present invention to provide an inclined rolling mill that can significantly improve diameter dimensional accuracy by making contact more than once.

本発明に係る傾斜圧延機は、圧延材のパスライン周りに
臨ませて3個、又は4個のコーン型ロールを、その軸心
線が前記パスラインに対し所要の傾斜角、交叉角で傾斜
せしめて配設し、圧延材をその軸心線面りに回転させつ
つ軸長方向に移動させる、螺進移動を行わせて延伸圧延
する傾斜圧延機において、前記ロールのり−リング部の
長さlを下式を満足するよう設定したことを特徴とする
傾斜圧延機。
The inclined rolling mill according to the present invention has three or four cone-shaped rolls facing around the pass line of the rolled material, the axis of which is inclined at a required angle of inclination and crossing angle with respect to the pass line. In an inclined rolling mill that performs elongation rolling by performing spiral movement, in which the rolled material is rotated along its axial center line and moved in the axial direction, the length of the roll glue-ring part is An inclined rolling mill characterized in that l is set to satisfy the following formula.

m 但し、d:設定外径(圧延機出側の外径)β:傾斜角 m:コーン型ロールの数 〔実施例〕 以下本発明をその実施例を示す図面に基づき具体的に説
明する。第1図は本発明に係る傾斜圧延機(以下本発明
品という)を30一ル式に通用した場合のロール配置態
様を示す正面図、第2図は第1図の■−■線による断面
図、第3図はパスラインとロールとの位置関係を示す側
面図であり、図中1.2.3はコーン型のロール、4は
中実の圧延材を示している。3個のロール1,2.3は
いずれも略同型状であって、被圧延材4の移動方向下流
端(出側端という)寄りにゴージ部1a、2a。
m where d: set outer diameter (outer diameter at the exit side of the rolling mill) β: angle of inclination m: number of cone-shaped rolls [Example] The present invention will be specifically described below based on drawings showing examples thereof. Fig. 1 is a front view showing the arrangement of rolls when the inclined rolling mill according to the present invention (hereinafter referred to as the product of the present invention) is used in a 30-mill type, and Fig. 2 is a cross section taken along the line ■-■ in Fig. 1. 3 are side views showing the positional relationship between the pass line and the rolls. In the figures, 1, 2 and 3 indicate cone-shaped rolls, and 4 indicates a solid rolled material. The three rolls 1, 2.3 have approximately the same shape, and have gorge portions 1a, 2a near the downstream end (referred to as the exit end) in the moving direction of the rolled material 4.

3aを備え、このゴージ部1a+2a、3aを界にして
、圧延材4の移動方向上流端(入側端という)側に向け
て直径を漸次縮小され、また出側端に向けて直径を漸次
拡大され、夫々円錐台形をなす入口面tb。
3a, with the gorge parts 1a+2a and 3a as boundaries, the diameter is gradually reduced toward the upstream end (referred to as the inlet end) in the moving direction of the rolled material 4, and the diameter is gradually expanded toward the outlet end. The entrance surfaces tb each have a truncated conical shape.

2b、3b及び出口面(以下リーリング部という)1c
2b, 3b and exit surface (hereinafter referred to as reeling part) 1c
.

2c、3cを備えている。Equipped with 2c and 3c.

ロールL、2.3はいずれもその入口面1b、2b。Both rolls L and 2.3 have their entrance surfaces 1b and 2b.

3bを圧延材4の移動方向上流側に位置させた状態で、
軸心線Y−Yとゴージ部1a+2a、3aを含む平面と
の交点、即ち設定中心0を、圧延材4のパスラインX−
Xと直交する同一平面上にてバスラインX−X周りに略
等間隔に位置させて配設されている。また各ロール1,
2.3はその軸心線Y−Yが設定中心0回りに圧延材4
のパスラインX−Xとの関係において第2図に示す如く
入側端がパスラインX−Xに向けて接近するよう交叉角
γで傾斜せしめられ、しかも第1. 3図に示す如く入
側端が圧延材4の周方向の同じ側に向けて傾斜角βだけ
傾斜せしめられている。
3b is positioned on the upstream side in the moving direction of the rolled material 4,
The intersection point between the axis Y-Y and the plane including the gorge portions 1a+2a and 3a, that is, the setting center 0, is set as the pass line X- of the rolled material 4.
They are arranged at approximately equal intervals around the bus line XX on the same plane perpendicular to the line X. Also each roll 1,
2.3 is the rolled material 4 whose axial center line Y-Y is around the setting center 0.
In relation to the pass line XX of the first . As shown in FIG. 3, the inlet end is inclined toward the same side in the circumferential direction of the rolled material 4 by an inclination angle β.

ちなみに前記ロー゛ルの傾斜角βと交叉角γとは0°〈
γ<15゜ 3°〈β<20゜ 5°〈γ+β<30゜ の条件を満足するよう設定される。
Incidentally, the inclination angle β and crossing angle γ of the rolls are 0°
It is set to satisfy the following conditions: γ<15°3°<β<20°5°<γ+β<30°.

各ロール1.2.3はいずれも図示しない駆動源に連繋
されており、第1図に矢符で示す如く同方向に回転駆動
され、これらロール間に噛み込まれた圧延材4を熱間に
てその軸心線図りに回転駆動させつつ軸長方向に移動さ
れる、所謂螺進移動せしめられつつ直径を絞られる高圧
下を受けることとなる。
Each of the rolls 1, 2, and 3 is connected to a drive source (not shown), and is driven to rotate in the same direction as shown by arrows in FIG. At this point, the shaft is rotated along its axis and moved in the longitudinal direction of the shaft, so-called spiral movement, while being subjected to high pressure that narrows the diameter.

そして本発明品におけるロール1,2.3のリーリング
部1c、2c、3cの軸長歩行寸法Eは圧延材4の長手
方向各部がロール1,2.3間を通過する過程でロール
1,2.3のリーリング部1c、 2c、 3cと延ベ
ア回以上接触するよう下記(1)式の如(設定されてい
る。
The axial length walking dimension E of the reeling portions 1c, 2c, 3c of the rolls 1, 2.3 in the product of the present invention is determined by the length of the axial length walking dimension E of the reeling portions 1c, 2c, 3c of the rolls 1, 2.3 in the process in which each longitudinal portion of the rolled material 4 passes between the rolls 1, 2.3. The reeling parts 1c, 2c, and 3c of 2.3 are set as shown in the following formula (1) so as to come into contact with the reeling parts 1c, 2c, and 3c more than the total bear times.

17.6d  tanβ β≧□  ・・・(1) nを 但し、d:設定外径 m:配設ロール数(3又は4) 接触回数を7回以上としたのは既述した表1に示す試験
結果に基づくものであり、上限は特に限定しない、ただ
直径寸法精度は一定以上には向上しないため、生産効率
等を勘案して設定すればよい。
17.6d tanβ β≧□ ...(1) where n is: d: Set outer diameter m: Number of installed rolls (3 or 4) The number of times of contact is 7 or more as shown in Table 1 mentioned above. This is based on the test results, and the upper limit is not particularly limited.However, since the diameter dimensional accuracy cannot be improved beyond a certain level, it may be set in consideration of production efficiency, etc.

第4図は本発明品におけるロールの他の構成を示す説明
図であり、リーリング部lieはゴージ部11aから出
口端に至る間において、断面弧状に凹ませて構成しであ
る。このリーリング部11cの曲率半径はバスラインX
−X線面りにロールを配設したとき、リーリング部11
cの軸方向各部とパスラインX−Xとの離隔寸法がゴー
ジ部11aとパスラインX−Xとの離隔寸法に略等しく
なるよう幾何学的に算出される。
FIG. 4 is an explanatory diagram showing another configuration of the roll in the product of the present invention, in which the reeling portion lie is configured to be concave in an arcuate cross-section from the gorge portion 11a to the outlet end. The radius of curvature of this reeling portion 11c is the bus line
- When the roll is placed on the X-ray surface, the reeling part 11
The distance between each part in the axial direction of c and the pass line XX is geometrically calculated to be approximately equal to the distance between the gorge portion 11a and the pass line XX.

ちなみに−例としてロール径:  150m、ロール交
叉角:5°、ロール傾斜角:6°、9°、12°。
By the way - as an example roll diameter: 150 m, roll crossing angle: 5°, roll inclination angle: 6°, 9°, 12°.

15°、圧延機出側設定径:25flの場合における幾
何学的に算出される最適り−リング部ロール径と直線状
の円錐台形ロールのり−リング部ロール径との差(鶴:
外径差という)とゴージ部からのロール軸方向比M (
fi)との関係を第5図に示す。
15°, rolling mill exit side setting diameter: 25 fl, the difference between the geometrically calculated optimum diameter of the ring section roll and the straight truncated conical roll diameter of the ring section roll (Tsuru:
(referred to as the outer diameter difference) and the roll axial direction ratio M (from the gorge part)
fi) is shown in FIG.

以下に上記(11式の誘導過程について説明する。The induction process of the above formula (11) will be explained below.

圧延材の軸方向各部とロール1. 2. 3のリーリン
グ部1c、2c、3cとの接触回数は圧延材40軸長方
向速度成分VXと、圧延材4の周方向速度成分vtに基
づき算出される。ところでこれら軸長方向速度成分vx
、回転方向速度成分vtはゴージ部における圧延材4の
軸長方向先進率η、回転方向先進率ζ、並びにゴージ部
におけるロールの圧延材軸方向速度成分Vx、ロールの
圧延材回転方向速度成分Vtとの間には下記f21. 
(31式の如き関係がある。
Each part of the rolled material in the axial direction and the roll 1. 2. The number of times of contact with the reeling parts 1c, 2c, and 3c of No. 3 is calculated based on the axial velocity component VX of the rolled material 40 and the circumferential velocity component Vt of the rolled material 4. By the way, these axial longitudinal velocity components vx
, the rotational direction speed component vt is the axial advance rate η of the rolled material 4 in the gorge section, the rotational direction advance rate ζ, the axial speed component Vx of the roll in the gorge section, and the rotational direction speed component Vt of the roll in the rotational direction. The following f21.
(There is a relationship like equation 31.

1 + 77 = vx / Vx   −(211+
ζ=vt/Vt   ・・・(3)前記ゴージ部におけ
るロールの圧延材軸方向速度成分Vx及びロールの圧延
材回転方向速度成分Vtは夫々下記(4)、 +51式
の如く表わせる。
1 + 77 = vx / Vx - (211+
ζ=vt/Vt (3) The speed component Vx of the roll in the axial direction of the rolled material in the gorge portion and the speed component Vt of the roll in the rotational direction of the rolled material can be expressed as in the following equations (4) and +51, respectively.

πND Vx = −sinβ(鶴/秒)・+41πND Vt −−cosβ(鶴/秒”)   ・(51但し、
N:ロール回転数(r、p、a+、)D:ゴージ部直径
(鶴) 従って(2)〜(5)式から、ゴージ部における圧延材
の圧延材軸方向速度成分VX及び圧延材の圧延材回転方
向速度成分vtは夫々下記(61,+71式の如く表わ
せる。
πND Vx = -sin β (Tsuru/sec) ・+41 πND Vt −-cos β (Tsuru/sec”) ・(51 However,
N: Roll rotation speed (r, p, a+,) D: Gorge diameter (Tsuru) Therefore, from equations (2) to (5), the axial speed component VX of the rolled material in the gorge and the rolling of the rolled material The material rotational direction velocity component vt can be expressed as shown below (Equations 61 and +71).

πND vx=Vx(1+η) = −sinβ(1+η)・・
・(6) πND vt−Vt(1+ζ) = −cosβ(l+ζ)・・
・(n いま圧延材4の出側直径をd:出側回転数をn(r、p
、a+、)とすると、ゴージ部における圧延材の圧延材
回転方向成分vtは下記(8)式の如く表わせる。
πND vx=Vx(1+η) = −sinβ(1+η)...
・(6) πND vt−Vt(1+ζ) = −cosβ(l+ζ)・・
・(n Now, the diameter of the exit side of the rolled material 4 is d: The number of rotations on the exit side is n(r, p
, a+, ), the rotational direction component vt of the rolled material at the gorge portion can be expressed as shown in equation (8) below.

πnd “vt−□ ・・・(8) 従って(71,(81式から下記(9)式が導かれる。πnd "vt-□...(8) Therefore, the following equation (9) is derived from equations (71 and (81).

D n = −cosβ(1+ζ) ・・・(9)一方リー
リング部に対する圧延材の長手方向各部の接触回数をに
回とすると、kは下記α・式の如く表わせる。
D n = -cos β (1 + ζ) (9) On the other hand, if the number of times each part in the longitudinal direction of the rolled material contacts the reeling part is times, then k can be expressed as in the following α equation.

但し、m:ロール設置数(通常は3又は4)E:リーリ
ング部の長さくfi) 前記+61. ((+1. a1式からkは下記(11
)式の如く書き直せる。
However, m: Number of rolls installed (usually 3 or 4) E: Length of the reeling part (fi) above +61. ((+1. From formula a1, k is as follows (11
) can be rewritten as the formula.

1+ζ 従って(11)式から圧延材の長手方向がロールのリー
リング部と接触する回数をkとするためのり一リング部
の軸長方向寸法lは下記(12)式の如く表わせる。
1+ζ Therefore, from equation (11), the axial length l of the glue ring part can be expressed as shown in equation (12) below, where k is the number of times the longitudinal direction of the rolled material contacts the reeling part of the roll.

ところで(12)式中には前述の如く7回であり、また
fは下記(13)式の如き関数として表わされ、実験的
には0.8≦f≦1.8であることが確認されている。
By the way, in equation (12), there are 7 times as mentioned above, and f is expressed as a function as shown in equation (13) below, and it has been experimentally confirmed that 0.8≦f≦1.8. has been done.

f−f  (β、 ア、α、EN、D/d2 、  ・
・・)・・・(13) 但し、α:圧延材入側におけるロールの圧下面角 El:延伸比((圧延材の入側直径/圧延材の出側直径
)2) D/d2 :ゴージ部の直径/圧延材の出側直径 従ってfの下限値0.8を(12)式に代入すると、l
の下限値範囲が(11式で与えられることになる。
f−f (β, a, α, EN, D/d2, ・
...) ... (13) However, α: Reduction surface angle of the roll on the input side of the rolled material El: Stretching ratio ((input diameter of the rolled material/output diameter of the rolled material) 2) D/d2: Gorge Substituting the lower limit value of 0.8 for f into the equation (12), l
The lower limit range of is given by equation (11).

なお、実際にはり−リング部での接触回数を7回とする
ためには、パススケジュールに見合うfの値を(12)
式に代入することによってlの適正値が求まる。
In addition, in order to actually make the number of contacts at the beam-ring part seven times, the value of f that matches the pass schedule is set as (12).
By substituting into the formula, the appropriate value of l can be found.

次に本発明品の試験結果について説明する。Next, test results of the product of the present invention will be explained.

試験はリーリング部の寸法、形状が異なる3種類のロー
ルを用いて素材545Cの棒材(直径50鶴)を延伸比
4.0で直径25mに延伸し、その軸長方向各部の直径
を測定した。
In the test, a 545C bar (50 mm in diameter) was stretched to a diameter of 25 m at a stretching ratio of 4.0 using three types of rolls with different sizes and shapes of reeling parts, and the diameter of each part in the axial direction was measured. did.

ロールの種類 (al  リーリング部の長さ50m、リーリング面は
円錐台形であって、面角をO95°としたもの(圧延材
の長手方向各部とリーリング部との接触回数11.5回
) (bl  リーリング部の長さ50fl、リーリング面
は円錐台形であって、且つ周囲は第4図に示す如き凹面
としたちのく圧延材の長手方向各部とリーリング部との
接触回数11.5)(C)  リーリング部の長さ10
fi、リーリング面は円錐台形であって、且つ周囲は第
4図に示す如き凹面としたもの ロール及びその他の寸法諸元は次のとおりである。
Type of roll (al) The length of the reeling part is 50 m, the reeling surface is a truncated cone, and the face angle is 095° (the number of contacts between each part in the longitudinal direction of the rolled material and the reeling part is 11.5 times) ) (bl The length of the reeling part is 50 fl, the reeling surface is in the shape of a truncated cone, and the circumference is a concave surface as shown in Fig. 4. The number of times the reeling part contacts each longitudinal part of the rolled material is 11. .5) (C) Length of reeling part 10
fi, the reeling surface was a truncated cone, and the circumference was a concave surface as shown in FIG. 4. The roll and other dimensions were as follows.

ロールゴージ部直径:  150fi、交叉角:3°、
傾斜角β:15°、ロール回転数:  100r、p、
m、、加熱温度71100℃ 結果は第6図(イ)、(ロ)、(ハ)に示すとおりであ
る。第6図(イ)、(ロ)、(ハ)はいずれも横軸に軸
長方向の長さくu)を、また縦軸に直径の偏差をとって
示している。第6図(イ)。
Roll gorge diameter: 150fi, intersection angle: 3°,
Inclination angle β: 15°, roll rotation speed: 100r, p,
Heating temperature: 71,100° C. The results are shown in FIGS. 6(a), (b), and (c). In each of FIGS. 6(a), (b), and (c), the horizontal axis represents the length (u) in the axial direction, and the vertical axis represents the diameter deviation. Figure 6 (a).

(ロ)は本発明品の、また第6図(ハ)は比較例の各結
果を示している。これから明らかなように、本発明品に
依った場合には直径のばらつきが±0゜05m以内であ
って比較例に依った場合の直径のばらつきが±0.10
mmに対して格段に直径の寸法精度が向上していること
が解る。
(b) shows the results for the product of the present invention, and FIG. 6 (c) shows the results for the comparative example. As is clear from this, when the product of the present invention is used, the diameter variation is within ±0.05m, and when the comparative example is used, the diameter variation is ±0.10.
It can be seen that the dimensional accuracy of the diameter is significantly improved compared to mm.

なお、圧延材の断面形状は円形が望ましいが6角形以上
の多角形の中実又は中空棒材でもよい。
The cross-sectional shape of the rolled material is preferably circular, but it may also be a solid or hollow bar with a hexagonal or more polygonal shape.

これは被圧延材を回転させながら圧延する都合上、角が
少いものでは圧延機への衝撃が大となって好ましくなく
、4角形断面では不適当であることによる。
This is because the material to be rolled is rolled while being rotated, and if the material has few corners, the impact on the rolling mill will be large, which is undesirable, and a rectangular cross section is unsuitable.

〔幼果〕[Young fruit]

以上の如く本発明にあってはロールのリーリング部の長
さを所定値に設定して、圧延材の軸長方向の各部がリー
リング部に対し所定回数以上接触せしめることが可能と
なって直径寸法精度の大幅な向上を図り得るなど、本発
明は優れた効果を奏するものである。
As described above, in the present invention, the length of the reeling part of the roll is set to a predetermined value, and each part in the axial direction of the rolled material can be brought into contact with the reeling part more than a predetermined number of times. The present invention has excellent effects, such as being able to significantly improve diameter dimensional accuracy.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明品におけるロールの配置態様を示す正面
図、第2図は第1図のn−n線による断面図、第3図は
ロールの傾斜角を示す側面図、第4図は本発明品に用い
るロールの他の構成を示す説明図、第5図はり−リング
部が直線状のロールと凹円弧状ロールとのロール軸長方
向への外径差の一例を示すグラフ、第6図(イ)、(ロ
)。 (ハ)は本発明品の比較試験結果を示すグラフである。 1・・・ロール 1c・・・リーリング部 2・・・ロ
ール2c・・・リーリング部 3・・・ロール 3C・
・・リーリング部 4・・・圧延材 特 許 出願人  住友金属工業株式会社代理人 弁理
士  河  野  登  夫喜1図 算 2 図 答 3 図 す 簿 45fJ
Fig. 1 is a front view showing how the rolls are arranged in the product of the present invention, Fig. 2 is a sectional view taken along line nn in Fig. 1, Fig. 3 is a side view showing the inclination angle of the rolls, and Fig. 4 is An explanatory diagram showing another configuration of the roll used in the product of the present invention, FIG. Figure 6 (a), (b). (c) is a graph showing the comparative test results of the products of the present invention. 1... Roll 1c... Reeling part 2... Roll 2c... Reeling part 3... Roll 3C.
... Reeling section 4 ... Rolled material patent Applicant Sumitomo Metal Industries Co., Ltd. Agent Patent attorney Noboru Kono 1 Illustration 2 Illustrations 3 Diagram book 45fJ

Claims (1)

【特許請求の範囲】 1、圧延材のパスライン周りに臨ませて3個、又は4個
のコーン型ロールを、その軸心線が前記パスラインに対
し所要の傾斜角、交叉角で傾斜せしめて配設し、圧延材
をその軸心線回りに回転させつつ軸長方向に移動させる
、螺進移動を行わせて延伸圧延する傾斜圧延機において
、前記ロールのリーリング部の長さlを下式を満足する
よう設定したことを特徴とする傾斜圧延機。 l≧(17.6d tanβ)/m 但し、d:設定外径(圧延機出側の外径) β:傾斜角 m:コーン型ロールの数
[Claims] 1. Three or four cone-shaped rolls are placed facing around the pass line of the rolled material, and their axes are inclined at a required angle of inclination and crossing angle with respect to the pass line. In an inclined rolling mill that performs elongation rolling by performing spiral movement, in which the rolled material is rotated around its axis and moved in the axial direction, the length l of the reeling part of the roll is An inclined rolling mill characterized by being set to satisfy the following formula. l≧(17.6d tanβ)/m where d: Set outer diameter (outer diameter at rolling mill exit side) β: Inclination angle m: Number of cone-shaped rolls
JP9435585A 1985-04-30 1985-04-30 Cross helical rolling mill Granted JPS61253102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9435585A JPS61253102A (en) 1985-04-30 1985-04-30 Cross helical rolling mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9435585A JPS61253102A (en) 1985-04-30 1985-04-30 Cross helical rolling mill

Publications (2)

Publication Number Publication Date
JPS61253102A true JPS61253102A (en) 1986-11-11
JPH0563241B2 JPH0563241B2 (en) 1993-09-10

Family

ID=14107979

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9435585A Granted JPS61253102A (en) 1985-04-30 1985-04-30 Cross helical rolling mill

Country Status (1)

Country Link
JP (1) JPS61253102A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4063035A4 (en) * 2019-11-22 2022-12-21 JFE Steel Corporation Rolling mill for diameter reduction rolling, and strip manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594902A (en) * 1982-06-30 1984-01-11 Sumitomo Metal Ind Ltd Production of metallic material having circular section
JPS59147702A (en) * 1983-02-10 1984-08-24 Sumitomo Metal Ind Ltd Manufacture of metallic material with circular cross section

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS594902A (en) * 1982-06-30 1984-01-11 Sumitomo Metal Ind Ltd Production of metallic material having circular section
JPS59147702A (en) * 1983-02-10 1984-08-24 Sumitomo Metal Ind Ltd Manufacture of metallic material with circular cross section

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4063035A4 (en) * 2019-11-22 2022-12-21 JFE Steel Corporation Rolling mill for diameter reduction rolling, and strip manufacturing method

Also Published As

Publication number Publication date
JPH0563241B2 (en) 1993-09-10

Similar Documents

Publication Publication Date Title
JPS61253102A (en) Cross helical rolling mill
JPS594902A (en) Production of metallic material having circular section
US5649440A (en) Method for calibration of assel rollers
SU774626A2 (en) Screw rolling mill adjusting method
SU832852A1 (en) Article-rolling method
JP2626293B2 (en) Straightening device for long material with circular cross section
SU1142193A1 (en) Method of straightening ring components
KR101277744B1 (en) Shape measuring apparatus of winding coil and shape measuring method thereof
JPH0576364B2 (en)
JPS613601A (en) Production of metallic material having circular section
JPS6244523A (en) Manufacture of austenitic stainless steel bar
RU2112621C1 (en) Section rolling method
JP3082415B2 (en) Tube rolling method
JPH05228514A (en) Method for expanding and rolling tube by skew rolling mill
JPS60206514A (en) Skew rolling method of metallic pipe
JPS6046805A (en) Control method of mandrel mill
JPH071066A (en) Manufacture of member having cross-sectional odd shape and its device
SU707624A1 (en) Intermittent tube-rolling method
JPS6325844B2 (en)
SU959855A2 (en) Multiroll pass
JPS56151105A (en) Cross helical rolling mill for pipe and rolling method
JPH0238281B2 (en)
JPS6293008A (en) Rolling method for h shape with adjustable web height
JP2001259709A (en) Method and device for rolling seamless steel tube
JPS6149709A (en) Method for preventing wall-thickness deviation of steel pipe in hot stage