JPS594902A - Production of metallic material having circular section - Google Patents

Production of metallic material having circular section

Info

Publication number
JPS594902A
JPS594902A JP11436282A JP11436282A JPS594902A JP S594902 A JPS594902 A JP S594902A JP 11436282 A JP11436282 A JP 11436282A JP 11436282 A JP11436282 A JP 11436282A JP S594902 A JPS594902 A JP S594902A
Authority
JP
Japan
Prior art keywords
angle
rolling
rolled
rolls
inclination angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11436282A
Other languages
Japanese (ja)
Other versions
JPH0124563B2 (en
Inventor
Chihiro Hayashi
千博 林
Kazuyuki Nakasuji
中筋 和行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP11436282A priority Critical patent/JPS594902A/en
Priority to AU16285/83A priority patent/AU562483B2/en
Priority to AT0236583A priority patent/AT391640B/en
Priority to DE19833323232 priority patent/DE3323232A1/en
Priority to US06/508,720 priority patent/US4512177A/en
Priority to SE8303709A priority patent/SE464617B/en
Priority to CA000431444A priority patent/CA1217363A/en
Priority to FR8310745A priority patent/FR2529481B1/en
Priority to IT67719/83A priority patent/IT1203830B/en
Priority to GB08317789A priority patent/GB2123732B/en
Priority to BE0/211096A priority patent/BE897182A/en
Publication of JPS594902A publication Critical patent/JPS594902A/en
Publication of JPH0124563B2 publication Critical patent/JPH0124563B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • B21B1/20Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section in a non-continuous process,(e.g. skew rolling, i.e. planetary cross rolling)

Abstract

PURPOSE:To enable the production of a steel material having a circular section such as a round steel bar or the like with high production efficiency by rolling a continuously cast billet with a skew rolling mill having a specific angle of inclination and angle of crossing. CONSTITUTION:A continuously cast billet 30 having center porosity is rolled as a material to be rolled with a skew rolling mill having 3-4 pieces of cone- shaped rolls 31, 32, 33. The rolls 31-33 have gorging parts 31a-33a, inlet surfaces 31b-33b and outlet surfaces 31c-33c, and the axial line X-Y thereof is inclined by an angle gamma of crossing and an angle beta of inclination to the pass line X-X of the material 30 to be rolled. The values gamma, beta are so set as to attain 0 deg.<gamma<15 deg., 3 deg.<beta<20 deg., 5 deg.<gamma+beta<30 deg., whereby the center porosity of the billet 30 is press-stuck. Since the skew rolling mill is used to the continuously cast billet, the steel material having a circular section is rolled easily.

Description

【発明の詳細な説明】 本発明は傾斜圧延機を用いて丸棒鋼等の円形断面金属材
を製造する方法に関する0 丸棒鋼は一般にはカリバーロールによる圧延工程を経て
製造さnるが、設備費低減等を目的として傾斜圧延機を
用いる方法が試らnている。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing circular cross-section metal materials such as round steel bars using an inclined rolling mill.Round bars are generally manufactured through a rolling process using caliber rolls, but the equipment cost A method using an inclined rolling mill has been tried for the purpose of reducing the amount.

特公昭46−43980号公報に係る「傾斜ロール圧延
機」は中実材を1パスで高圧下できる高加工度圧延機と
して著名なものである。第31図は被圧延材10の出側
から示した正面図、第2図Fi!1図の■−■線による
断面図、第3図は傾斜角βを示す側面図である。被圧延
材lOの入側直径を出側のそ扛よりも十分大径とした、
片端支持の3個のコーン型ロール11,12.13(ロ
ール軸心線をY−Yで示す)がパスラインX−X1中心
にしてロールハウジング(図示せず)と共に回転するよ
うにしたものである。そして本願発明において重要な要
素となる交叉角γ(上記公報ではαとしている)は公報
中には明記されていないが一50’〜−60°(交叉角
γはロール軸端部が被圧延材10の入口側で接近してい
る状態を正、出口側で接近している状態を負として表わ
す)、同じく傾斜角βが3°〜6°となる工うにしてい
る。そしてその効果として被圧延材10の表面ねじれが
小さいことが挙けられているが、本願発明者等の実験に
よる場合はポロシティ等の内部欠陥の改善効果がみられ
ず、また円周方向の剪断歪が大きく高品質の丸棒鋼製造
には不適当である。
The "inclined roll rolling mill" disclosed in Japanese Patent Publication No. 46-43980 is famous as a high-workability rolling mill that can reduce a solid material to a high degree in one pass. FIG. 31 is a front view of the rolled material 10 from the exit side, and FIG. 2 Fi! 1 is a sectional view taken along the line ■-■, and FIG. 3 is a side view showing the inclination angle β. The entrance diameter of the rolled material IO is made sufficiently larger than the exit diameter.
Three cone-shaped rolls 11, 12, and 13 supported at one end (roll axes are indicated by Y-Y) rotate together with a roll housing (not shown) about the pass line X-X1. be. The intersecting angle γ (referred to as α in the above publication), which is an important element in the present invention, is not specified in the publication, but is 50' to -60° (the intersecting angle γ means that the end of the roll shaft is the material to be rolled). 10, the state in which they approach on the inlet side is expressed as positive, and the state in which they approach on the exit side is expressed as negative), and the inclination angle β is similarly designed to be 3° to 6°. As an effect, it is said that the surface twist of the rolled material 10 is small, but according to the experiments conducted by the inventors of the present application, no improvement effect on internal defects such as porosity was observed, and the shearing in the circumferential direction It is unsuitable for manufacturing high-quality round steel bars because of its large distortion.

また「塑性と加工」第7巻第67号及び第10巻第1.
04号には[ヘリカルロール加工の研究Jと題する論文
が夫々第1報、第2報として掲載されているが、この論
文に係る技術は第1〜3図同様に示す第4〜6図(但し
第4図は入側から示す)に表した如く被圧延材20の周
・りに配した両端支持の3個のコーン型ロール21.2
2.23を天々に回転させて、被圧延材20を回転させ
ながら圧延するものであり、交叉角γが0°、傾斜角β
が0°〜14°の場合についての実験結果について報告
している。これによ扛ば円周方向の剪断歪は前述の公知
技術よりも減少すると思わnるが、表面ねじれが太とな
る。そしてこの技術により本願発明者等が行った実験結
果によnば、ポロシティ等の内部欠陥の改善効果は十分
には得らnない。また報告している。
Also, "Plasticity and Processing" Vol. 7 No. 67 and Vol. 10 No. 1.
In No. 04, papers titled [Research on Helical Roll Processing J] are published as the first and second reports, respectively, and the technology related to this paper is shown in Figures 4 to 6, which are shown similarly to Figures 1 to 3. However, as shown in FIG. 4 (shown from the entry side), three cone-shaped rolls 21.2 supported at both ends are arranged around the rolled material 20.
2.23 is rotated vertically to roll the material to be rolled 20 while rotating, and the intersection angle γ is 0° and the inclination angle β
The experimental results for the case where the angle is 0° to 14° are reported. Although it is thought that by applying this method, the shear strain in the circumferential direction is reduced compared to the above-mentioned known technique, the surface twist becomes thicker. According to the results of experiments conducted by the inventors of the present invention using this technique, a sufficient improvement effect on internal defects such as porosity cannot be obtained. I am reporting again.

以上のように従来の傾斜圧延機による丸棒鋼製造技術に
は未解決の問題が多く、実用化さnていないのが実情で
ある。
As mentioned above, there are many unresolved problems in the conventional round steel manufacturing technology using an inclined rolling mill, and the reality is that it has not been put into practical use.

本発明は斯かる技術的背景の下になさlrLだものであ
って、その目的とするところはlパスで高加工度圧延が
でき、生産能率が極めて晶い円形断面金属材の製造方法
を提供するにある。
The present invention was made against this technical background, and its purpose is to provide a method for manufacturing a circular cross-section metal material that can be rolled with a high degree of workability in one pass and has extremely high production efficiency. There is something to do.

本発明の他の目的は円周方向の剪断歪が極めて少く、離
別工材(熱間変形能が劣悪なもの)の圧延に際しても、
剪断応力に基因して介在物を起点に内部側nが発生する
ことがない円形断面金属材の製造方法を提供するにある
Another object of the present invention is that the shear strain in the circumferential direction is extremely small, and even when rolling separated workpieces (those with poor hot deformability),
It is an object of the present invention to provide a method for manufacturing a metal material with a circular cross section in which no inner side n is generated starting from inclusions due to shear stress.

本発明の艷に他の目的は連続鋳造に工って製作さnたビ
レット(一般にセンターポロシティを有している)から
円形断面金属材を高能率で製造することを可能とする、
即ち円周方向剪断歪を低減してポロシティを起点とする
内部破壊、所謂マンネスマン破壊を防止すると共に、十
分な圧延を行つて、ポロシティを圧着してそn自体を減
少させることによシ、連続鋳造ビレット力・らの傾斜圧
延機による円形断面金属材の製造を可能とする方法を提
供するにある。
Another object of the present invention is to enable highly efficient production of circular cross-section metal materials from billets (generally having center porosity) produced by continuous casting.
In other words, by reducing shear strain in the circumferential direction to prevent internal fractures originating from porosity, so-called Mannesmann fractures, and by performing sufficient rolling to compress porosity and reduce its n itself, continuous rolling can be achieved. The object of the present invention is to provide a method that enables the production of circular cross-section metal materials by means of a cast billet force and tilt rolling mill.

本発明に係る円形断面金属材の製造方法はパスライン周
りに臨んで3個又は4個のロールが配設され、その軸心
線は、同側の軸端が周方向の同じ側へ向く工うに傾斜せ
しめらル、且っ内1側の軸端が前記パスライン側へ向け
て接近又は離反するよう傾斜(交叉)せしめ得るように
してあり、前記ロール全天々の両端にて支持している交
叉型の傾斜圧延機を用い、前記ロールの傾斜角βと交叉
角γとが 0°〈γ(15゜ 3°〈β〈20゜ 5°〈γ+β〈300 の条件を満足する状態で棒状の素材の外径を軟り、延伸
圧延する工程を含むこと全特徴とする。
In the method for manufacturing a circular cross-section metal material according to the present invention, three or four rolls are arranged facing around the pass line, and the axis lines of the rolls are arranged such that the shaft ends on the same side face the same side in the circumferential direction. The shaft end on the inner 1 side can be tilted (crossed) toward or away from the pass line side, and is supported at both ends of the entire roll. Using a cross-type inclined rolling mill, the rolls are rolled into a bar shape with the inclination angle β and the crossing angle γ satisfying the following conditions: 0° < γ (15° 3° < β < 20° 5° < γ + β < 300 All characteristics include the process of softening the outer diameter of the material and stretching and rolling it.

次に本発明方法會その実施状態を示す図面に基き具体的
に説明する。
Next, the method of the present invention will be specifically explained based on the drawings showing its implementation state.

第7図は本発明方法を30−ルで実施する場合における
圧延状態を被圧延材3oの入側から示す正面図、第8図
は第7図の鴇−■線による断面図、第9図は傾斜角βを
示す側面図である。3個のロール31,32.33Fi
、被圧延材3oの出側端部にゴージ部31a、32a、
33a f備え、ゴージ部を界にして被圧延制30の入
側は軸端に向けて漸次直径全縮小さn、また出側は拡大
さfして円錐台形をなす入口面311)、32b、33
b及び出口面31c、32c、33cを備えている。こ
のようなコーン型のロール31,32.33はいずれも
その入口面31t+、32b、33bを被圧延材30の
移動方向上流側に位置させた状態とし、また軸心線Y−
Yと、ゴージ部31a、32a、33af含む平面との
交点0(以下ロール設定中心という。
Fig. 7 is a front view showing the rolling state from the entrance side of the rolled material 3o when the method of the present invention is carried out at 30 mm, Fig. 8 is a sectional view taken along the line -■ in Fig. 7, and Fig. 9 is a side view showing the inclination angle β. 3 rolls 31, 32.33Fi
, gorge parts 31a, 32a at the exit end of the rolled material 3o,
33a and f, the entrance side of the rolling machine 30 with the gorge section as a boundary gradually reduces in diameter completely n toward the shaft end, and the exit side widens f to form a truncated conical entrance surface 311), 32b, 33
b and outlet surfaces 31c, 32c, and 33c. Such cone-shaped rolls 31, 32, 33 have their entrance surfaces 31t+, 32b, 33b located upstream in the moving direction of the rolled material 30, and the axis Y-
The intersection point 0 between Y and the plane including the gorge portions 31a, 32a, and 33af (hereinafter referred to as the roll setting center).

第1図〜第6図とも同様に図示)を、被圧延材3゜のパ
スラインx−又と直交する同一平面上にてバスラインX
−X周シに略等間隔に位置せしめるぺ〈配設さnている
。そして各ロール31.32.33の軸心線Y−Yはロ
ール設定中心口りに、被圧延材30のパスラインx−x
との関係において第8図に示す工うに前方の軸端がパス
ラインx−xに向けて接近するよう交叉角γだけ又又(
傾斜)せしめらn、且つ第7図、第9図に示すように前
方の軸端が被圧延材30の周方向の同じ側に向けて傾斜
角βだけ傾斜せしめられている。ロール31゜32.3
3Fi図示しない駆動源に連繋さnておシ、第7図に矢
符で示す如く同方向に回転駆動さn、こ扛らのロール間
に噛み込まnた熱間の被圧延材30はその軸心線回シに
回転駆動されつつ軸長方向に移動さnる、即ち螺進移り
jせしめら扛つつ外径を絞らn高圧下を受けることにな
る。
1 to 6) on the same plane perpendicular to the pass line x-orthogonal to the 3° pass line
- They are arranged at approximately equal intervals around the X circumference. The axis line Y-Y of each roll 31, 32, 33 is set at the roll setting center opening, and the pass line x-x of the rolled material 30 is
In relation to this, the machine shown in FIG.
As shown in FIGS. 7 and 9, the front shaft end is inclined toward the same side in the circumferential direction of the material to be rolled 30 by an inclination angle β. Roll 31°32.3
3Fi is connected to a drive source (not shown) and rotated in the same direction as shown by arrows in FIG. 7. The hot rolled material 30 caught between these rolls is While being rotationally driven by the shaft center line, it is moved in the longitudinal direction of the shaft, that is, the outer diameter is narrowed while being screwed, and subjected to high pressure.

熱間の被圧延材30の断面形状は円形が望ましいが6角
形以上の多角形でもよい。こ扛は被圧延材を回転させな
がら圧延する都合上、角が少いものでは圧延機への衝撃
が大となって好ましくなく、4角形断面では不適当であ
る。
The cross-sectional shape of the hot-rolled material 30 is preferably circular, but may be a hexagonal or more polygonal shape. Since this roll rolls the material while rotating it, a roll with few corners is undesirable because it will cause a large impact on the rolling mill, and a square cross section is unsuitable.

さて前述したように本発明方法においてγ、β。Now, as mentioned above, in the method of the present invention, γ and β.

γ+βに前述の如き条件を課している。γの上限値ヲ1
5°とし九のは、こn以上では被圧延材の移動方向の下
流側において、ロールチョックのパスラインに最も近い
部分とロール端面とで干渉を起こすからである。また下
限fiItを0°としたのは、そn以下、つまシγ=0
又は負では被圧延材の中央部付近での円周方向の剪断変
形全解消して長平方向の寸法精度を確保することが不可
能になるからである。
The conditions described above are imposed on γ+β. Upper limit of γ 1
The reason why the angle is set at 5° is that if the angle is greater than n, interference will occur between the roll end face and the portion of the roll chock closest to the pass line on the downstream side in the moving direction of the rolled material. Also, the lower limit fiIt is set to 0° because it is less than or equal to n, and γ=0
Or, if it is negative, it becomes impossible to completely eliminate shear deformation in the circumferential direction near the center of the rolled material and ensure dimensional accuracy in the longitudinal direction.

βの上限値を20°としたのはγの上限値規定理由と同
様である。下限値t73°としたのはそn以下では被圧
延材中央部付近での円周方向の剪断変形金小さくし、連
続鋳造さnた被圧延材におけるポロシティ圧着効果を十
分に得ることが不可能だからである。
The reason why the upper limit value of β is set to 20° is the same as the reason for specifying the upper limit value of γ. The lower limit t is set at 73° because below that value, it is impossible to reduce the shear deformation in the circumferential direction near the center of the rolled material, making it impossible to obtain a sufficient porosity compression effect in the continuously cast rolled material. That's why.

T+βの上限1i1jt30°としたのはこれ以上では
上述した如きロールチョックとロールとの干渉が著しく
なるばかりでなく、ロールを支持するベアリングをロー
ルチョック内に収めておくことが困難となり、ロールの
両持構造を維持できなくなるからである。γ十βの下限
値を5°としたのはこn以下では冥用的圧延能率(速I
K)を確保できず、また連続鋳造さnた被圧延材のポロ
シティを圧着させることが困難になるからである、 γ、βの条件を前述し次従来技術のγ、βの値と比較す
るとγの値が正であることが顕著に相違しており、これ
がポロシティの圧着性向上、円周方向剪断応力場の除去
の抑制に効果を発揮する。
The reason for setting the upper limit of T+β to 1i1jt30° is that if it exceeds this value, not only will the interference between the roll chock and the roll as described above become significant, but it will also be difficult to keep the bearing that supports the roll in the roll chock, which makes it difficult to maintain the roll support structure. This is because it will not be possible to maintain the The reason for setting the lower limit of γ and β to 5° is that below n, the rolling efficiency (speed I
K) cannot be ensured, and it becomes difficult to compress the porosity of the continuously cast rolled material.The conditions for γ and β are described above, and the following is compared with the values of γ and β of the conventional technology. A significant difference is that the value of γ is positive, which is effective in improving the porosity compressibility and suppressing the removal of the circumferential shear stress field.

なおロールを両端支持構造とするのはミル剛性を強化し
、ヌパイラルマークの発生を防止するためであり、両端
支持構造自体は前記[ヘリカルロール加工の研死」によ
って公知のことである0次に本発明方法による効果を明
らかにするためにむつ九種々の実施結果について説明す
る。被圧延材はいず牡も545C炭素鋼であって、12
00℃に加熱して圧延した0 実施例1 円周方向の剪断歪 直径’101N、長さ300朋の母材に対し、第10図
に示す如く軸心方向に平行に5本のビン40(2,5朋
φ)を同−半径上に位置するように埋め込み、第11図
に示すような圧延後におけるビン40の流1rL(メタ
ルフローを表す)により被圧延材の横断面における円周
方向の剪断歪を調査した0圧延の条件としては傾斜角β
=7°に固定し、交叉角γは本発明の範囲である9°及
び本願発明の範囲外である0°、−9°の3通りにし、
各交叉角につき面積リダクションを60%、70%、7
5%、80%の4通りに変化させた。その結果をビンの
流fLを実線で結んだ図にて第12図に示す。この結果
から面積リダクションが小さい場合には交叉角γの影響
に大差はないが面積りダクションが大となるにつれ円周
方向の剪断歪に差異が生じ、γ=9°の場合が最も小さ
いことが明らかである。そしてγ=9°の場合には被圧
延材の横断面中央部に円周方向の剪断歪は現れない(メ
タルフローは直線状を呈する)がγ=−9°の場合には
横断面中央部を含む断面円全域に明瞭な円周方向剪断変
形が現扛る。
The reason why the roll is supported at both ends is to strengthen the mill rigidity and prevent the occurrence of spiral marks. In order to clarify the effects of the method of the present invention, various implementation results will be explained. Both rolled materials are 545C carbon steel, and 12
Example 1 A base material having a circumferential shear strain diameter of 101 N and a length of 300 mm was heated to 00° C. and rolled. As shown in FIG. 10, five bottles 40 ( 2,5 mmφ) are embedded so as to be located on the same radius, and the flow 1rL (representing metal flow) of the bottle 40 after rolling as shown in FIG. The inclination angle β is the zero rolling condition for investigating the shear strain of
= 7°, and the intersection angle γ is set in three ways: 9°, which is within the scope of the present invention, and 0°, -9°, which is outside the scope of the present invention.
Area reduction for each intersection angle: 60%, 70%, 7
It was changed in four ways: 5% and 80%. The results are shown in FIG. 12 as a diagram connecting the bottle flow fL with a solid line. This result shows that when the area reduction is small, there is no big difference in the influence of the cross angle γ, but as the area reduction becomes larger, there is a difference in the shear strain in the circumferential direction, and it is the smallest when γ = 9°. it is obvious. When γ = 9°, no shear strain in the circumferential direction appears at the center of the cross section of the rolled material (metal flow exhibits a straight line), but when γ = -9°, no shear strain appears at the center of the cross section of the rolled material. Clear circumferential shear deformation is present in the entire cross-sectional circle including .

なおγ=0°の場合は両者の中間の状態となる。つまシ
r>0°、しかもγの値を大とすることにより被圧延材
の横断面中央部での剪断歪を防止することができる。円
周方向剪断歪が存在しないということは円周方向の剪断
応力場が存在しないことを意味し、従って本願発、明に
よる場合はセンターポロシティからの亀裂は発生せず、
所謂マンネスマン破壊は生じない。
Note that when γ=0°, the state is intermediate between the two. By setting r>0° and increasing the value of γ, it is possible to prevent shear strain at the center of the cross section of the rolled material. The absence of shear strain in the circumferential direction means that there is no shear stress field in the circumferential direction, and therefore, in the case according to the present invention, cracks from the center porosity do not occur,
So-called Mannesmann destruction does not occur.

実施例2 センターポロシティの圧着性能直径70朋、
長さ30ONIRの母相中心に2 MMφ、4MMφ。
Example 2 Crimping performance of center porosity Diameter 70 mm,
2 MMφ and 4MMφ at the center of the matrix of length 30ONIR.

6朋φの孔(センターボロンテイヲ模擬)を人工的に穿
孔したものを素材として傾斜角β=3°〜13゜の間で
6通りに変化させて圧延に、Il:る圧着程度を調べた
。交叉角γは実施例1同様本願発明の範囲であるγ−9
°と本願発明の範囲外であるγ=0°。
The degree of crimping during rolling was investigated by changing the inclination angle β in 6 ways between 3° and 13° using a material with a 6 mm diameter hole (simulating a center hole) drilled artificially. . The crossing angle γ is γ-9, which is within the scope of the present invention as in Example 1.
° and γ=0°, which is outside the scope of the present invention.

−9°との3通りとした。なお面積リダクションは53
%(70朋φ−33朋φ)とした。第13図(a) 、
 (b) 。
-9°. The area reduction is 53
% (70 mm φ - 33 mm φ). Figure 13(a),
(b).

(C)はその結果を示している。(C) shows the results.

この結果から次の点が明らかである。即ちγ=9°の場
合は4 NM−までの人工孔がβ=13°で圧着するが
、γ=−9°の場合はβ=13°としても最小の2朋φ
の人工孔さえ圧着しない。γ−00の場合は両者の中間
であり、β=13°において2酊φの人工孔が圧着さn
る。また交叉角γの如何を問わず傾斜角βは人工孔の縮
径機能に影響を及ぼし、βが大である程縮径効果が太き
い。
The following points are clear from this result. That is, when γ = 9°, an artificial hole up to 4 NM- is crimped at β = 13°, but when γ = -9°, even if β = 13°, the minimum 2 mm φ
Even the artificial hole is not crimped. In the case of γ-00, it is between the two, and an artificial hole of 2φ is crimped at β=13°.
Ru. In addition, regardless of the intersection angle γ, the inclination angle β affects the diameter reduction function of the artificial hole, and the larger β is, the greater the diameter reduction effect.

こnによりγ〉0°、しり・も高交叉角、高傾斜角に設
定する程センターポロシティの圧着性能が高くなるとい
うことができる。
From this, it can be said that the crimp performance of the center porosity becomes higher as γ>0°, higher intersection angles and higher inclination angles are set.

実施例3 センターボロンティの圧着性能次に連続朽造
によって得た母材を用いて実際のセンターポロシティの
圧着性能を調べた。
Example 3 Crimping performance of center porosity Next, the crimp performance of actual center porosity was investigated using a base material obtained by continuous rotting.

被圧延拐は380朋φの大断面連続鋳造鋳片の中心部を
用いて直径70MM、長さ300朋に削り出した丸鋼で
あってこれ全面積りダクション78%(’7<)φ  
 φ 朋→33+u)で圧延した。圧延条件は傾斜角β=4°
、8°、12°の3通り、交叉角γ=9°、0’、−9
゜の3通り、合計9通りとした。そして圧延中に圧延機
を停止して途中止め材を作り、半割にしてポロシティの
圧延状況を調査した。第14図の写真はその状態を示し
ている。この結果から以下の点が明らかになった。
The rolled steel is a round steel machined to a diameter of 70 mm and a length of 300 mm using the center part of a 380 mm φ large cross-section continuously cast slab, and the total area reduction is 78% ('7 <) φ
φ 朋→33+u). The rolling conditions are inclination angle β = 4°
, 8°, 12°, intersection angle γ = 9°, 0', -9
There were 3 ways of ゜, 9 ways in total. Then, the rolling mill was stopped during rolling, a stopper material was made, and the rolling condition of the porosity was investigated by cutting the material in half. The photograph in FIG. 14 shows this condition. The following points became clear from these results.

I)交叉角γ−−9°の場合は母材のポロシティが起点
となって円周方向の剪断応力により欠陥が拡大する、漸
開マンネスマン破壊の現象がある。
I) When the intersection angle is γ - -9°, there is a phenomenon of gradual Mannesmann fracture, in which the porosity of the base material becomes the starting point and the defect expands due to shear stress in the circumferential direction.

傾斜角βが大きいほどこの傾向は改善さしるが健全な内
部性状を得ることは困難である。
This tendency is improved as the inclination angle β becomes larger, but it is difficult to obtain sound internal properties.

11)交叉角γ=9°の場合は、傾斜角βが低い場合で
もポロシティが完全に圧着する。
11) When the crossing angle γ=9°, the porosity is completely crimped even if the inclination angle β is low.

II+)交叉角γ=0°の場合は両者の中間の状態ヲ示
し、傾斜角が大きい場合にはポロシティの圧着状況は良
い。
II+) When the crossing angle γ=0°, a state is intermediate between the two, and when the inclination angle is large, the porosity crimping condition is good.

このような結果から連続鋳造鋳片を被圧延材とする場合
にはそのポロシティを圧着してしまう上でγ〉0°の高
交叉角、且つ高傾斜角が望ましい。
From these results, when a continuous cast slab is used as a material to be rolled, a high intersecting angle of γ>0° and a high inclination angle are desirable in order to compress the porosity.

実施例4 表面ねじ扛 前述した2つの公知例の技術に比較して本願発明が劣る
点は表面ねじ扛である。第15図(a)’、 (b)に
示すように直径7Off、長さ300朋の母材表面の軸
長方向に深さI MM、幅I MNのs41を形成した
ものを面積リダクション78%(7ortrrpr’f
i−+33gg+’)にて圧延した。この場合の圧延後
の#441のねじn角ψ(第16図に示す如く軸心線に
平行な表面上の直線と溝痕跡とのなす角)を測定した結
果を第17図に示す。なお圧延条件は傾斜角βが3°〜
13°の6通り、交叉角γが9°、0°、−9°の3通
り合計18通りである。この結果から次の点が明らかで
ある。
Embodiment 4 Surface threading The present invention is inferior to the two known techniques described above in surface threading. As shown in FIGS. 15(a)' and 15(b), a s41 with a depth of I MM and a width of I MN is formed in the axial direction on the surface of a base material with a diameter of 7 Off and a length of 300 mm, and the area is reduced by 78%. (7ortrrpr'f
i-+33gg+'). FIG. 17 shows the results of measuring the n-angle ψ (the angle between the groove trace and a straight line on the surface parallel to the axis line as shown in FIG. 16) of the #441 screw after rolling in this case. The rolling conditions are that the inclination angle β is 3°~
There are 6 ways of 13 degrees and 3 ways of intersection angle γ of 9 degrees, 0 degrees, and -9 degrees, a total of 18 ways. The following points are clear from this result.

1) γ=−9°の場合には表面ねじれが小さい。1) When γ=-9°, the surface twist is small.

11)γ=9°の場合には表面ねじ扛が大きい。但し、
傾斜角βを大きくすることによりこの欠点を補うことが
できる。
11) When γ=9°, the surface threading is large. however,
This drawback can be compensated for by increasing the inclination angle β.

111)  γ=0°の場合は両者の中間となる。111) When γ=0°, it is between the two.

つまり、本願発明の実施に際しては表向ねじ−fli小
さくする上で傾斜角βを高目に設定する方が望ましい。
In other words, when implementing the present invention, it is desirable to set the inclination angle β to be high in order to reduce the surface thread -fli.

実施例5 軸長方向寸法精度 直径’IONM、長さ300gmの母材を面積りダクシ
ョン67%(70朋φ→40111Wφ)にて圧延して
長手方向の寸法変化を調べた。圧延条件は傾斜角βが4
゜交叉角γが9°、0°、−9°の3通りである。第1
8図(a) 、 (b) 、 (0)はその結果を示し
ている。これによnばγ=9°では±0.10%、γ=
−9°では±0.フ5チ、γ=0°では両者の間の±0
.17%程度を示し、γ〉0°が寸法fllf度を確保
する上で有効であることが明らかである。
Example 5 Dimensional Accuracy in Axial Direction A base material with a diameter of IONM and a length of 300 gm was rolled at an area reduction of 67% (70 mm φ → 40111 W φ), and dimensional changes in the longitudinal direction were investigated. The rolling condition is that the inclination angle β is 4.
There are three crossing angles γ: 9°, 0°, and -9°. 1st
Figures 8 (a), (b), and (0) show the results. Accordingly, when γ=9°, ±0.10%, γ=
-9° is ±0. 5, ±0 between the two at γ=0°
.. It is clear that γ>0° is effective in ensuring the dimension fllf degree.

実施例6 圧延速度 直径”10114の母材全面積りダクション78%(7
0朋φ−33闘φ)に圧延する場合における圧延速度を
調べた。圧延条件はロール回転数: 1ooR,p、M
、 。
Example 6 Rolling speed Diameter: 10114 Total area reduction of 78% (7
The rolling speed in the case of rolling to 0mmφ - 33mmφ) was investigated. Rolling conditions are roll rotation speed: 1ooR, p, M
, .

ロールのゴージ部直径:250朋φであシ、傾斜角βが
3°〜13°の6通り、交叉角γが9°、0°、−9゜
の3通りの合計18通シとした。第19図はその結果を
示しておシ、γ=9°の場合の圧延速度が最も高速であ
り、また傾斜角βが大きくなる程圧延速度が大となる傾
向を示す。従って圧延能率の向上を図る上でもγ〉0°
、望ましくは高交叉角とし、また高傾斜角とするのがよ
い。
The diameter of the gorge portion of the roll was 250 mm, 6 types of inclination angle β from 3° to 13°, and 3 types of crossing angle γ of 9°, 0°, and -9°, for a total of 18 rolls. FIG. 19 shows the results, showing that the rolling speed is the highest when γ=9°, and that the rolling speed tends to increase as the inclination angle β increases. Therefore, in order to improve rolling efficiency, γ〉0°
, preferably a high crossing angle and a high inclination angle.

以上のように本発明方法による場合はポロシティを起点
とする、所謂マンネスマン破壊を生じることなく傾斜圧
延できるので、画期的高加工度の圧延ライン金実現でき
、こIf”l−によって丸棒鋼等、円形断面金属材の生
産能率を飛賄的に高めることカ可能になる。そしてセン
ターポロシティのある連続鋳造材を母材とする場合もそ
のポロシティを圧着し得て、亀裂を生じる工うなことが
々く連続鋳造機に連続する圧延ラインを実現することも
可能となり、この面でも生産能率の向上が図1し、また
熱経済上の利益を享受できる。
As described above, in the case of the method of the present invention, it is possible to perform inclined rolling without causing the so-called Mannesmann fracture, which is caused by porosity, and therefore it is possible to realize a rolling line with a revolutionary high workability. This makes it possible to dramatically increase the production efficiency of circular cross-section metal materials.Also, even when a continuous casting material with center porosity is used as the base material, the porosity can be crimped and no cracks will occur. It is also possible to realize a rolling line that is connected to a continuous casting machine, and in this aspect as well, production efficiency can be improved and thermoeconomic benefits can be enjoyed.

更に本発明による場合は円周方向の剪断歪が小さいので
介在物を起点に内部側fLを生じるようなことも斤いの
で難加工材を素材とする場合にも高能率の製造が可能に
なる等本発明は優rした効果を奏する。
Furthermore, in the case of the present invention, since the shear strain in the circumferential direction is small, there is no possibility that the internal side fL will occur starting from inclusions, so high efficiency manufacturing is possible even when using difficult-to-process materials as the raw material. etc. The present invention has excellent effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の傾斜ロール圧延機の構造fc略略本る正
面図、第2図は第1図のロー■線による断面図、第3図
はその傾斜角βを示す側面図、第4図は従来の丸鋼材の
傾斜圧延方法を略本する正面図、第5図は第4図のv−
v線による断面図、第6図はその傾斜角β?示す側面図
、第7図は本発明方法の実施に使用する傾斜圧延機の構
造を略示する正面図、第8図は第7図のvlIl−vl
Il線による断面図、第9図はその傾斜角βを示す側面
図、第10図は剪断歪測定のための試料の断面図、第1
1図はその圧延後の形状の1例を示す断面図、第12図
は剪断歪の測定結果表示図、第13図(a) 、 (b
) 。 (c) H人工孔の圧延後の内径を示すグラフ、第14
図は被圧延材の圧延後における縦断面構造写真、第15
図(a) l (b)Vi表面ねじれ測定のための試料
を示す正面図及び側面図、第16図はその圧延後の溝形
態を示す側面図、第17図は表面ねじれ測定結果を示す
グラフ、第18図(a)、 (b) 、 (cI tr
i軸長軸長方法寸法精度定結果チャート、第19図は圧
延速度測定結果を示すグラフである0 31.32.33・・・ロール 31a、32a、33
a ・・−ゴージ部 31b、32b、33b・・・入
口面31c、32c、53c・・・出口面 30・・・
被圧延材特許出願人 住友金属工業株式会社 代理人弁理士 河  野  登  夫 第1図          第2図 V 擁 4 図 埠 3 図 塘 5 図 人工孔の1イ釡(mm) @ 13 図 (a) 算 13図 (b) 第 13図 fcl (+11                tbl第 
15  図 不l 算 16  図 イ11哨諭4トー’4(p ) 第 1q 図 ←−−−−−寒す叱−一−−− イ111娑1μm(p) 穿lq図
Fig. 1 is a schematic front view of the structure fc of a conventional inclined roll rolling mill, Fig. 2 is a sectional view taken along the row line in Fig. 1, Fig. 3 is a side view showing its inclination angle β, Fig. 4 is a front view schematically showing the conventional inclined rolling method for round steel materials, and FIG.
The cross-sectional view taken along the v-line, Figure 6, shows the inclination angle β? 7 is a front view schematically showing the structure of an inclined rolling mill used for carrying out the method of the present invention, and FIG. 8 is a vlIl-vl diagram of FIG.
9 is a side view showing the inclination angle β; FIG. 10 is a sectional view of the sample for shear strain measurement;
Figure 1 is a cross-sectional view showing an example of the shape after rolling, Figure 12 is a diagram showing the measurement results of shear strain, and Figures 13 (a) and (b).
). (c) Graph showing the inner diameter of H artificial hole after rolling, No. 14
The figure is a photograph of the longitudinal cross-sectional structure of the rolled material after rolling, No. 15.
Figures (a) l (b) Front and side views showing the sample for measuring Vi surface torsion, Figure 16 is a side view showing the groove form after rolling, and Figure 17 is a graph showing the surface torsion measurement results. , FIG. 18(a), (b), (cI tr
i-axis long axis length method dimensional accuracy determination result chart, Figure 19 is a graph showing the rolling speed measurement results0 31.32.33...Rolls 31a, 32a, 33
a...-gorge portion 31b, 32b, 33b...inlet surface 31c, 32c, 53c...exit surface 30...
Patent applicant for rolled material Noboru Kono, Patent attorney representing Sumitomo Metal Industries Co., Ltd. Figure 1 Figure 2 V Retain 4 Figure 3 Figure 5 Figure 1 of artificial hole (mm) @ 13 Figure (a) Figure 13 (b) Figure 13 fcl (+11 tbl
15 Figure not shown Calculation 16 Figure A11 Sentry 4 To'4 (p) Figure 1q ←-----Cold scolding-1---- I111 娑1μm (p) Hole lq figure

Claims (1)

【特許請求の範囲】 1、パスライン周りに臨んで3個又は4個のロールが配
設さnlその軸心線は、同側の軸端が周方向の同じ側へ
向くように傾斜せしめらn1且つ同側の軸端が前記パス
ライン側へ向けて接近又は離反するよう傾斜(交叉)せ
しめ得るようにしてあり、前記ロールを夫々の両端にて
支持している交叉型の傾斜圧延機を用い、前記ロールの
傾斜角βと交叉角γとが0°〈γ〈15゜ 3°〈β〈20゜ 5°〈γ+β〈30゜ の条件を満足する状態で棒状の素材の外径を絞り、延伸
圧延する工程を含むことを特徴とする円形断面金属材の
製造方法。
[Claims] 1. Three or four rolls are arranged facing around the pass line, and their axial center lines are inclined so that the shaft ends on the same side face the same side in the circumferential direction. A cross-type inclined rolling mill in which the shaft ends of n1 and the same side can be tilted (crossed) so as to approach or move away from the pass line side, and the rolls are supported at both ends of each. The outer diameter of the rod-shaped material is reduced with the inclination angle β and crossing angle γ of the rolls satisfying the following conditions: 0°〈γ〈15°3°〈β〈20°5°〈γ+β〈30° A method for producing a circular cross-section metal material, the method comprising the steps of elongation and rolling.
JP11436282A 1982-06-30 1982-06-30 Production of metallic material having circular section Granted JPS594902A (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
JP11436282A JPS594902A (en) 1982-06-30 1982-06-30 Production of metallic material having circular section
AU16285/83A AU562483B2 (en) 1982-06-30 1983-06-27 Reduction rolling to produce circular bar material
AT0236583A AT391640B (en) 1982-06-30 1983-06-28 PULLING ROLLING MILL FOR THE PRODUCTION OF ROUND PROFILES
DE19833323232 DE3323232A1 (en) 1982-06-30 1983-06-28 METHOD FOR PRODUCING METALLIC MATERIALS WITH CIRCULAR CROSS-SECTION
US06/508,720 US4512177A (en) 1982-06-30 1983-06-28 Method of manufacturing metallic materials having a circular cross section
SE8303709A SE464617B (en) 1982-06-30 1983-06-29 SET TO MANUFACTURE METAL FORMS WITH CIRCULAR CROSS SECTION
CA000431444A CA1217363A (en) 1982-06-30 1983-06-29 Method of manufacturing metallic materials having a circular cross section
FR8310745A FR2529481B1 (en) 1982-06-30 1983-06-29 PROCESS FOR THE MANUFACTURE OF METAL PRODUCTS WITH A CIRCULAR CROSS SECTION
IT67719/83A IT1203830B (en) 1982-06-30 1983-06-30 PROCEDURE FOR THE MANUFACTURE OF METAL PIECES WITH A CIRCULAR SECTION, PARTICULARLY STEEL BARS
GB08317789A GB2123732B (en) 1982-06-30 1983-06-30 Method of manufacturing metallic materials having a circular cross section
BE0/211096A BE897182A (en) 1982-06-30 1983-06-30 PROCESS FOR THE MANUFACTURE OF METAL PRODUCTS WITH A CIRCULAR CROSS SECTION

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11436282A JPS594902A (en) 1982-06-30 1982-06-30 Production of metallic material having circular section

Publications (2)

Publication Number Publication Date
JPS594902A true JPS594902A (en) 1984-01-11
JPH0124563B2 JPH0124563B2 (en) 1989-05-12

Family

ID=14635817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11436282A Granted JPS594902A (en) 1982-06-30 1982-06-30 Production of metallic material having circular section

Country Status (2)

Country Link
JP (1) JPS594902A (en)
BE (1) BE897182A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924501A (en) * 1982-07-20 1984-02-08 モスコフスキ・インスチテユ−ト・スタリ・イ・スプラヴオフ Method of rolling metallic billet
JPS60261603A (en) * 1984-06-08 1985-12-24 Sumitomo Metal Ind Ltd Production of metallic material having circular section
JPS613601A (en) * 1984-06-15 1986-01-09 Sumitomo Metal Ind Ltd Production of metallic material having circular section
JPS6182905A (en) * 1984-09-29 1986-04-26 Sumitomo Metal Ind Ltd Manufacture of metallic material having circular cross section
JPS61253102A (en) * 1985-04-30 1986-11-11 Sumitomo Metal Ind Ltd Cross helical rolling mill
JPS6336903A (en) * 1986-07-31 1988-02-17 Sumitomo Metal Ind Ltd Production of composite material
JPS63126602A (en) * 1986-11-14 1988-05-30 Sumitomo Metal Ind Ltd Production of stainless steel clad copper bar
JPH01104401A (en) * 1987-07-14 1989-04-21 Sumitomo Metal Ind Ltd Manufacture of clad bar steel
CN102059251A (en) * 2010-08-31 2011-05-18 吴军 Four-roll planetary tube hot rolling machine
CN115301731A (en) * 2022-08-12 2022-11-08 索罗曼(常州)合金新材料有限公司 Equidistant rolling method for spiral conical roller of large-size titanium alloy bar

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5291766A (en) * 1976-01-30 1977-08-02 Nippon Steel Corp Method of rolling seamless metal pipe
JPS6424564A (en) * 1987-07-20 1989-01-26 Fuji Photo Film Co Ltd Method for correcting dark time output of image sensor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5291766A (en) * 1976-01-30 1977-08-02 Nippon Steel Corp Method of rolling seamless metal pipe
JPS6424564A (en) * 1987-07-20 1989-01-26 Fuji Photo Film Co Ltd Method for correcting dark time output of image sensor

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5924501A (en) * 1982-07-20 1984-02-08 モスコフスキ・インスチテユ−ト・スタリ・イ・スプラヴオフ Method of rolling metallic billet
JPS60261603A (en) * 1984-06-08 1985-12-24 Sumitomo Metal Ind Ltd Production of metallic material having circular section
JPS613601A (en) * 1984-06-15 1986-01-09 Sumitomo Metal Ind Ltd Production of metallic material having circular section
JPS6182905A (en) * 1984-09-29 1986-04-26 Sumitomo Metal Ind Ltd Manufacture of metallic material having circular cross section
JPH0563241B2 (en) * 1985-04-30 1993-09-10 Sumitomo Metal Ind
JPS61253102A (en) * 1985-04-30 1986-11-11 Sumitomo Metal Ind Ltd Cross helical rolling mill
JPS6336903A (en) * 1986-07-31 1988-02-17 Sumitomo Metal Ind Ltd Production of composite material
JPS63126602A (en) * 1986-11-14 1988-05-30 Sumitomo Metal Ind Ltd Production of stainless steel clad copper bar
JPH0575481B2 (en) * 1986-11-14 1993-10-20 Sumitomo Metal Ind
JPH01104401A (en) * 1987-07-14 1989-04-21 Sumitomo Metal Ind Ltd Manufacture of clad bar steel
CN102059251A (en) * 2010-08-31 2011-05-18 吴军 Four-roll planetary tube hot rolling machine
CN115301731A (en) * 2022-08-12 2022-11-08 索罗曼(常州)合金新材料有限公司 Equidistant rolling method for spiral conical roller of large-size titanium alloy bar
CN115301731B (en) * 2022-08-12 2023-10-31 索罗曼(常州)合金新材料有限公司 Equidistant rolling method for spiral conical rollers of large-size titanium alloy bars

Also Published As

Publication number Publication date
JPH0124563B2 (en) 1989-05-12
BE897182A (en) 1983-10-17

Similar Documents

Publication Publication Date Title
JPS594902A (en) Production of metallic material having circular section
JPS6059042B2 (en) Manufacturing method of seamless steel pipe
KR910003466B1 (en) Method of piercing and manufacturing seamiless tubes
JP3237518B2 (en) Manufacturing method of chrome alloy steel round billet slab
US4512177A (en) Method of manufacturing metallic materials having a circular cross section
JP2996077B2 (en) Piercing method of seamless metallic tube
JPH0310401B2 (en)
JPH0569075A (en) Form rolling of short cylinder
JPS59147702A (en) Manufacture of metallic material with circular cross section
JPH0475082B2 (en)
JPS63299805A (en) Piercing method for seamless pipe
JPH0857506A (en) Mandrel mill
JP3452039B2 (en) Rolling method of seamless steel pipe
RU2743269C1 (en) Round calibrated steel with ultrafine-grained structure production method
JPH0199707A (en) Method for cold rolling of tube and roll used in practice of that method
JP3401434B2 (en) Cold pilger internal crack prevention method
JPS63144807A (en) Reducing method for round pipe
JPS5982101A (en) Production of titanium alloy bar
JPS5980716A (en) Manufacture of two-phase alloy pipe
RU2009736C1 (en) Method of screw rolling of round shape blanks
JPH081210A (en) Device and method for manufacturing seamless tube
JPH06218406A (en) Manufacture of seamless tube
KR100243816B1 (en) Non-twist slit-rolling approach(&#39;nta&#39;)apparatus and method for manufacturing steel reinforcing rod
EP0431775A2 (en) Method of continuous finishing of pipe
JPH0596307A (en) Reducing rolling method for welded tube