JPS63144807A - Reducing method for round pipe - Google Patents
Reducing method for round pipeInfo
- Publication number
- JPS63144807A JPS63144807A JP29142086A JP29142086A JPS63144807A JP S63144807 A JPS63144807 A JP S63144807A JP 29142086 A JP29142086 A JP 29142086A JP 29142086 A JP29142086 A JP 29142086A JP S63144807 A JPS63144807 A JP S63144807A
- Authority
- JP
- Japan
- Prior art keywords
- roll
- rolling
- rolls
- rolling pass
- stand
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 15
- 238000005096 rolling process Methods 0.000 claims abstract description 47
- 239000000463 material Substances 0.000 abstract description 4
- 230000002093 peripheral effect Effects 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 8
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 210000003127 knee Anatomy 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B17/00—Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling
- B21B17/14—Tube-rolling by rollers of which the axes are arranged essentially perpendicular to the axis of the work, e.g. "axial" tube-rolling without mandrel, e.g. stretch-reducing mills
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、継目無鋼管等の円管の絞り圧延方法に関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for reducing and rolling circular pipes such as seamless steel pipes.
[従来の技術]
一般に、円管の製造工程においては、素管外径を所定値
に仕上げるための絞り圧延機(ストレッチレデューサ)
を用いている。絞り圧延機は、通常、複数のロールスタ
ンドを連続的に配置し、各ロールスタンドの圧延パス軸
まわりの円周方向に3個のロールを120度間隔で配置
するとともに。[Prior art] Generally, in the manufacturing process of circular pipes, a reducing mill (stretch reducer) is used to finish the outer diameter of the raw pipe to a predetermined value.
is used. A reducing rolling mill usually has a plurality of roll stands arranged in series, and three rolls arranged at 120 degree intervals in the circumferential direction around the rolling pass axis of each roll stand.
相隣るロールスタンドのロールを圧延パス軸に直交する
面内で相互に60度ずらしている。The rolls of adjacent roll stands are offset by 60 degrees from each other in a plane perpendicular to the rolling pass axis.
これにより、絞り圧延機によって仕上圧延される素管各
部は、その円周方向の位置により、圧延開始から終了ま
での変形履歴を規則的に相互に異なるものとされる。す
なわち、素管のiスタンドにおけるロールニー2ジ相当
部位は、(i+1)スタンドではカリバー底相当部位に
設定され、(i+2)スタンドではロールエツジ相当部
位に設定されるというように、素管とロールとの接触位
置には一定の規則性がある。この結果、素管には6角形
の内面角張りを生じ、仕上がり管の品質を損なう。As a result, each portion of the raw pipe finish-rolled by the reducing mill has a deformation history that regularly differs from one another depending on its position in the circumferential direction from the start to the end of rolling. In other words, the part corresponding to the roll knee 2 in the i-stand of the stock pipe is set to the part corresponding to the bottom of the caliber in the (i+1) stand, and the part corresponding to the roll edge in the (i+2) stand, and so on. There is a certain regularity in the contact position. As a result, the raw pipe has a hexagonal inner surface with angularity, which impairs the quality of the finished pipe.
そこで従来、上記角張り現象の発生を防止するため、特
開昭58−25805号公報に記載されるような絞り圧
延機が提案されている。この絞り圧延機は、各ロールス
タンドのハウジングに嵌設される多角形ロール箱の圧延
パスラインまわりにおける角度位置を、スタンド相互間
でずらして配置することにより、隣接するロールスタン
ドのロールに、圧延パスラインに直交する面内で30度
ずつの角度変位をもたせ、素管を円周方向に12分割さ
れた区域で塑性変形を繰返すようにしたものである。Therefore, in order to prevent the occurrence of the above-mentioned angular phenomenon, a reduction rolling mill as described in Japanese Patent Application Laid-Open No. 58-25805 has been proposed. This reducing rolling mill has a polygonal roll box that is fitted into the housing of each roll stand, and the angular position around the rolling pass line is staggered between the stands. An angular displacement of 30 degrees is applied in a plane perpendicular to the pass line, and plastic deformation is repeated in 12 circumferentially divided areas of the raw tube.
[発明が解決しようとする問題点]
しかしながら、上記従来の絞り圧延機においては、ロー
ルスタンドに設けられるロール箱を圧延パスラインまわ
りに傾動させるというa雑な構造を伴なう。[Problems to be Solved by the Invention] However, the conventional reducing rolling mill described above involves a complicated structure in which the roll box provided on the roll stand is tilted around the rolling pass line.
本発明は、ロールスタンドの構造を複雑化することなく
、簡素な構造により、絞り圧延による管内面の角張り現
象の発生を防止し、仕上がり管の品質を向上可能とする
ことを目的とする。An object of the present invention is to use a simple structure without complicating the structure of the roll stand, to prevent the occurrence of angularity on the inner surface of the tube due to reduction rolling, and to improve the quality of the finished tube.
[問題点を解決するための手段]
本発明は、複数のロールスタンドを連続的に配置し、各
ロールスタンドの圧延パス軸まわりの円周方向に、素管
絞り圧延用のn個のロールを(360/+)度間隔で配
置するとともに、相隣るロールスタンドのロールを圧延
パス軸に直交する面内で相互に(180/n)度ずらし
て配置する円管の絞り圧延方法において、ロール面の一
端側の最大ロール半径部が該ロール面の最小ロール半径
部に対して圧延パス軸まわりになす角度と、ロール面の
他端側の最大ロール半径部が該ロール面の最小ロール半
径部に対して圧延パス軸まわり゛になす角度とを異なら
せたロールを用い、素管が上記ロールによって圧延中に
ねじられるねじれ角度をスタンド間張力のm!!!によ
って制御するようにしたものである。[Means for Solving the Problems] The present invention arranges a plurality of roll stands in succession, and in the circumferential direction around the rolling pass axis of each roll stand, n rolls for reducing and rolling the blank pipe are arranged. In a method for reducing circular pipes, the rolls are arranged at intervals of (360/+) degrees, and the rolls of adjacent roll stands are shifted from each other by (180/n) degrees in a plane perpendicular to the rolling pass axis. The angle that the maximum roll radius on one end of the surface makes with respect to the minimum roll radius on the roll surface around the rolling pass axis, and the maximum roll radius on the other end of the roll surface is the minimum roll radius on the roll surface. Using rolls with different angles around the rolling pass axis, the twist angle at which the raw pipe is twisted by the rolls during rolling is determined by the tension between the stands, m! ! ! It was designed to be controlled by
[作用]
本発明によれば、各ロールのロールカリバーがロール面
の最小ロール半径部の左右で非対称となり、この非対称
なロール面から素管材料が受ける力の方向の円周方向成
分の差により、素管を圧延中にねじることとなる。[Function] According to the present invention, the roll caliber of each roll is asymmetrical on the left and right sides of the minimum roll radius portion of the roll surface, and due to the difference in the circumferential direction component of the direction of the force that the raw pipe material receives from this asymmetrical roll surface. , the raw pipe will be twisted during rolling.
ところで、管内面に発生した例えば6角形状(厚肉部と
薄肉部とが30度間隔をなす)を解消するには、素管を
圧延中に30度以上ねじってやればよい、ここで、素管
のねじれ角度を制御する方法としては、■ロールカリバ
ーの左右の最大ロール半径部が最小ロール半径部に対し
て圧延パス軸まわりになす角度差、すなわち非対称の程
度を変更する方法、■素管とロールとの接触面圧を変え
るためにスタンド間張力を変更する方法等が考えられる
。上記■の方法はロール本数が多くなって不経済である
から1本発明は上記■の方法を採用することとした。By the way, in order to eliminate, for example, the hexagonal shape (the thick and thin parts are spaced apart by 30 degrees) that occurs on the inner surface of the tube, it is sufficient to twist the raw tube by 30 degrees or more during rolling. Methods for controlling the torsion angle of the raw tube include: ■ A method of changing the angle difference that the left and right maximum roll radius parts of the roll caliber make around the rolling pass axis with respect to the minimum roll radius part, that is, the degree of asymmetry; Possible methods include changing the tension between the stands in order to change the contact pressure between the tube and the roll. Since the method (2) above is uneconomical because the number of rolls increases, the present invention has decided to adopt the method (2) above.
すなわち、本発明によれば、圧延中の素管を内面角張り
を生じない角度だけねじって、素管とロールとの接触位
コの規則性を乱し、内面角張りのない仕上がり管を得る
ことができる。That is, according to the present invention, the raw tube being rolled is twisted at an angle that does not cause internal angularity to disrupt the regularity of the contact position between the raw tube and the rolls, thereby obtaining a finished tube without internal angularity. be able to.
「実施例]
第1図は本発明の実施に用いられるロールを示す正面図
、第2図は絞り圧延機を示す模式図、第3図はねじれ角
度とストレッチ係数の関係を示す線図、第4図は絞り圧
延状態を示す模式図である。"Example" Fig. 1 is a front view showing a roll used in carrying out the present invention, Fig. 2 is a schematic diagram showing a reducing rolling mill, Fig. 3 is a diagram showing the relationship between twist angle and stretch coefficient, and Fig. 3 is a diagram showing the relationship between twist angle and stretch coefficient. FIG. 4 is a schematic diagram showing the state of reduction rolling.
絞り圧延機は、第2図に示すように、複数のロールスタ
ンドlOを連続的に配置し、各ロールスタンドlOの圧
延パス軸まわりの円周方向に、素管20を絞り圧延する
ための3個のロール11を120度間線間隔置するとと
もに、相隣るロールスタンド10のロール11を圧延パ
ス軸に直交する面内で相互に80度ずらして配置してい
る。As shown in FIG. 2, the reducing rolling mill has a plurality of roll stands 1O arranged in succession, and 3 rollers for reducing and rolling the raw pipe 20 in the circumferential direction around the rolling pass axis of each roll stand 10. The rolls 11 are spaced apart by 120 degrees, and the rolls 11 of adjacent roll stands 10 are spaced apart from each other by 80 degrees in a plane perpendicular to the rolling pass axis.
しかして、ロール11は、第1図に示すように、ロール
面の一端側の最大ロール半径部Aが該ロール面の最小ロ
ール半径部Cに対して圧延パス軸まわりになす角度γと
、ロール面の他端側の最大ロール半径部Bが該ロール面
の最小ロール半径部Cに対して圧延パス軸まわりに対し
てなす角度γ+ 20とを異ならせている。As shown in FIG. 1, the roll 11 has an angle γ that the maximum roll radius portion A on one end side of the roll surface makes with respect to the minimum roll radius portion C of the roll surface, and the roll The angle γ+20 that the maximum roll radius portion B on the other end side of the surface makes with respect to the rolling pass axis is different from the minimum roll radius portion C of the roll surface.
すなわち、ロール11のロールカリバーは1通常の対称
形ロールカリバーを角度θ(非対称角度)だけ回転した
ような形状であって、ロール面の最小ロール半径部の左
右の形状が非対称となり、この非対称なロール面から素
管材料が受ける力の円周方向成分の差により、素管を圧
延中にねじることとなる。In other words, the roll caliber of the roll 11 has a shape that is a normal symmetrical roll caliber rotated by an angle θ (asymmetric angle), and the shapes of the left and right sides of the minimum roll radius part of the roll surface are asymmetrical, and this asymmetrical shape Due to the difference in the circumferential component of the force that the raw tube material receives from the roll surface, the raw tube becomes twisted during rolling.
ところで、各ロールスタンドが30−ルからなる絞り圧
延機において、管内面に生ずる6角形状(厚肉部と薄肉
部とが30度間隔をなす)を解消するには、素管を圧延
中に30度以上ねじってやればよい、ここで、素管のね
じれ角度を制御する方法としては、■ロールカリバーの
左右の最大ロール半径部が最小ロール半径部に対して圧
延パス軸まわりになす角度差、すなわち非対称の程度を
変更する方法、■素管とロールとの接触面圧を変えるた
めにスタンド間張力を変更する方法等が考えられる。By the way, in order to eliminate the hexagonal shape (thick wall part and thin wall part are 30 degrees apart) that occurs on the inner surface of the tube in a reducing rolling mill where each roll stand is 30 mm long, it is necessary to All you need to do is to twist it by 30 degrees or more. Here, the method to control the twist angle of the raw tube is: ■ The difference in angle around the rolling pass axis between the maximum roll radius part of the left and right sides of the roll caliber and the minimum roll radius part of the roll caliber. In other words, there are two methods: (1) changing the degree of asymmetry; and (2) changing the tension between the stands to change the contact pressure between the raw pipe and the roll.
上記■の方法はロール本数が多くなって不経済であるか
ら、本発明では上記■の方法を採用し、圧延中の素管を
30度以上ねじり回転させることとする。すなわち、例
えば絞り圧延機を構成するスタンド数が少なくて、1ス
タンドあたりのねじれ角度を大きくしたい時には、ロー
ルが素管に与えるねじれ回転力を大とするため、接触面
圧を大とするように、スタンド間張力をより小さく設定
する。Since the method (2) above is uneconomical because it requires a large number of rolls, the present invention adopts the method (2) above, in which the raw pipe is twisted and rotated by 30 degrees or more during rolling. In other words, for example, when the number of stands that make up a reducing rolling mill is small and you want to increase the twist angle per stand, the contact surface pressure should be increased in order to increase the twisting rotational force that the rolls give to the raw tube. , set the tension between the stands to be smaller.
以下1本発明の実施において、lスタンドあたりの素管
ねじれ角度が定まった時、スタンド間張力を調整する具
体的手順について説明する。In the following, a specific procedure for adjusting the tension between stands when the torsion angle of the raw pipe per stand is determined in carrying out the present invention will be described.
第3図はロールの非対称角度をθ(第1図参照)とする
時の、lスタンドあたり素管ねじれ角度とストレッチ係
数Xとの関係を示す線図である。Xは(素管長手方向応
力σ/素管変形為抗K)である、すなわち、非対称角度
θが10度のロールを用いる時、絞り圧延機の全スタン
ド数が20、各スタンドのロール数が3であれば、スタ
ンドあたりの素管ねじれ角度は1.5度(30度120
)でよく、第3図においてこのねじれ角度に対応するス
トレッチ係数は0.4 となる。FIG. 3 is a diagram showing the relationship between the twist angle of the raw pipe per 1 stand and the stretch coefficient X when the asymmetric angle of the roll is θ (see FIG. 1). X is (longitudinal stress σ of the raw pipe/resistance due to deformation of the raw pipe K). That is, when using rolls with an asymmetric angle θ of 10 degrees, the total number of stands in the reducing mill is 20, and the number of rolls in each stand is 3, the twist angle of the raw pipe per stand is 1.5 degrees (30 degrees 120
), and the stretch coefficient corresponding to this twist angle in FIG. 3 is 0.4.
次に、各スタンドにおいて、所定のストレッチ係数Xi
を得る各ロールスタンドのロール駆動モータ設定回転速
度Niは以下によって求められる。すなわち、第iスタ
ンドのストレッチ係数をxi、入側素管肉厚をt i−
1、入側素管外径をDi−1,出側実管肉厚をti、出
側素管外径をDi とすると、
ti =f (Xi 、 ti−1、0i 、 Di
−1) ・・(l)なる関係がある。すなわち、ある減
径率のパターンが与えられ、入側素管肉厚が与えられる
と、ストレッチ係数により出側肉厚が上記(1)式によ
って算出される。この出側肉厚により素管出側断面積S
iが下記(2)式により与えられる。Next, in each stand, a predetermined stretch coefficient Xi
The set rotational speed Ni of the roll drive motor of each roll stand to obtain the following results. In other words, the stretch coefficient of the i-th stand is xi, and the wall thickness of the inlet pipe is t i-
1. If the outer diameter of the inlet tube is Di-1, the wall thickness of the outlet tube is ti, and the outer diameter of the outlet tube is Di, then ti = f (Xi, ti-1, 0i, Di
-1) ...(l) There is a relationship. That is, when a pattern of a certain diameter reduction rate is given and the wall thickness of the inlet pipe is given, the wall thickness of the outlet side is calculated by the above equation (1) using the stretch coefficient. Due to this wall thickness on the exit side, the cross-sectional area S on the exit side of the raw pipe is
i is given by the following equation (2).
Si=π・ti(Di−ti) ・・・(2
)さらに、第iスタンドのロール駆動モータ設定回転速
度Niが、マスフロー一定則により下記(3)式によっ
て与えられる。Si=π・ti(Di-ti)...(2
) Furthermore, the set rotational speed Ni of the roll drive motor of the i-th stand is given by the following equation (3) based on the constant mass flow law.
Ni=C/Si ・Gi*Dpi ・・
・(3)ただし、Cは定数、Giはモータとロールとの
間の減速比、Dpiは素管材料とロールの速度が一致す
るドライビング点でのロール直径である。Ni=C/Si ・Gi*Dpi ・・
- (3) where C is a constant, Gi is the reduction ratio between the motor and the roll, and Dpi is the roll diameter at the driving point where the speeds of the raw pipe material and the roll match.
すなわち、本発明の実施においては。That is, in implementing the present invention.
■ロールの非対称角度θとストレッチ係数又とねじれ角
度の3者の第3図に示すような関係を予め求めておき、
■使用ロールの非対称角度θ、内面角張りを解消するに
必要な1スタンドあたりの素管ねじれ角度を設定し、
■上記■、■によって各スタンドにおいて制御すべきス
トレッチ係数Xiを求めた後、上記(1)弐〜(3)式
に従って各スタンドのロール駆動モータ設定回転速度N
iを求め、各ロール駆動モータを運転制御することとな
る。■Determine in advance the relationship between the roll asymmetric angle θ, the stretch coefficient, and the torsion angle as shown in Figure 3; After setting the torsion angle of the raw pipe, and determining the stretch coefficient Xi to be controlled at each stand using ■ and ■ above, set the rotational speed of the roll drive motor for each stand according to formulas (1) 2 to (3) above. N
i is determined and the operation of each roll drive motor is controlled.
なお1本発明は、各ロールスタンドが30−ルからなる
ものに限らず、20−ルもしくは40一ル以上からなる
ものにおいても適用できる。Note that the present invention is applicable not only to those in which each roll stand is 30 lbs, but also to those in which each roll stand is 20 lbs or 40 lbs or more.
[発明の効果]
以上のように1本発明によれば、ロールスタンドの構造
を複雑化することなく、簡素な構造により、圧延中の素
管を内面角張りを生じない角度だけねじって、素管とロ
ールとの接触位はの規則性を乱し、内面角張りのない品
質良好な仕上がり管を得ることができる。[Effects of the Invention] As described above, according to the present invention, the raw pipe being rolled can be twisted at an angle that does not cause internal angularity, without complicating the structure of the roll stand, and with a simple structure. This disturbs the regularity of the contact position between the tube and the rolls, making it possible to obtain a finished tube with good quality and no internal angularity.
第1図は本発明の実施に用いられるロールを示す正面図
、第2図は絞り圧延機を示す模式図、第3図はねじれ角
度とストレッチ係数の関係を示す線図、第4図は絞り圧
延状態を示す模式図である。
10…ロールスタンド、11・・・ロール、20・・・
素管、A、B・・・最大ロール半径部。
C・・・最小ロール半径部、θ・・・非対称角度。
代理人 弁理士 塩 川 修 治
第 1 図
第 2 図
n
第 3 図Fig. 1 is a front view showing a roll used in carrying out the present invention, Fig. 2 is a schematic diagram showing a reducing rolling mill, Fig. 3 is a diagram showing the relationship between twist angle and stretch coefficient, and Fig. 4 is a drawing showing the relationship between the twist angle and the stretch coefficient. It is a schematic diagram showing a rolling state. 10...roll stand, 11...roll, 20...
Raw pipe, A, B...Maximum roll radius. C...Minimum roll radius portion, θ...Asymmetrical angle. Agent Patent Attorney Osamu Shiokawa 1 Figure 2 Figure n Figure 3
Claims (1)
ルスタンドの圧延パス軸まわりの円周方向に、素管絞り
圧延用のn個のロールを(360/n)度間隔で配置す
るとともに、相隣るロールスタンドのロールを圧延パス
軸に直交する面内で相互に(180/n)度ずらして配
置する円管の絞り圧延方法において、ロール面の一端側
の最大ロール半径部が該ロール面の最小ロール半径部に
対して圧延パス軸まわりになす角度と、ロール面の他端
側の最大ロール半径部が該ロール面の最小ロール半径部
に対して圧延パス軸まわりになす角度とを異ならせたロ
ールを用い、素管が上記ロールによって圧延中にねじら
れるねじれ角度をスタンド間張力の調整によって制御す
ることを特徴とする円管の絞り圧延方法。(1) A plurality of roll stands are arranged continuously, and n rolls for pipe reduction rolling are arranged at intervals of (360/n) degrees in the circumferential direction around the rolling pass axis of each roll stand. In the reduction rolling method for circular pipes in which the rolls of adjacent roll stands are arranged to be shifted (180/n) degrees from each other in a plane perpendicular to the rolling pass axis, the maximum roll radius on one end of the roll surface corresponds to The angle made around the rolling pass axis with respect to the minimum roll radius part of the roll surface, and the angle made around the rolling pass axis by the maximum roll radius part on the other end side of the roll face with respect to the minimum roll radius part of the roll surface. 1. A method for reducing and rolling a circular tube, characterized in that the twist angle at which the raw tube is twisted during rolling by the rolls is controlled by adjusting the tension between the stands, using rolls having different diameters.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29142086A JPS63144807A (en) | 1986-12-09 | 1986-12-09 | Reducing method for round pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP29142086A JPS63144807A (en) | 1986-12-09 | 1986-12-09 | Reducing method for round pipe |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63144807A true JPS63144807A (en) | 1988-06-17 |
Family
ID=17768646
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP29142086A Pending JPS63144807A (en) | 1986-12-09 | 1986-12-09 | Reducing method for round pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63144807A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5321966A (en) * | 1992-04-16 | 1994-06-21 | Mannesmann Aktiengesellschaft | Method and arrangement for rolling wire and/or round steel |
ITMI20090044A1 (en) * | 2009-01-19 | 2010-07-20 | Sms Demag Innse S P A | ROLLER FOR A MILL. |
JP2012510902A (en) * | 2008-12-09 | 2012-05-17 | ファウ・ウント・エム・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Method for producing seamless pipes with a three-roll mandrel rolling mill |
WO2019219463A1 (en) * | 2018-05-18 | 2019-11-21 | Sms Group Gmbh | Stretch-reducing mill having improved diameter tolerance and wall thickness tolerance |
-
1986
- 1986-12-09 JP JP29142086A patent/JPS63144807A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5321966A (en) * | 1992-04-16 | 1994-06-21 | Mannesmann Aktiengesellschaft | Method and arrangement for rolling wire and/or round steel |
JP2012510902A (en) * | 2008-12-09 | 2012-05-17 | ファウ・ウント・エム・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング | Method for producing seamless pipes with a three-roll mandrel rolling mill |
ITMI20090044A1 (en) * | 2009-01-19 | 2010-07-20 | Sms Demag Innse S P A | ROLLER FOR A MILL. |
WO2010082174A1 (en) * | 2009-01-19 | 2010-07-22 | Sms Innse S.P.A. | Roll for a rolling-mill |
WO2019219463A1 (en) * | 2018-05-18 | 2019-11-21 | Sms Group Gmbh | Stretch-reducing mill having improved diameter tolerance and wall thickness tolerance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0853988A1 (en) | Method of rolling deformed bar and roll for deformed bar | |
JPS63144807A (en) | Reducing method for round pipe | |
US5649440A (en) | Method for calibration of assel rollers | |
JPH0857506A (en) | Mandrel mill | |
JP4113662B2 (en) | How to control the number of rotations to minimize internal angularity | |
JP3082415B2 (en) | Tube rolling method | |
JPS6357122B2 (en) | ||
JPS6046805A (en) | Control method of mandrel mill | |
SU1659143A1 (en) | Method of screw rolling | |
JP2626293B2 (en) | Straightening device for long material with circular cross section | |
JPH0579402B2 (en) | ||
JPH0534084B2 (en) | ||
JP2002035818A (en) | Apparatus for rolling seamless tube and method for controlling seamless tube rolling | |
JPS6134887B2 (en) | ||
JPH0563241B2 (en) | ||
JPH09314205A (en) | Method for stretch reduction of circular steel tube | |
JPH0221324B2 (en) | ||
JPH081210A (en) | Device and method for manufacturing seamless tube | |
JP2812213B2 (en) | Tube rolling method | |
JPS59104203A (en) | Rolling method of seamless steel pipe by mandrel mill | |
JPS60206514A (en) | Skew rolling method of metallic pipe | |
JPH1157820A (en) | Production of seamless square steel pipe | |
JPS58167003A (en) | Device for preventing thickness deviation of reducing mill | |
JPS5978704A (en) | Rolling method which prevents flawing on outside and inside surfaces in mandrel mill | |
JPS59104208A (en) | Method for rolling seamless steel pipe by mandrel mill |