JPS61252644A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61252644A
JPS61252644A JP9229085A JP9229085A JPS61252644A JP S61252644 A JPS61252644 A JP S61252644A JP 9229085 A JP9229085 A JP 9229085A JP 9229085 A JP9229085 A JP 9229085A JP S61252644 A JPS61252644 A JP S61252644A
Authority
JP
Japan
Prior art keywords
region
recess
oxide film
silicon
nitride film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9229085A
Other languages
Japanese (ja)
Inventor
Tetsuo Asaba
哲郎 浅羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP9229085A priority Critical patent/JPS61252644A/en
Publication of JPS61252644A publication Critical patent/JPS61252644A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Abstract

PURPOSE:To shorten the width of an element isolating region, by coating a part other than the bottom part of a recess at a part, where the element isolating region is formed, with an insulating film, and forming a semiconductor region having high impurity concentration by diffusion from a single crystal material or a polycrystalline material, which is filled in the recess and includes impurities. CONSTITUTION:On a silicon substrate 101, a silicon oxide film 102 is formed. A silicon nitride film 103 and a silicon oxide film 104 are further formed thereon. Photoresist at a position, where an element isolating region is to be formed, is removed, and the oxide film 102 and 104 and the nitride film 103 are removed. Then with the oxide film 104 as a mask, the substrate 101 is vertically removed, and a recess 109 is formed. Thereafter, an oxide film 105 is formed at the bottom surface and the side surface of the recess 109. Then, a silicon nitride film 106 is formed. The nitride film 106 only on the bottom part of the recess 109 and on the surface part of the silicon substrate 101 is removed. The nitride film 106 on the side surface part of the recess 109 and the oxide film 105 are made to remain. Thereafter, the nitride film 103 is removed by anisotropic etching having a high selecting ratio. After a single-crystal or polycrystalline silicon region 107 is selectively formed, a diffused region 108 is formed. Thus the width of the element isolating region can be made short, and the depth of the element isolating region can be made sufficiently large.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、半導体装置の製造方法に係り、特に各素子を
電気的に分離する素子分離領域を有する半導体装置の製
造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a semiconductor device having an element isolation region for electrically isolating each element.

[従来技術] 半導体装置の高集積化に伴って、各素子を電気的に分離
する素子分離領域の幅をできる限り小さくすることが重
要な課題となってきた。このような課題に対し、従来用
いられていた素子分離法はpn逆接合分離法やLOCO
S法等である。
[Prior Art] As semiconductor devices become more highly integrated, it has become an important issue to reduce the width of element isolation regions that electrically isolate each element as small as possible. To address these issues, conventional element isolation methods include pn reverse junction isolation and LOCO.
S method etc.

しかしながら、pn逆接合分離法では素子分離領域を不
純物拡散によって形成するために、拡散が横方向に進行
し分離幅を広げてしまう問題点を有しており、高集積化
には適していなかった。
However, in the pn reverse junction isolation method, since the element isolation region is formed by impurity diffusion, the diffusion progresses laterally, increasing the isolation width, making it unsuitable for high integration. .

また、 LOCOS法では選択的に厚い酸化膜を形成す
るために、分離幅を小さくしようとすると、十分な深さ
が得られなくなり、特にバイポーラ素子の場合に分離が
不十分になるという問題点を有していた、さらにLOC
OS法では、厚い酸化膜の両端にバーズビークと呼ばれ
る不要部分が形成されるために、素子の高集積化には限
界があった。
In addition, since the LOCOS method selectively forms a thick oxide film, if an attempt is made to reduce the isolation width, a sufficient depth cannot be obtained, which causes the problem of insufficient isolation, especially in the case of bipolar devices. had further LOC
In the OS method, unnecessary parts called bird's beaks are formed at both ends of a thick oxide film, so there is a limit to the high integration of devices.

[発明が解決しようとする問題点] 上記のように、従来の半導体装置の製造方法においては
、素子分離領域の幅が小さくとれ、かつ素子分離領域の
深さを十分にとる事ができる半導体装置の製造方法を提
供することができなかった。
[Problems to be Solved by the Invention] As described above, in the conventional semiconductor device manufacturing method, the width of the element isolation region can be made small and the element isolation region can have a sufficient depth. could not provide a manufacturing method.

[問題点を解決するための手段] 上記問題点は、 一導電型の半導体層に形成された各素子を素子分離領域
によって電気的に分離した半導体装置を製造する方法に
おいて、 前記半導体層における前記素子分離領域を形成しようと
する部分に凹部を形成する第1工程と、該凹部の底部を
除いた部分を絶縁膜で覆う第2工程と。
[Means for solving the problem] The above problem is solved by the method of manufacturing a semiconductor device in which each element formed in a semiconductor layer of one conductivity type is electrically isolated by an element isolation region. A first step of forming a recess in a portion where an element isolation region is to be formed, and a second step of covering the portion except the bottom of the recess with an insulating film.

該凹部に前記一導電型の不純物を含む単結晶又は多結晶
材料を満たす第3工程と、 該単結晶又は多結晶材料からの不純物拡散によって該単
結晶又は多結晶材料の直下に前記半導体層より高い不純
物濃度の一導電型半導体領域を形成する第4工程と、 によって前記素子分離領域を形成することを特徴とする
本発明の半導体装置の製造方法によって解決される。
a third step of filling the recess with a single-crystalline or polycrystalline material containing impurities of one conductivity type; The problem is solved by the method of manufacturing a semiconductor device of the present invention, characterized in that the element isolation region is formed by: a fourth step of forming a one-conductivity type semiconductor region with a high impurity concentration.

[実施例] 以下、本発明の実施例を図面を用いて詳細に説明する。[Example] Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明による半導体装置の製造方法の一実施例
によって製造された半導体装置の素子分離領域の概略的
断面図である。
FIG. 1 is a schematic cross-sectional view of an element isolation region of a semiconductor device manufactured by an embodiment of the semiconductor device manufacturing method according to the present invention.

シリコン基板101の表面及び素子分離領域2にシリコ
ン酸化膜105が形成され、又素子分離領域2の該シリ
コン酸化膜105上にはシリコン窒化膜10Bと単結晶
又は多結晶シリコン領域107が形成され、該単結晶又
は多結晶シリコン領域107下には拡散領域108が形
成される。
A silicon oxide film 105 is formed on the surface of the silicon substrate 101 and the element isolation region 2, and a silicon nitride film 10B and a single crystal or polycrystalline silicon region 107 are formed on the silicon oxide film 105 in the element isolation region 2. A diffusion region 108 is formed under the single crystal or polycrystalline silicon region 107.

次に本発明による半導体装置の製造方法について、第1
図に示した上記半導体装置の各製造工程における概略的
断面図を用いて詳細に説明する。
Next, the first method for manufacturing a semiconductor device according to the present invention will be described.
A detailed explanation will be given using schematic cross-sectional views of each manufacturing process of the semiconductor device shown in the figures.

まず、第2図(A)に示すように、シリコン基板101
上に、熱酸化法等によって厚さ約500人のシリコン酸
化膜102を形成し、さらにその上にCVD法等によっ
て厚さ約2500人のシリコン窒化膜103、そして厚
さ約1.7JLmのシリコン酸化膜104をそれぞれ形
成する。
First, as shown in FIG. 2(A), a silicon substrate 101
A silicon oxide film 102 with a thickness of about 500 ml is formed thereon by a thermal oxidation method, etc., a silicon nitride film 103 with a thickness of about 2500 ml is formed on top of it by a CVD method, etc., and a silicon nitride film 103 with a thickness of about 1.7 JLm is formed thereon. Oxide films 104 are respectively formed.

次に、第2図(B)に示すように、フォトリソグラフィ
によって素子分離領域を形成しようとする位置にフォト
レジストを除去し、フォトレジストをマスクとして上記
酸化膜102 、104および窒化膜103を異方性ド
ライエツチング法により除去する。ただし、酸化膜10
2および104のエツチングにはCF4+H2混合ガス
を使用し、窒化膜103のエツチングにはCF4+O2
混合ガスを使用した。
Next, as shown in FIG. 2(B), the photoresist is removed by photolithography at the location where the element isolation region is to be formed, and the oxide films 102, 104 and nitride film 103 are removed using the photoresist as a mask. Remove by directional dry etching method. However, oxide film 10
A mixed gas of CF4+H2 is used for etching 2 and 104, and CF4+O2 is used for etching the nitride film 103.
A mixed gas was used.

次に、第2図(C)に示すように、酸化膜104をマス
クとして、異方性を有するドライエツチング(たとえば
、 CCl4ガスまたはCI2ガスを使用したリアクテ
ィブイオンエツチング)を行い、基板+01を所望の深
さくたとえば5gm)まで垂直に除去して、四部108
を形成する。このエツチング除去によって形成された四
部109の深さが素子分離領域の深さをほぼ決定する。
Next, as shown in FIG. 2(C), using the oxide film 104 as a mask, anisotropic dry etching (for example, reactive ion etching using CCl4 gas or CI2 gas) is performed to remove the substrate +01. Remove vertically to the desired depth (e.g. 5 gm) to remove the four sections 108.
form. The depth of the four portions 109 formed by this etching removal approximately determines the depth of the element isolation region.

次に、第2図(D)に示すように、熱酸化を行って、前
記凹部109の底面および側面に厚さ約2500人の酸
化膜105を形成する。
Next, as shown in FIG. 2(D), thermal oxidation is performed to form an oxide film 105 with a thickness of about 2,500 on the bottom and side surfaces of the recess 109.

次に、第2図(E)に示すように、CVD法等による厚
さ1500人のシリコン窒化膜10Bを形成し、それか
ら第2図(F)に示すように、異方性を有するドライエ
ツチング(たとえば、CF44 H2ガスを使用したり
アクティブイオンエツチング)ヲ用いて、凹部109の
底部とシリコン基板101の表面部との窒化膜108だ
けを除去し、凹部109の側面部の窒化膜10Bおよび
酸化膜105を残す。その後、シリコン基板101上の
窒化膜103を高選択比を有する異方性エツチング(た
とえば、CH2F 2ガスを使用したりアクティブイオ
ンエツチング)によって除去する。
Next, as shown in FIG. 2(E), a silicon nitride film 10B with a thickness of 1,500 nm is formed by CVD or the like, and then, as shown in FIG. 2(F), anisotropic dry etching is performed. Only the nitride film 108 on the bottom of the recess 109 and the surface of the silicon substrate 101 is removed using CF44 H2 gas or active ion etching, and the nitride film 10B and oxide on the side surfaces of the recess 109 are removed. The film 105 is left behind. Thereafter, the nitride film 103 on the silicon substrate 101 is removed by anisotropic etching with a high selectivity (for example, using CH2F2 gas or active ion etching).

次に第2図((i)に示すように、 SiC+4−HC
I−H2系、Sin 4−HCI−H2系、又はSi8
2 G+2−HCl−H2系等のガスを使用して選択的
に単結晶又は多結晶シリコン領域(ここでは多結晶シリ
コン領域とする)107を作製する。この時、シリコン
基板101表面上の酸化膜102上では、酸化膜の性質
上HCIによるエツチングとSiソースによるSiの堆
積との平衡状態はエツチング側に寄っているためにSi
は堆積しない。最後に拡散領域108を形成する。この
形成方法には三つの方法があり、一つ目の方法は選択的
な多結晶シリコン領域107の堆積時にPH3を含有さ
せ、Pを含有した多結晶シリコンとし、その後Pを拡散
して拡散領域108を形成する。二つ目の方法は再酸化
で酸化膜102を3000人程度にした後、多結晶シリ
コン上の酸化膜をパターニングし、POCl3等を使用
して多結晶シリコン領域107を通して熱拡散で拡散領
域108を形成する。三つ目の方法は上述のpoc+3
等のガスを使用せずイオン注入法を使用し、その後熱拡
散で拡散領域108を形成する。
Next, as shown in Figure 2 ((i), SiC+4-HC
I-H2 system, Sin 4-HCI-H2 system, or Si8
2. A single crystal or polycrystalline silicon region (herein referred to as a polycrystalline silicon region) 107 is selectively produced using a gas such as 2G+2-HCl-H2 system. At this time, on the oxide film 102 on the surface of the silicon substrate 101, due to the nature of the oxide film, the equilibrium state between the etching by HCI and the deposition of Si by the Si source is closer to the etching side.
does not accumulate. Finally, a diffusion region 108 is formed. There are three methods for forming this. The first method is to contain PH3 during selective deposition of the polycrystalline silicon region 107 to form polycrystalline silicon containing P, and then diffuse P to form the diffusion region. 108 is formed. The second method is to re-oxidize the oxide film 102 to about 3000 layers, then pattern the oxide film on the polycrystalline silicon, and use POCl3 etc. to form the diffusion region 108 by thermal diffusion through the polycrystalline silicon region 107. Form. The third method is the above poc+3
The ion implantation method is used without using a gas such as, and then the diffusion region 108 is formed by thermal diffusion.

以上の本発明の半導体装置の製造方法を用いた半導体装
置によれば、凹部109の側面に設けられたシリコン窒
化膜lOBおよびシリコン酸化膜105により横方向の
拡散を抑える事ができ、また凹部109の深さは異方性
を有するドライエツチングの制御で任意に設定する事が
できる。
According to the semiconductor device using the semiconductor device manufacturing method of the present invention described above, lateral diffusion can be suppressed by the silicon nitride film lOB and the silicon oxide film 105 provided on the side surfaces of the recess 109. The depth can be set arbitrarily by controlling dry etching which has anisotropy.

また、第1図の単結晶又は多結晶シリコン領域107を
配線として用いて拡散領域1087に電圧を加えること
で局部的に基板101の垂直方向にポテンシャル壁を作
ることができる0例えば、酸化膜105が2500八以
上、窒化膜10Bが1500Å以上であれば横の素子域
の電位に影響をあまり与える事なくポテンシャル壁を形
成する事ができる。このポテンシャル壁は特に第3図に
示すような特開昭80−12759号公報〜特開昭8O
−127E15号公報のセンサセルの電気的分離に使用
すると非常に有効である。以下、第3図を用いて本発明
の半導体装置の製造方法を用いたセンサセルについて説
明する。
Further, by applying a voltage to the diffusion region 1087 using the single crystal or polycrystalline silicon region 107 in FIG. 1 as a wiring, a potential wall can be locally created in the vertical direction of the substrate 101. If the thickness of the nitride film 10B is 2,500 Å or more and the thickness of the nitride film 10B is 1,500 Å or more, a potential wall can be formed without significantly affecting the potential of the lateral element region. This potential wall is particularly important as shown in FIG.
It is very effective when used for electrical isolation of the sensor cell disclosed in Japanese Patent No. 127E15. Hereinafter, a sensor cell using the method of manufacturing a semiconductor device of the present invention will be explained using FIG.

第3図において、n+シリコン基板l上に不純物濃度の
低いn−領域3が形成され、該n−領域3上にはpタイ
プの不純物をドーピングすることでp領域4が形成され
、p領域4には不純物拡散技術又はイオン注入技術等に
よってn+領域5が形成されている。p領域4およびn
中領域5は、各々バイポーラトランジスタのベースおよ
びエミッタである。なお、2は本発明における素子分離
領域である。
In FIG. 3, an n- region 3 with a low impurity concentration is formed on an n+ silicon substrate l, and a p-region 4 is formed on the n- region 3 by doping p-type impurities. An n+ region 5 is formed by an impurity diffusion technique, an ion implantation technique, or the like. p region 4 and n
The middle regions 5 are the base and emitter of a bipolar transistor, respectively. Note that 2 is an element isolation region in the present invention.

このように各領域が形成されたn−領域3上には酸化膜
6が形成され、酸化M6上に所定の面積を有するキャパ
シタ電極7が形成されている。
An oxide film 6 is formed on the n- region 3 in which each region is formed in this manner, and a capacitor electrode 7 having a predetermined area is formed on the oxide M6.

キャパシタ電極7は酸化膜8を挟んでp領域4と対向し
、キャパシタ電極7にパルス電圧を印加することで浮遊
状態にされたp領域4の電位を制御する。
Capacitor electrode 7 faces p-region 4 with oxide film 8 in between, and applies a pulse voltage to capacitor electrode 7 to control the potential of p-region 4 in a floating state.

その外に、n中領域5に接続されたエミッタ電極8、エ
ミッタ電極8から信号を外部へ読出す配線8、基板lの
裏面に不純物濃度の高いn十領域11およびバイポーラ
トランジスタのコレクタに電位を与えるための電極12
がそれぞれ形成されている。
In addition, the emitter electrode 8 connected to the n-middle region 5, the wiring 8 for reading out signals from the emitter electrode 8 to the outside, the n-1 region 11 with high impurity concentration on the back surface of the substrate l, and the collector of the bipolar transistor are connected to a potential. electrode 12 for giving
are formed respectively.

光13はバイポーラトランジスタのベースであるp領域
4へ入射し、光量に対応した電荷がp領域4に蓄積され
る0M積された電荷によってベース電位は変化し、その
電位変化を浮遊状態にしたエミッタ電極8から読出すこ
とで、入射光量に対応した電気信号を得ることができる
Light 13 enters the p-region 4, which is the base of the bipolar transistor, and a charge corresponding to the amount of light is accumulated in the p-region 4. The base potential changes due to the 0M multiplied charges, and the emitter changes the potential change into a floating state. By reading from the electrode 8, an electrical signal corresponding to the amount of incident light can be obtained.

上記センサセルにおいて、n型シリコン基板1及び素子
分離領域2に正の電圧を印加すると1図中のA方向に正
札に対し高いポテンシャル壁が形成される。このポテン
シャル壁によって入射光によって生じた正孔は隣接セル
のp領域に流れこむことができず、セル間の完全な電気
的分離が達成される。n一層3が4 JLrnの厚さで
あってもセル間の完全な分離がなされていることが確認
されており、従来技術のLOCO9法では達成できない
深い分離が可能となる。
In the above sensor cell, when a positive voltage is applied to the n-type silicon substrate 1 and the element isolation region 2, a high potential wall is formed in the direction A in FIG. This potential wall prevents holes generated by incident light from flowing into the p-regions of adjacent cells, achieving complete electrical isolation between cells. It has been confirmed that complete separation between cells is achieved even when the thickness of the n layer 3 is 4 JLrn, and deep separation that cannot be achieved with the prior art LOCO9 method is possible.

また、この分離方法はエッチバック等の特殊な平坦化技
術を必要とせず、製造工程が簡便であり、埋込んだ単結
晶又は多結晶シリコン領域を配線域として使用できるの
で配線コンタクトをとす際、特殊なコンタクト形成工程
を必要としない。
In addition, this separation method does not require special planarization techniques such as etch-back, and the manufacturing process is simple. The buried single-crystalline or polycrystalline silicon region can be used as a wiring area, so when making wiring contacts. , no special contact forming process is required.

[発明の効果] 以上詳細に説明したように、本発明による半導体装置の
製造方法によれば、素子分離領域の幅が小さくとれ、か
つ素子分離領域の深さを十分とる事ができるので、高集
積化に適し、また製作工程が簡便で、素子分離領域にポ
テンシャル壁が設けられるのでより完全な電気的分離の
できる半導体装置の製造方法を提供できる。
[Effects of the Invention] As explained in detail above, according to the method of manufacturing a semiconductor device according to the present invention, the width of the element isolation region can be made small and the depth of the element isolation region can be made sufficient. It is possible to provide a method of manufacturing a semiconductor device that is suitable for integration, has a simple manufacturing process, and provides more complete electrical isolation because a potential wall is provided in the element isolation region.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明による半導体装置の製造方法の一実施
例によって製造された半導体装置の素子分離領域の概略
的断面図であり・ 第2図(A)〜(G)は、本発明による半導体装置、の
製造方法の一実施例を示す製造工程図、第3図は、本発
明の半導体装置の製造方法を適用して製造したセンサセ
ルの概略的断面図である。 2−・・素子分離領域 101 ・・・シリコン基板 102、105・・・シリコン酸化膜 108 ・・・シリコン窒化膜 107 ・・・単結晶又は多結晶シリコン領域10B 
・・・拡散領域 代理人  弁理士 山 下 穣 平 第1図 第2図
FIG. 1 is a schematic cross-sectional view of an element isolation region of a semiconductor device manufactured by an embodiment of the method for manufacturing a semiconductor device according to the present invention. FIG. 3 is a manufacturing process diagram showing one embodiment of a method for manufacturing a semiconductor device, and is a schematic cross-sectional view of a sensor cell manufactured by applying the method for manufacturing a semiconductor device of the present invention. 2-...Element isolation region 101...Silicon substrate 102, 105...Silicon oxide film 108...Silicon nitride film 107...Single crystal or polycrystalline silicon region 10B
...Diffusion area agent Patent attorney Jo Taira Yamashita Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (1)一導電型の半導体層に形成された各素子を素子分
離領域によって電気的に分離した半導体装置を製造する
方法において、 前記半導体層における前記素子分離領域 を形成しようとする部分に凹部を形成する第1工程と、 該凹部の底部を除いた部分を絶縁膜で覆 う第2工程と、 該凹部に前記一導電型の不純物を含む単 結晶又は多結晶材料を満たす第3工程と、 該単結晶又は多結晶材料からの不純物拡 散によって該単結晶又は多結晶材料の直下に前記半導体
層より高い不純物濃度の一導電型半導体領域を形成する
第4工程と、 によって前記素子分離領域を形成するこ とを特徴とする半導体装置の製造方法。
(1) In a method for manufacturing a semiconductor device in which each element formed in a semiconductor layer of one conductivity type is electrically isolated by an element isolation region, a recess is formed in a portion of the semiconductor layer where the element isolation region is to be formed. a first step of forming the recess, a second step of covering the recess except for the bottom with an insulating film, and a third step of filling the recess with a single crystal or polycrystalline material containing the impurity of one conductivity type; a fourth step of forming a one conductivity type semiconductor region with an impurity concentration higher than that of the semiconductor layer directly under the single crystal or polycrystalline material by impurity diffusion from the single crystal or polycrystalline material; and forming the element isolation region by: A method for manufacturing a semiconductor device, characterized in that:
JP9229085A 1985-05-01 1985-05-01 Manufacture of semiconductor device Pending JPS61252644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9229085A JPS61252644A (en) 1985-05-01 1985-05-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9229085A JPS61252644A (en) 1985-05-01 1985-05-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS61252644A true JPS61252644A (en) 1986-11-10

Family

ID=14050277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9229085A Pending JPS61252644A (en) 1985-05-01 1985-05-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS61252644A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168032A (en) * 1986-12-22 1988-07-12 テキサス インスツルメンツ インコーポレイテツド Isolation of integrated circuit
JPH04336559A (en) * 1991-05-13 1992-11-24 Ricoh Co Ltd Image formation element and optical printing head

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63168032A (en) * 1986-12-22 1988-07-12 テキサス インスツルメンツ インコーポレイテツド Isolation of integrated circuit
JPH04336559A (en) * 1991-05-13 1992-11-24 Ricoh Co Ltd Image formation element and optical printing head

Similar Documents

Publication Publication Date Title
US4196440A (en) Lateral PNP or NPN with a high gain
EP0083816B1 (en) Semiconductor device having an interconnection pattern
US4228450A (en) Buried high sheet resistance structure for high density integrated circuits with reach through contacts
JPS61191043A (en) Semiconductor device
JPH04225285A (en) Silicon photodiode for monolithic integrated circuit use and its manufacture
JPS6159852A (en) Manufacture of semiconductor device
JPH025432A (en) Semiconductor device and its manufacture
JPS6224944B2 (en)
JPS61252644A (en) Manufacture of semiconductor device
JP2757815B2 (en) Method for manufacturing semiconductor device
JPS6048111B2 (en) Non-volatile semiconductor memory device
US4316319A (en) Method for making a high sheet resistance structure for high density integrated circuits
JPS58200554A (en) Manufacture of semiconductor device
JPS6244853B2 (en)
JP3150420B2 (en) Bipolar integrated circuit and manufacturing method thereof
JPS6155253B2 (en)
JPS6226837A (en) Manufacture of semiconductor device
KR0137568B1 (en) Method of making a bipolar transistor
JP2668873B2 (en) Semiconductor storage device
JPS60244036A (en) Semiconductor device and manufacture thereof
JPH0421343B2 (en)
JP3707978B2 (en) Semiconductor integrated circuit and manufacturing method thereof
JPH05335329A (en) Semiconductor device and its manufacture
JP2529993B2 (en) Dielectric isolation structure integrated circuit
JPS60753A (en) Manufacture of semiconductor device