JPS61252605A - Magnetic powder of iron oxide - Google Patents

Magnetic powder of iron oxide

Info

Publication number
JPS61252605A
JPS61252605A JP60092190A JP9219085A JPS61252605A JP S61252605 A JPS61252605 A JP S61252605A JP 60092190 A JP60092190 A JP 60092190A JP 9219085 A JP9219085 A JP 9219085A JP S61252605 A JPS61252605 A JP S61252605A
Authority
JP
Japan
Prior art keywords
coercive force
magnetite
magnetic powder
oxide
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60092190A
Other languages
Japanese (ja)
Inventor
Shuichi Takagi
修一 高木
Kazuhiro Okamoto
和広 岡本
Yasuo Tateno
舘野 安夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP60092190A priority Critical patent/JPS61252605A/en
Publication of JPS61252605A publication Critical patent/JPS61252605A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/62Record carriers characterised by the selection of the material
    • G11B5/68Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent
    • G11B5/70Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer
    • G11B5/706Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material
    • G11B5/70626Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances
    • G11B5/70642Record carriers characterised by the selection of the material comprising one or more layers of magnetisable material homogeneously mixed with a bonding agent on a base layer characterised by the composition of the magnetic material containing non-metallic substances iron oxides
    • G11B5/70678Ferrites
    • G11B5/70684Ferro-ferrioxydes
    • G11B5/70694Non-stoechiometric ferro-ferrioxydes, e.g. berthollide

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain magnetic powder which is magnetically and chemically stable and has excellent anti-magnetic force distribution characteristic by using an intermediate material of magnetite as the core crystal, covering the surface thereof with an oxide including iron of bivalent and/or zinc and moreover covering the surface with a cobalt compound. CONSTITUTION:An intermediate material of magnetite expressed by the general expression, (FeO)x.Fe2O3 (where, 0.1<=x<=0.8) is used as the core crystal, the surface thereof is covered with an oxide including the iron of bivalent or an oxide including the iron of bivalent and zinc, and the surface is then covered with the cobalt compound. An oxide layer including Fe<2+> or an oxide layer including Fe<2+> and Zn can be formed, for example, by dispersing the intermediate material powder of magnetite into the alkali solution and then adding thereto the aqueous solution of ferrous salt or mixed aqueous solution of ferrous salt and zinc salt. The cobalt compound layer is usually formed as the hydroxide of cobalt Co(OH)2 but it may be formed as the oxide, CoOOH, Co3O4, CoO through further heat treatment.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、磁気テープや磁気ディスク等の塗布型の磁気
記録媒体に使用される酸化鉄磁性粉末に関するものであ
り、詳細には表面にコバルト化合物層を有するコバルト
含を酸化鉄磁性粉末の改良に関するものである。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to iron oxide magnetic powder used in coated magnetic recording media such as magnetic tapes and magnetic disks. The present invention relates to an improvement in a cobalt-containing iron oxide magnetic powder having a compound layer.

〔発明の概要〕[Summary of the invention]

本発明は、表面をコバルト化合物で被覆してなるCo含
有酸化鉄磁性粉末において、核晶としてマグネタイト中
間体を用いるとともに、その表面をあらかじめ2価の鉄
および/または亜鉛を含有する酸化物で被覆し、さらに
その表面をコバルト化合物で被覆することにより、磁気
的、化学的に安定で抗磁力分布に優れた磁性粉末を得よ
うとするものである。
The present invention uses a magnetite intermediate as a nucleus crystal in Co-containing iron oxide magnetic powder whose surface is coated with a cobalt compound, and the surface is coated in advance with an oxide containing divalent iron and/or zinc. By further coating the surface with a cobalt compound, it is attempted to obtain a magnetic powder that is magnetically and chemically stable and has excellent coercive force distribution.

〔従来の技術〕[Conventional technology]

従来、塗布型の磁気記録媒体の磁性粉末としては、y−
Fs、O,粒子、特に形状異方性により高い抗磁力を有
する針状r−FezOs粒子が広く用いられている。こ
の針状γ−Fet02粒子は、化学的・磁気的安定性に
優れ、また価格も安価である等の長所を有している。
Conventionally, y-
Fs, O, particles, especially acicular r-FezOs particles, which have high coercive force due to shape anisotropy, are widely used. These acicular γ-Fet02 particles have advantages such as excellent chemical and magnetic stability and low price.

ところで、一般に磁気記録媒体においては、磁性粉末の
抗磁力が記録再生特性を左右する重要な因子となってお
り、この抗磁力を大きくすることにょうて減磁を抑え、
また記録密度を向上させることが可能であることが知ら
れている。そして、ビデオテープやオーディオテープ等
の性能の向上の要求から、上記磁性粉末の抗磁力をより
一層高める必要が生じている。
By the way, in general, in magnetic recording media, the coercive force of magnetic powder is an important factor that affects the recording and reproducing characteristics, and by increasing this coercive force, demagnetization can be suppressed and
It is also known that recording density can be improved. In response to demands for improved performance of video tapes, audio tapes, etc., it is necessary to further increase the coercive force of the magnetic powder.

そこで従来、コバルト化合物をT−Fl!!03粒子の
表面に吸着させた、いわゆるコバルト被着型TFeze
s粒子を磁性粉末として用いることが提案されている。
Therefore, in the past, cobalt compounds were used as T-Fl! ! So-called cobalt-adhered TFeze adsorbed on the surface of 03 particles
It has been proposed to use s particles as magnetic powder.

このコバルト被着型γ−Fezos粒子においては、コ
バルトイオンの効果を粒子表面に集中させることによっ
て抗磁力を増加させ、抗磁力の経時的増加現象や磁気特
性の温度依存性等の改善を図ることが可能である。しか
しながら、このコバルト被着型γ−FetO,粒子では
、コバルト吸着量の増加に伴って抗磁力は増加するもの
の、反面、単位重量当りの飽和磁化σ、が減少すること
が本発明者等の調べにより明らかになった。
In this cobalt-coated γ-Fezos particle, the coercive force is increased by concentrating the effect of cobalt ions on the particle surface, and the phenomenon of increase in coercive force over time and the temperature dependence of magnetic properties are improved. is possible. However, in the cobalt-coated γ-FetO particles, although the coercive force increases as the amount of cobalt adsorbed increases, the inventors have found that on the other hand, the saturation magnetization σ per unit weight decreases. This became clear.

この飽和磁化σ1が減少すると、記録再生出力が低下す
る等、電磁特性に悪影響を及ぼす。
If this saturation magnetization σ1 decreases, it will adversely affect electromagnetic characteristics, such as a decrease in recording and reproducing output.

あるいは、上記飽和磁化σ、を確保するために、核晶と
してマグネタイト中間体の粒子を用い、その表面にコバ
ルト化合物層を形成することも考えられているが、この
場合にも抗磁力を容易に増加させることができるものの
、r−Fe、O,粒子を用いた場合に比べ、磁気的安定
性に欠け、抗磁力の経時変化が大きくなったり、磁気特
性の温度特性が悪くなったりする傾向にある。
Alternatively, in order to ensure the above-mentioned saturation magnetization σ, it has been considered to use magnetite intermediate particles as nucleus crystals and form a cobalt compound layer on the surface, but in this case, it is also possible to easily increase the coercive force. However, compared to the case of using r-Fe, O, particles, it lacks magnetic stability, tends to increase the change in coercive force over time, and tends to deteriorate the temperature characteristics of magnetic properties. be.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、飽和磁化σ8を確保し高い抗磁力を得るた
めに、核となるマグネタイト中間体の表面にコバルト化
合物を吸着させると、Coイオンが上記マグネタイト中
間体へ拡散し、抗磁力の温度依存性が大きくなり、抗磁
力、飽和磁化σ、の経時変化が抑えられなくなる等の問
題があった。
In this way, in order to ensure saturation magnetization σ8 and obtain high coercive force, if a cobalt compound is adsorbed on the surface of the core magnetite intermediate, Co ions will diffuse into the magnetite intermediate, and the temperature dependence of coercive force will increase. There were problems such as an increase in the magnetism, and changes in the coercive force and saturation magnetization σ over time could not be suppressed.

そこで本発明は、Coイオンのマグネタイト中間体への
拡散を抑え、抗磁力の温度特性や抗磁力。
Therefore, the present invention suppresses the diffusion of Co ions into the magnetite intermediate, and improves the temperature characteristics of coercive force and coercive force.

飽和磁化σ、の経時変化等を改善し、さらに抗磁力He
分布に優れた酸化鉄磁性粉末を提供することを目的とす
る。
It improves the temporal change of saturation magnetization σ, and further increases the coercive force He.
The purpose is to provide iron oxide magnetic powder with excellent distribution.

(問題点を解決するための手段) 本発明者等は、上述の目的を達成せんものと鋭意研究の
結果、コバルト化合物層を被着する前にあらかじめ核と
なるマグネタイト中間体の表面にFe @+を含む酸化
物層またはFe1−とZnを含む酸化物層を形成してお
くことにより、Coイオンのマグネタイト中間体への拡
散を効果的に抑えることが可能であることを見出し本発
明を完成するに至ったものであって、−i式 %式%) で示されるマグネタイト中間体を核晶とし、その表面を
2価の鉄を含有する酸化物または2価の鉄および亜鉛を
含有する酸化物で被覆し、さらにその表面をコバルト化
合物で被覆したことを特徴とするものである。
(Means for Solving the Problems) As a result of intensive research to achieve the above-mentioned object, the present inventors have determined that Fe@ The present invention was completed by discovering that by forming an oxide layer containing + or an oxide layer containing Fe1- and Zn, it is possible to effectively suppress the diffusion of Co ions into the magnetite intermediate. The magnetite intermediate represented by -i formula % formula %) is used as a nucleus crystal, and its surface is coated with an oxide containing divalent iron or an oxide containing divalent iron and zinc. It is characterized in that the surface is coated with a cobalt compound.

本発明の酸化鉄磁性粉末においては、核晶であるマグネ
タイト中間体の表面はFe”を含む酸化物層またはFe
”とZnを含む酸化物層で被覆されるが、これら酸化物
層は、例えばマグネフィト中間体粒子をアルカリ溶液中
に分散させた後、第1鉄塩の水溶液もしくは第1鉄塩と
亜鉛塩の混合水溶液を添加することにより形成される。
In the iron oxide magnetic powder of the present invention, the surface of the magnetite intermediate which is the nucleus crystal is an oxide layer containing Fe" or
These oxide layers are coated with an oxide layer containing, for example, magnetophyte intermediate particles in an alkaline solution and then an aqueous solution of a ferrous salt or a combination of a ferrous salt and a zinc salt. Formed by adding a mixed aqueous solution.

ここで、使用される第1鉄塩としては、塩化第1鉄、 
ii酸第1鉄等が挙げられ、亜鉛塩としては塩化亜鉛、
硫酸亜鉛等が挙げられる。また、アルカリとしては、水
酸化ナトリウム、水酸化カリウム7水酸化リチウム等が
使用される。
Here, the ferrous salts used include ferrous chloride,
Examples include ferrous ii-acid, and zinc salts include zinc chloride,
Examples include zinc sulfate. Further, as the alkali, sodium hydroxide, potassium hydroxide, lithium heptahydroxide, etc. are used.

一方、上記酸化物層で被覆されたマグネタイト中間体は
、さらにコバルト化合物により被覆されるが、このコバ
ルト化合物もアルカリ溶液中に塩化コバルト、a化コバ
ルト、硫酸コバルト等のコバルト塩の水溶液を添加する
ことにより形成される。
On the other hand, the magnetite intermediate coated with the above oxide layer is further coated with a cobalt compound, and this cobalt compound is also obtained by adding an aqueous solution of a cobalt salt such as cobalt chloride, cobalt a, cobalt sulfate, etc. to an alkaline solution. It is formed by

上記コバルト化合物層は、通常、コバルトの水酸化物C
o (OH)!とじて形成されるが、さらに熱処理等を
施して、Co OOH,Co 304.  C。
The cobalt compound layer is usually made of cobalt hydroxide C.
o (OH)! Co OOH, Co 304. C.

Oのような酸化物としてもよい。あるいは4第1鉄塩と
コバルト塩を含む金属塩のアルカリ溶液中で、空気等の
酸化性ガスの吹き込み、またはHy O□等の酸化剤の
添加によって酸化反応を行わしめ、コバルト原子を含む
酸化鉄層をエピタキシャルに成長させたものであっても
よい。
It may also be an oxide such as O. Alternatively, in an alkaline solution of a metal salt containing a ferrous salt and a cobalt salt, an oxidation reaction is carried out by blowing in an oxidizing gas such as air or adding an oxidizing agent such as HyO□. The iron layer may be epitaxially grown.

また、上記コバルト化合物層は、上記第1鉄塩もしくは
第1鉄塩と亜鉛塩を含む水溶液を添加し、沸点以下の温
度で30分間以上攪拌した後、コバルト塩の水溶液を添
加することにより形成することが好ましい。あまり時間
をおかないでコバルト塩を添加すると、所定の効果が得
られないばかりか、抗磁力Hc分布が広がり、磁気的安
定性も失われることになる。
The cobalt compound layer is formed by adding the ferrous salt or an aqueous solution containing the ferrous salt and zinc salt, stirring at a temperature below the boiling point for 30 minutes or more, and then adding an aqueous solution of the cobalt salt. It is preferable to do so. If the cobalt salt is added too soon, not only will the desired effect not be obtained, but the coercive force Hc distribution will widen and magnetic stability will also be lost.

〔作用〕[Effect]

このように、マグネタイト中間体の表面に、先ず第1鉄
もしくは第1鉄と亜鉛を含む酸化物層を形成し、その後
コバルト原子を含有するコバルト化合物層を形成するこ
とにより、COイオンのマグネタイト中間体への拡散が
抑制され、抗磁力HCの温度特性や抗磁力Hc、飽和磁
化σ8の経時変化が改善される。
In this way, by first forming an oxide layer containing ferrous iron or ferrous iron and zinc on the surface of the magnetite intermediate, and then forming a cobalt compound layer containing cobalt atoms, CO ions can be absorbed into the magnetite intermediate. Diffusion into the body is suppressed, and the temperature characteristics of coercive force HC and changes over time in coercive force Hc and saturation magnetization σ8 are improved.

〔実施例〕〔Example〕

以下、本発明の具体的な実施例について説明するが、本
発明がこれら実施例に限定されるものではない。
Hereinafter, specific examples of the present invention will be described, but the present invention is not limited to these examples.

実施例1゜ 抗磁力Hc420(Oe)x飽和磁化σ* 79 em
u/gのマグネタイト中間体(F e”/F e”=0
.25%)100gを水酸化ナトリウム115.2gを
含む水溶液860m1中に分散させた後、硫酸第1鉄1
7.41gを含む水溶液100mlを加え、70℃で3
0分間攪拌してから昇温し、100℃で30分間攪拌し
た。
Example 1゜Coercive force Hc420 (Oe) x saturation magnetization σ* 79 em
u/g magnetite intermediate (F e”/F e”=0
.. After dispersing 100 g of ferrous sulfate (25%) in 860 ml of an aqueous solution containing 115.2 g of sodium hydroxide,
Add 100 ml of an aqueous solution containing 7.41 g and incubate at 70°C for 3
After stirring for 0 minutes, the temperature was raised, and the mixture was stirred at 100° C. for 30 minutes.

次いで、塩化コバル) 10.43 gを含む水溶液1
00nl!を加え、6時間攪拌した後、脱水・乾燥した
Then an aqueous solution 1 containing 10.43 g of cobal chloride
00nl! was added and stirred for 6 hours, followed by dehydration and drying.

このようにして得られた磁性粉末の磁気特性を測定した
ところ、抗磁力Hcは650 (Oe)x飽和磁化σ、
は80. Oemu/gであった。
When the magnetic properties of the magnetic powder thus obtained were measured, the coercive force Hc was 650 (Oe) x saturation magnetization σ,
is 80. It was Oemu/g.

また、この磁性粉末を用いて磁気テープを作製したとこ
ろ、この磁気テープの抗磁力Heは680(Oe)x転
写は59dB、消去は?2.5duであった。
Also, when a magnetic tape was made using this magnetic powder, the coercive force He of this magnetic tape was 680 (Oe) x 59 dB for transfer and 59 dB for erasing. It was 2.5du.

実施例2゜ 先の実施例1で用いたのと同様のマグネタイト中間体1
00gを水酸化ナトリウム115.2gを含む水溶液8
60ml中に分散させた後、硫酸第1鉄17.41gと
硫酸亜鉛2.15 gを含む水溶液100mj!を加え
、70℃で30分間攪拌してから昇温し、100℃で3
0分間攪拌した。
Example 2 Magnetite intermediate 1 similar to that used in Example 1 above
00g to an aqueous solution containing 115.2g of sodium hydroxide 8
100 mj of an aqueous solution containing 17.41 g of ferrous sulfate and 2.15 g of zinc sulfate after being dispersed in 60 ml! was added, stirred at 70°C for 30 minutes, then raised to temperature, and heated to 100°C for 30 minutes.
Stirred for 0 minutes.

次いで、塩化コバル)10.43gを含む水溶液100
mj!を加え、そのまま7時間攪拌した後、脱水・乾燥
した。
Then, 100 g of an aqueous solution containing 10.43 g of cobal chloride
mj! was added and stirred for 7 hours, followed by dehydration and drying.

このようにして得られた磁性粉末の磁気特性を測定した
ところ、抗磁力Heは653 (Oe)x飽和磁化σ1
は81.2 emu/gであった。
When the magnetic properties of the magnetic powder thus obtained were measured, the coercive force He was 653 (Oe) x saturation magnetization σ1
was 81.2 emu/g.

また、この磁性粉末を用いて磁気テープを作製したとこ
ろ、この磁気テープの抗磁力Hcは685(Oe)x転
写は59.5dB、消去は73dBであった。
Further, when a magnetic tape was produced using this magnetic powder, the coercive force Hc of this magnetic tape was 685 (Oe) x 59.5 dB for transfer and 73 dB for erasure.

実施例3゜ 先の実施例1で用いたのと同様のマグネタイト中間体1
00gを水酸化ナトリウムl15.2gを含む水溶液8
60ml中に分散させた後、硫酸第1鉄17.41gを
含む水溶液100mlを加えた。
Example 3 Magnetite intermediate 1 similar to that used in Example 1 above
Aqueous solution containing 15.2 g of sodium hydroxide 8
After dispersing in 60 ml, 100 ml of an aqueous solution containing 17.41 g of ferrous sulfate was added.

次いで、直ちに塩化コバル) 10.43 gを含む水
溶液100mj!を加え、100℃で3時間攪拌した後
、脱水・乾燥した。
Then immediately 100 mj of an aqueous solution containing 10.43 g of cobal chloride)! was added, stirred at 100°C for 3 hours, and then dehydrated and dried.

このようにして得られた磁性粉末の磁気特性を測定した
ところ、抗磁力Hcは640 (Oe)x km和磁化
σ、は81.2 emu/gであった。
When the magnetic properties of the magnetic powder thus obtained were measured, the coercive force Hc was 640 (Oe) x km and the sum magnetization σ was 81.2 emu/g.

また、この磁性粉末を用いて磁気テープを作製したとこ
ろ、この磁気テープの抗磁力Heは678(Oe)x転
写は57.5dB、消去は63.5aBであった。
Further, when a magnetic tape was produced using this magnetic powder, the coercive force He of this magnetic tape was 678 (Oe) x 57.5 dB for transfer and 63.5 aB for erasure.

比較例1゜ 先の実施例1で用いたのと同様のマグネタイト中間体1
00gを水酸化ナトリウム115.2gを含む水溶18
60m#中に分散させた後、塩化コバルト8.94gを
含む水溶液100n1を加え、100℃で6時間攪拌し
た後、脱水・乾燥した。
Comparative Example 1 Magnetite intermediate 1 similar to that used in Example 1 above
00g to an aqueous solution containing 115.2g of sodium hydroxide 18
After dispersing in 60 m#, 100 n1 of an aqueous solution containing 8.94 g of cobalt chloride was added, stirred at 100° C. for 6 hours, and then dehydrated and dried.

このようにして得られた磁性粉末の磁気特性を測定した
ところ、抗磁力Heは650 (Oe)x飽和磁化σ1
は79.5 emu/gであった。
When the magnetic properties of the magnetic powder thus obtained were measured, the coercive force He was 650 (Oe) x saturation magnetization σ1
was 79.5 emu/g.

また、この磁性粉末を用いて磁気テープを作製したとこ
ろ、この磁気テープの抗磁力Hcは680(Oe)x転
写は58dB、消去は66dBであった。
Further, when a magnetic tape was produced using this magnetic powder, the coercive force Hc of this magnetic tape was 680 (Oe) x 58 dB for transfer and 66 dB for erasure.

比較例2゜ 先の実施例1で用いたのと同様のマグネタイト中間体1
00gを水酸化ナトリウム1.15.2gを含む水溶液
860mi中に分散させた後、塩化コバルト10.43
 gを含む水溶液100mj!を加え、100℃で6時
間攪拌した。
Comparative Example 2 Magnetite Intermediate 1 similar to that used in Example 1 above
After dispersing 00g in 860mi of an aqueous solution containing 1.15.2g of sodium hydroxide, 10.43ml of cobalt chloride
100 mj of aqueous solution containing g! was added and stirred at 100°C for 6 hours.

次いで、硫酸第1鉄17.41gを含む水溶液100m
[を添加して1時間攪拌し、脱水・乾燥した。
Next, 100 ml of an aqueous solution containing 17.41 g of ferrous sulfate
[ was added, stirred for 1 hour, and dehydrated and dried.

このようにして得られた磁性粉末の磁気特性を測定した
ところ、抗磁力Hcは655 (Oe)x飽和磁化σ1
は82.3 emu7gであった。
When the magnetic properties of the magnetic powder thus obtained were measured, the coercive force Hc was 655 (Oe) x saturation magnetization σ1
was 82.3 emu7g.

また、この磁性粉末を用いて磁気テープを作製したとこ
ろ、この磁気テープの抗磁力Hcは682(Oe)x転
写は54.1 dB、消去は64.5dBであった。
Further, when a magnetic tape was produced using this magnetic powder, the coercive force Hc of this magnetic tape was 682 (Oe) x 54.1 dB for transfer and 64.5 dB for erasure.

上述の実施例1.実施例2.比較例1.比較例2で得ら
れた各磁性粉末について、抗磁力Haの温度特性を調べ
た。結果を第1図に示す。なお、この第1図において、
曲線aは実施例1及び実施例2で得られた磁性粉末の温
度特性を示し、曲線すは比較例1で得られた磁性粉末の
温度特性1曲線Cは比較例2で得られた磁性粉末の温度
特性をそれぞれ示す。
Example 1 above. Example 2. Comparative example 1. For each magnetic powder obtained in Comparative Example 2, the temperature characteristics of coercive force Ha were investigated. The results are shown in Figure 1. In addition, in this Figure 1,
Curve a shows the temperature characteristics of the magnetic powder obtained in Example 1 and Example 2, Curve A shows the temperature characteristics of the magnetic powder obtained in Comparative Example 1, Curve C shows the temperature characteristic of the magnetic powder obtained in Comparative Example 2. The temperature characteristics of each are shown below.

この第1図より、本発明に係る実施例で得られた磁性粉
末にあっては、いずれも比較例に比べて温度特性が改善
されたことは明白である。
From FIG. 1, it is clear that the magnetic powders obtained in the Examples according to the present invention all had improved temperature characteristics compared to the Comparative Examples.

さらに、これら各サンプルの100℃、空気中における
抗磁力Hcの経時変化ΔHe及び飽和磁化σ、の経時変
化Δσ、を調ぺた。結果を第2図及び第3図にそれぞれ
示す、なお、これら第2図及び第3図において、曲線A
は実施例12曲線Bは実施例21曲線Cは比較例11曲
線りは比較例2をそれぞれ表す。
Furthermore, the time-dependent change ΔHe in the coercive force Hc and the time-dependent change Δσ in the saturation magnetization σ of each of these samples at 100° C. in air were investigated. The results are shown in Figures 2 and 3, respectively. In these Figures 2 and 3, curve A
Curve B represents Example 12, Curve C represents Comparative Example 11, and Comparative Example 2.

これら第2図及び第3図より、本発明の実施例において
は、抗磁力Hcおよび飽和磁化σ1のいずれにおいても
改善が見られ、特に実施例2において効果が大きいこと
がわかる。
From these FIGS. 2 and 3, it can be seen that in the examples of the present invention, improvements were seen in both the coercive force Hc and the saturation magnetization σ1, and the effect was particularly large in Example 2.

〔発明の効果〕〔Effect of the invention〕

以上の説明からも明らかなように、本発明の酸化鉄磁性
粉末においては、マグネタイト中間体を核晶とし、その
表面をあらかじめ第1鉄または第1鉄と亜鉛を含む酸化
物層により被覆し、さらにその上をコバルト化合物によ
り被覆しているので、マグネタイト中間体にCoを被着
して抗磁力Heを増加させるときに生ずる抗磁力Heの
温度特性や抗磁力Ha、飽和磁化σ、の経時変化の劣化
を改善することができ、抗磁力Hcが高く、磁気安定性
に優れた酸化鉄磁性粉末が得られる。
As is clear from the above description, in the iron oxide magnetic powder of the present invention, the magnetite intermediate is used as a nucleus crystal, and the surface thereof is coated in advance with an oxide layer containing ferrous iron or ferrous iron and zinc. Furthermore, since it is coated with a cobalt compound, the temperature characteristics of the coercive force He, the coercive force Ha, and the saturation magnetization σ, which occur when the magnetite intermediate is coated with Co to increase the coercive force He, change over time. The deterioration of iron oxide can be improved, and an iron oxide magnetic powder with high coercive force Hc and excellent magnetic stability can be obtained.

また、核晶としてマグネタイト中間体を用いているので
、高い飽和磁化σ、を達成することができる。
Furthermore, since a magnetite intermediate is used as the nucleus crystal, a high saturation magnetization σ can be achieved.

さらに本発明によれば、抗磁力Hc分布に優れ、転写特
性や消去特性の良好な酸化鉄磁性粉末が得られる。
Furthermore, according to the present invention, an iron oxide magnetic powder having excellent coercive force Hc distribution and good transfer and erasing properties can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例及び比較例の各磁性粉末におけ
る抗磁力Hcの温度特性を示す特性図であり、第2図は
抗磁力Hcの経時変化を示す特性図、第3図は飽和磁化
σ、の経時変化を示す特性図である。
Figure 1 is a characteristic diagram showing the temperature characteristics of coercive force Hc in each magnetic powder of Examples and Comparative Examples of the present invention, Figure 2 is a characteristic diagram showing changes in coercive force Hc over time, and Figure 3 is a characteristic diagram showing the change in coercive force Hc over time. FIG. 3 is a characteristic diagram showing changes in magnetization σ over time.

Claims (1)

【特許請求の範囲】[Claims]  一般式(FeO)_x−Fe_2O_3(但し0.1
≦x≦0.8)で示されるマグネタイト中間体を核晶と
し、その表面を2価の鉄を含有する酸化物または2価の
鉄および亜鉛を含有する酸化物で被覆し、さらにその表
面をコバルト化合物で被覆してなる酸化鉄磁性粉末。
General formula (FeO)_x-Fe_2O_3 (however, 0.1
≦x≦0.8) is used as a nucleus crystal, its surface is coated with an oxide containing divalent iron or an oxide containing divalent iron and zinc, and the surface is further coated with an oxide containing divalent iron or oxide containing divalent iron and zinc. Iron oxide magnetic powder coated with a cobalt compound.
JP60092190A 1985-05-01 1985-05-01 Magnetic powder of iron oxide Pending JPS61252605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60092190A JPS61252605A (en) 1985-05-01 1985-05-01 Magnetic powder of iron oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60092190A JPS61252605A (en) 1985-05-01 1985-05-01 Magnetic powder of iron oxide

Publications (1)

Publication Number Publication Date
JPS61252605A true JPS61252605A (en) 1986-11-10

Family

ID=14047515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60092190A Pending JPS61252605A (en) 1985-05-01 1985-05-01 Magnetic powder of iron oxide

Country Status (1)

Country Link
JP (1) JPS61252605A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480570A (en) * 1992-02-25 1996-01-02 Toda Kogyo Corp. Low coercive iron oxide pigments and a process for their preparation

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081026A (en) * 1983-10-06 1985-05-09 Ishihara Sangyo Kaisha Ltd Manufacture of magnetic iron oxide containing cobalt

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6081026A (en) * 1983-10-06 1985-05-09 Ishihara Sangyo Kaisha Ltd Manufacture of magnetic iron oxide containing cobalt

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5480570A (en) * 1992-02-25 1996-01-02 Toda Kogyo Corp. Low coercive iron oxide pigments and a process for their preparation

Similar Documents

Publication Publication Date Title
JP2784794B2 (en) Magnetic iron oxide particle powder
US4010310A (en) Magnetic powder
JPS61252605A (en) Magnetic powder of iron oxide
JP2925709B2 (en) Method for producing acicular magnetic iron oxide particles for magnetic recording
US4683167A (en) Magnetic iron oxide pigment and recording media
JPH059922B2 (en)
JPH0732094B2 (en) Needle-shaped ferromagnetic iron oxide magnetic powder
JPS6051243B2 (en) Method for producing magnetic iron oxide particles for magnetic recording materials
JPS58146019A (en) Magnetic head
JPS6361362B2 (en)
JPS60165703A (en) Acicular magnetic powder of ferromagnetic iron oxide
JP2982859B2 (en) Magnetic iron oxide particle powder
KR880001197B1 (en) Magnetic heads
JPS6012764B2 (en) Manufacturing method of ferromagnetic powder
JPS6117426A (en) Preparation of magnetic power of cobalt-containing iron oxide
JP2945456B2 (en) Method for producing ferromagnetic iron oxide particles containing cobalt
JP2897794B2 (en) Method for producing cobalt-coated magnetic iron oxide particles
JPH0557210B2 (en)
JP3242102B2 (en) Magnetic powder and method for producing the same
JP2583070B2 (en) Magnetic recording media
JPS614202A (en) Manufacture of magnetic powder made of acicular ferromagnetic iron oxide
JPS609321B2 (en) Magnetic recording medium and its manufacturing method
JPS63142607A (en) Manufacture of magnetic iron powder
JPS6136684B2 (en)
JPH0123924B2 (en)