JPS614202A - Manufacture of magnetic powder made of acicular ferromagnetic iron oxide - Google Patents

Manufacture of magnetic powder made of acicular ferromagnetic iron oxide

Info

Publication number
JPS614202A
JPS614202A JP59124413A JP12441384A JPS614202A JP S614202 A JPS614202 A JP S614202A JP 59124413 A JP59124413 A JP 59124413A JP 12441384 A JP12441384 A JP 12441384A JP S614202 A JPS614202 A JP S614202A
Authority
JP
Japan
Prior art keywords
iron oxide
magnetic powder
coercive force
acicular
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59124413A
Other languages
Japanese (ja)
Inventor
Shuichi Takagi
修一 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP59124413A priority Critical patent/JPS614202A/en
Publication of JPS614202A publication Critical patent/JPS614202A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To provide magnetic powder made of acicular ferromagnetic iron oxide which has large coercive force and saturated magnetization and extremely small variation of magnetization with time, by a method in which, after acicular gamma-Fe2O3 particle surfaces are coated with iron oxide layers containing zinc and bivalent iron and cobalt compound layers, they are heat-treated in an inert gas atmosphere. CONSTITUTION:After acicular gamma-Fe2O3 particle surfaces are coated with iron oxide layers containing zinc and bivalent iron and cobalt compound layers, are dehydrated and dried, they are heat-treated at a temperature of 100-250 deg.C for a time from 30 min-3hr in an inert gas atmosphere. As the inert gas, nitrogen, argon, or neon, etc. is preferable to be utilized, but nitrogen can be pratically used, which is low cost and can be easily available. Variation of coercive force Hc of the magnetic powder made of acicular ferromagnetic iron oxide produced in this way with time is extremely small. When a ratio Zn/Fe<2+> of zinc to bivalent iron being contained in the iron oxide layers, which is important, is 8-25atom%, magnetic powder having large saturated magnetization can be produced, thereby enabling the increase of obtained saturated magnetization value sigmas of magnetic powder.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、塗布型の磁気記録媒体に使用される針状強磁
性酸化鉄磁性粉の製法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing acicular ferromagnetic iron oxide magnetic powder used in coated magnetic recording media.

〔背景技術とその問題点〕[Background technology and its problems]

従来、塗布型の磁気記録媒体の磁性粉としてはγ、−F
ezO3粒子、特に形状異方性によシ高抗磁力を有する
針状γ−F0203粒子が広く用いられている。この針
状γ−Fe 20−3粒子は一1化学的・磁気的安定性
に優れ、また価格も安価である等の長所を有している。
Conventionally, magnetic powders for coated magnetic recording media include γ, -F.
EzO3 particles, especially acicular γ-F0203 particles having high coercive force due to shape anisotropy, are widely used. These acicular γ-Fe 20-3 particles have advantages such as excellent chemical and magnetic stability and low cost.

ところで、一般に磁気記録媒体においては、磁性粉の抗
磁力Heが記録再生特性を左右する重要な因子となって
おり、この抗磁力Heを大きくすることによって減磁を
抑え、また記録密度を向上させることが可能であること
が知られている。そして、ビデオテープやオーディオテ
ープ等の性能の向上の要求から、上記磁性粉の抗磁力H
eをよシ一層高める必要が生じている。
By the way, in general, in magnetic recording media, the coercive force He of magnetic powder is an important factor that influences the recording and reproducing characteristics, and by increasing this coercive force He, demagnetization can be suppressed and the recording density can be improved. It is known that this is possible. In response to demands for improved performance of video tapes, audio tapes, etc., the coercive force H of the magnetic powder
There is a need to further improve e.

そこでさらに従来は、上記γ−Fe2e3粒子にコバル
トイオンを固溶(ドープ)させてコバルトフェライトの
結晶磁気異方性によって上記抗磁力Heを大幅に増大し
たものが提案されている。しかしながら、このようにコ
バルトを固溶させたγ−Fe203粒子にあっては、粒
子中で発生する誘導磁気異方性によってコバルトイオン
の粒子内部での再配列が起とシ、この結果抗磁力Heの
経時的増加・現象が抑えられなかったり磁気特性の温度
依存性が大きくなる等の欠点が生じ、実用するに至って
いない。
Therefore, conventionally, it has been proposed that cobalt ions are dissolved (doped) in the γ-Fe2e3 particles to greatly increase the coercive force He due to the magnetocrystalline anisotropy of cobalt ferrite. However, in γ-Fe203 particles in which cobalt is dissolved in solid solution, cobalt ions rearrange within the particles due to the induced magnetic anisotropy generated in the particles, and as a result, the coercive force He However, it has not been put into practical use due to drawbacks such as the inability to suppress the phenomenon of increase over time and the increased temperature dependence of magnetic properties.

このような欠点を改善するために、さらにコバルト化合
物をγ−Fe203粒子の表面にのみ吸着させた所謂コ
バルト被着型γ−Fe2O3粒子が考えられている。こ
のコバルト被着型γ−F8203粒子においては、コバ
ルトイオンの効果を粒子表面に集中させることによって
抗磁力Hcを増加させ、上述の欠点を改善することが可
能となっているが、コバルト吸着量の増加に伴なって抗
磁力Heは増加するものの、反対に単位重量当りの飽和
磁化σSが減少することが判明した。この飽和磁化σS
が減少すると、記録再生出力が低下する等、電磁特性に
悪影響を及ぼす。
In order to improve these drawbacks, so-called cobalt-adhered γ-Fe2O3 particles, in which a cobalt compound is adsorbed only on the surface of the γ-Fe203 particles, have been considered. In this cobalt-coated γ-F8203 particle, it is possible to increase the coercive force Hc by concentrating the effect of cobalt ions on the particle surface and improve the above-mentioned drawbacks, but the amount of adsorbed cobalt is It was found that although the coercive force He increases with increase, the saturation magnetization σS per unit weight decreases. This saturation magnetization σS
When this decreases, the recording/reproducing output decreases, which adversely affects electromagnetic characteristics.

そこで本発明者は、先に特願昭59−20764号及び
特願昭59−63202号明細書において、コバルト被
着量γ−FezQa粒子にさらに亜鉛と2価の鉄とを含
有する酸化鉄層を設けて抗磁力Heと飽和磁化σSの両
者をともに改善した針状4’i’J@**Ke*’1n
=i’15) t ** Lfc−c ’)**’i’
J−Wfia酸化鉄磁性粉は、γ−Fe2es粒子を核
として、その表面にコバルト化合物層を形成し、さらに
このコバルト化合物層上に亜鉛及び2価の鉄を含有する
酸化鉄層を形成したもの、あるいはγ−Fe203粒子
を核として、その表面に亜鉛及び2価の鉄を含有する酸
化鉄層を形成し、さらにこの酸化鉄層上にコバルト化合
物層を形成したものであって、上記酸化鉄層を設けるこ
とによって、コバルト被着による高抗磁力を保ちながら
飽和磁化σSを向上するとともに、抗磁力Heの経時変
化もある程度少ないものとすることができることが分か
った。
Therefore, the present inventor previously disclosed in Japanese Patent Application No. 59-20764 and Japanese Patent Application No. 59-63202 that an iron oxide layer containing zinc and divalent iron is added to the cobalt-coated γ-FezQa particles. Acicular 4'i'J@**Ke*'1n with improved both coercive force He and saturation magnetization σS by providing
=i'15) t**Lfc-c')**'i'
J-Wfia iron oxide magnetic powder is made by forming a cobalt compound layer on the surface of γ-Fe2es particles as a core, and further forming an iron oxide layer containing zinc and divalent iron on the cobalt compound layer. Alternatively, an iron oxide layer containing zinc and divalent iron is formed on the surface of γ-Fe203 particles as a core, and a cobalt compound layer is further formed on the iron oxide layer, and the iron oxide is It has been found that by providing the layer, the saturation magnetization σS can be improved while maintaining the high coercive force due to cobalt deposition, and the change in the coercive force He over time can be reduced to some extent.

ところで、磁気記録媒体に使用される磁性粉にあっては
、抗磁力Hcの経時変化をできるだけ抑制する必要があ
シ、この経時変化を無くすことができれば磁気記録媒体
の品質を向上するうえで非常に有利である。したがって
、上述の針状強磁性酸化鉄磁性粉における抗磁力Hcの
経時変化をよシ一層少なくすることが望捷れる。
By the way, for magnetic powder used in magnetic recording media, it is necessary to suppress the change in coercive force Hc over time as much as possible, and if this change over time can be eliminated, it will be extremely effective in improving the quality of magnetic recording media. It is advantageous for Therefore, it is desirable to further reduce the change over time in the coercive force Hc of the above-mentioned acicular ferromagnetic iron oxide magnetic powder.

〔発明の目的〕[Purpose of the invention]

そこで本発明は、上述の実情に鑑みて提案されたもので
あって、抗磁力HCや飽和磁化σSが大きく、かつ抗磁
力Heの経時変化が極めて少ない磁性粉を製造すること
が可能な針状強磁性酸化鉄磁性粉の製法を提供すること
を目的とする。
Therefore, the present invention has been proposed in view of the above-mentioned circumstances, and has an acicular shape that makes it possible to produce magnetic powder with large coercive force HC and saturation magnetization σS, and extremely little change over time in coercive force He. The purpose of the present invention is to provide a method for producing ferromagnetic iron oxide magnetic powder.

〔発明の概要〕[Summary of the invention]

本発明は、上述の如き目的を達成するために、γ−Fe
2e3粒子を核として、その表面に亜鉛と2価の鉄とを
含有する酸化鉄層及びコバルト化合物層を形成した後、
不活性ガス雰囲気中で熱処理することを特徴とするもの
である。
In order to achieve the above-mentioned objects, the present invention provides γ-Fe
After forming an iron oxide layer containing zinc and divalent iron and a cobalt compound layer on the surface of the 2e3 particles as a core,
It is characterized by heat treatment in an inert gas atmosphere.

〔実施例〕〔Example〕

以下、本発明を適用した針状強磁性酸化鉄磁性粉の製法
について説明する。
Hereinafter, a method for producing acicular ferromagnetic iron oxide magnetic powder to which the present invention is applied will be explained.

゛本発明においては、先ず核となる針状r−Fe203
 粒子を用意し、この針状γ−Fe203粒子表面に亜
鉛と2価の鉄とを含有する酸化鉄層及びコバルト化合物
層を被着形成する。
゛In the present invention, first, the core acicular r-Fe203
Particles are prepared, and an iron oxide layer containing zinc and divalent iron and a cobalt compound layer are deposited on the surfaces of the acicular γ-Fe203 particles.

ここで、上記酸化鉄層とコバルト化6S層とは、いずれ
を先に形成してもよく、したがって、上記針状r−Fe
ze3粒子表面に酸化鉄層を形成した後、この酸化鉄層
表面にコバルト化合物層を形成してもよいし、あるいは
上記針状γ−Fe20a粒子表面にコバルト化合物層を
形成した後、このコバルト化合物層表面に酸化鉄層を形
成してもよい。
Here, either the iron oxide layer or the cobaltized 6S layer may be formed first, so that the acicular r-Fe
After forming an iron oxide layer on the surface of the ze3 particles, a cobalt compound layer may be formed on the surface of the iron oxide layer, or alternatively, after forming a cobalt compound layer on the surface of the acicular γ-Fe20a particles, the cobalt compound layer may be formed on the surface of the iron oxide layer. An iron oxide layer may be formed on the layer surface.

−上記コバルト化合物層の形成方法としては、コバルト
被着型γ−F8203粒子を製造する際に用いられる通
常の手法であれば如何なる方法であってもよい。例えば
、針状γ−Fezes粒子あるいは表面に酸化鉄屑を形
成した針状γ−Fe203粒子を分散したアルカリ懸濁
液中に、コバルト塩を溶解した水溶液を加え、沸点以下
の温度で加熱攪拌しながら所定時間保持することによっ
て、上記コバルト化合物層がその表面に形成される。こ
の場合、使用されるアルカリとしては、水酸化ナトリウ
ム、水酸化カリウム、水酸化リチウム等が挙げられ、ま
たコバルト塩としては、塩化コバルト、臭化コバルト、
硫酸コバルト等が挙げられる。
- The method for forming the cobalt compound layer may be any conventional method used when producing cobalt-coated γ-F8203 particles. For example, an aqueous solution in which a cobalt salt is dissolved is added to an alkaline suspension in which acicular γ-Feze particles or acicular γ-Fe203 particles with iron oxide dust formed on the surface are dispersed, and the mixture is heated and stirred at a temperature below the boiling point. The cobalt compound layer is formed on the surface by holding it for a predetermined period of time. In this case, examples of the alkali used include sodium hydroxide, potassium hydroxide, lithium hydroxide, etc., and examples of the cobalt salt include cobalt chloride, cobalt bromide,
Examples include cobalt sulfate.

一方、上記酸化鉄屑は、上記針状γ−F0203粒子あ
るいけ表面にコバルト化合物層を形成した針状γ−Fe
zes粒子を分散したアルカリ懸濁液中に、亜鉛塩の水
溶液及び第1鉄塩の水溶液を所定の割合で添加し、先の
コバルト化合物層と同様に沸点−以下の温度で加熱攪拌
しながら所定時間保持することによって形成される。
On the other hand, the iron oxide scrap is made of acicular γ-Fe particles with a cobalt compound layer formed on the surface of the acicular γ-F0203 particles.
An aqueous solution of a zinc salt and an aqueous solution of a ferrous salt are added at a predetermined ratio into an alkaline suspension in which ZES particles are dispersed, and the predetermined amount is heated and stirred at a temperature below the boiling point as in the previous cobalt compound layer. Formed by holding time.

このとき、上記酸化鉄層に含有される亜鉛と2価の鉄の
割合が重要であって、この亜鉛の占める割合があま多少
なすぎても、逆に多すぎても上記飽和磁化σSの向上は
期待できない。第1図は、上記酸化鉄層の組成をZnx
Fe 3−x04とした場合の飽和磁化σSの変化を表
わすものであシ、この第1図よシ、亜鉛の割合が増加す
るのに伴なって飽和磁化σSが徐々に増加するものの、
この亜鉛の割合が20原子%を越えると、すなわちXが
0.6を越えると逆に飽和磁化σSが減少してしまうこ
とが分かる。実用的な範囲は、2価の鉄に対する亜鉛の
割合Zn/Fe2+が8〜25原子%である。
At this time, the ratio of zinc and divalent iron contained in the iron oxide layer is important, and whether the ratio of zinc is too small or too large, the saturation magnetization σS can be improved. cannot be expected. Figure 1 shows the composition of the iron oxide layer as Znx
It shows the change in saturation magnetization σS when Fe 3-x04 is used. As shown in Figure 1, although saturation magnetization σS gradually increases as the proportion of zinc increases,
It can be seen that when the proportion of zinc exceeds 20 atomic %, that is, when X exceeds 0.6, the saturation magnetization σS decreases. A practical range is that the ratio of zinc to divalent iron, Zn/Fe2+, is 8 to 25 at.%.

上記範囲内で亜鉛を添加することによって、得られる磁
性粉の飽和磁化σSを増加することができる。第2図は
、酸化鉄層の被着量による飽和磁化σSの変化を示すグ
ラフであシ、直線aは酸化−鉄層中の亜鉛の割合がFe
2+に対して10原子%である場合の変化を示し、直線
すは2価の鉄のみを添加して組成Fe3O4なる酸化鉄
層を形成した場合の変化を示す。なお、上記被着量は、
酸化鉄層中に含まれるFe2+と核晶であるγ−Fe2
03粒子に含まれるFe3+との原子比Fe2+/Fe
3+として示す。この第2図よシ、亜鉛を原子比Zn/
Fe”が10原子%となるように添加して酸化鉄層を形
成した場合には、Fe2+のみを添加して酸化鉄層を形
成した場合に比べてFe2+が同量となるような被着量
で約28mV1高い飽和磁化σSが得られることが判明
した。そして、この飽和磁化(ISO増加は、Fe2+
とZn′f、含む酸化鉄層のフェライト的性質に起因す
るものと推定される。
By adding zinc within the above range, the saturation magnetization σS of the obtained magnetic powder can be increased. Figure 2 is a graph showing changes in saturation magnetization σS depending on the amount of iron oxide layer deposited.
The change is shown when the concentration is 10 atomic % with respect to 2+, and the straight line shows the change when only divalent iron is added to form an iron oxide layer having the composition Fe3O4. In addition, the above coating amount is
Fe2+ contained in the iron oxide layer and γ-Fe2 which is the nucleus crystal
Atomic ratio Fe2+/Fe with Fe3+ contained in 03 particles
Shown as 3+. According to this Figure 2, the atomic ratio of zinc is Zn/
When an iron oxide layer is formed by adding Fe to 10 atomic %, the amount of Fe2+ deposited is the same as when an iron oxide layer is formed by adding only Fe2+. It was found that a saturation magnetization σS higher by about 28 mV1 can be obtained with the Fe2+
This is presumed to be due to the ferrite-like properties of the iron oxide layer containing Zn'f and Zn'f.

上述のように、針状γ−Fe2e3粒子の表面に酸化鉄
層及びコバルト化合物層を被着形成し、脱水・乾燥した
後、不活性ガス雰囲気中、100〜250℃の温度条件
下で30分〜3時間の熱処理を施す。上記不活性ガスと
しては、窒素N2、アルゴンAr、ネオンNe等が使用
可能であるが、実用上は安価で入手の容易な窒素N2が
使用される。
As described above, an iron oxide layer and a cobalt compound layer were formed on the surface of the acicular γ-Fe2e3 particles, dehydrated and dried, and then heated in an inert gas atmosphere at a temperature of 100 to 250°C for 30 minutes. Heat treatment for ~3 hours. As the inert gas, nitrogen N2, argon Ar, neon Ne, etc. can be used, but nitrogen N2, which is inexpensive and easily available, is used in practice.

本発明においては、上記不活性ガス雰囲気中での熱処理
が重要であって、この熱処理によって得られる針状強磁
性酸化鉄磁性粉の抗磁力Hcの経時変化が大幅に減少す
るのである。
In the present invention, the heat treatment in the inert gas atmosphere is important, and the change over time in the coercive force Hc of the acicular ferromagnetic iron oxide magnetic powder obtained by this heat treatment is significantly reduced.

第3図は、得られる針状強磁性酸化鉄磁性粉の飽和磁化
σBの大きさとエージングによる抗磁力の上昇量ΔHe
の関係を示すものでちって、図中、曲線CはFe2+の
添加のみによって酸化鉄層を形成した場合、曲線dはZ
n/Fe2+が10原子%となるようVCZ n 及0
: Fe−2+を添加して酸化鉄層を形成した場合、曲
線eはZn/Fe2+が10原子%となるようにZn及
びFe−2+を添加して酸化鉄層を形成した後、窒素雰
囲気中150℃で熱処理した場合をそれぞれ表わす。こ
の第3図よシ、窒素雰囲気中で熱処理を施すことにょシ
、得られる針状強磁性酸化、鉄磁性粉の抗磁力Heの経
時変化(上昇量ΔHe)が大幅に(15〜50%程度)
減少することが分かる。なお、上記エージングの条件は
、温度60℃、12日間であシ、また各磁性粉のコバル
ト被着量Co/Feは4原子%である。
Figure 3 shows the magnitude of the saturation magnetization σB of the obtained acicular ferromagnetic iron oxide magnetic powder and the increase in coercive force due to aging ΔHe
In the figure, curve C shows the relationship between Z and Z.
VCZ n and 0 so that n/Fe2+ is 10 atomic%
: When an iron oxide layer is formed by adding Fe-2+, curve e shows that after adding Zn and Fe-2+ to form an iron oxide layer so that Zn/Fe2+ is 10 atomic %, the iron oxide layer is formed in a nitrogen atmosphere. Each figure shows the case of heat treatment at 150°C. As shown in Fig. 3, when heat treatment is performed in a nitrogen atmosphere, the change over time (increase ΔHe) in the coercive force He of the obtained acicular ferromagnetic oxidation and iron magnetic powder is significantly increased (approximately 15 to 50%). )
It can be seen that this decreases. The aging conditions were as follows: temperature 60° C., 12 days, and the cobalt coating amount Co/Fe of each magnetic powder was 4 atomic %.

上記不活性ガス中の熱処理によシ得られる針状強磁性酸
化鉄磁性粉の抗磁力Heの経時変化が少なくなる理由と
しては、上記熱処理によって抗磁力Heの経時変化の原
因となる反応が短時間に起こること等が考えられるが、
実際、第4図に示すように上記熱処理を施すことによシ
磁性粉の抗磁力Heが多少増加することが分かった。・
ところで、上記熱処理時間は、熱処理温度が高ければ短
かくてすみ、例えば上記熱処理温度f25.0℃とすれ
ば熱処理時間は30分程度で充分である。
The reason why the change over time in the coercive force He of the acicular ferromagnetic iron oxide magnetic powder obtained by the heat treatment in an inert gas is reduced is that the heat treatment shortens the reaction that causes the change over time in the coercive force He. It is possible that things happen over time, but
In fact, as shown in FIG. 4, it was found that the coercive force He of the magnetic powder increased somewhat by applying the above heat treatment.・
Incidentally, the heat treatment time can be shortened if the heat treatment temperature is high; for example, if the heat treatment temperature is f25.0°C, the heat treatment time of about 30 minutes is sufficient.

以上述べたように、針状γ−F8203粒子表面に亜鉛
と2価の鉄を含有する酸化鉄層及びコバルト化合物層を
被着形成した後、不活性ガス雰囲気中で熱処理を施すこ
とによシ、抗磁力Heの経時変化が極めて少ない針状強
磁性酸化鉄磁性粉を作製することができる。
As described above, after forming an iron oxide layer containing zinc and divalent iron and a cobalt compound layer on the surface of acicular γ-F8203 particles, heat treatment is performed in an inert gas atmosphere. , it is possible to produce acicular ferromagnetic iron oxide magnetic powder with extremely little change in coercive force He over time.

次に、本発明の具体的な実施例について説明するが、本
発明がこれら実施例に限定されるものでないことは言う
までもない。
Next, specific examples of the present invention will be described, but it goes without saying that the present invention is not limited to these examples.

実施例1゜ 抗磁力He3670e、飽和磁化σB72.3emu/
f のγ−F62Q3100 !Pを水酸化ナトリウム
115.2 tを含む水溶液860−中に分散させた後
、硫酸第1鉄S2.23fと硫酸亜鉛6.41’を含む
水溶液100ゴを加え、70℃で30分間攪拌し、さら
に100℃まで昇温して3e分間攪拌した。
Example 1゜Coercive force He3670e, saturation magnetization σB72.3emu/
γ-F62Q3100 of f! After dispersing P in an aqueous solution containing 115.2 t of sodium hydroxide, 100 g of an aqueous solution containing 2.23 t of ferrous sulfate S and 6.41 t of zinc sulfate was added, and the mixture was stirred at 70°C for 30 minutes. Then, the temperature was further raised to 100°C and stirred for 3e minutes.

次いで、塩化コバル1−11.91を含む水溶液100
fnlを加えて7時間攪拌した後、脱水・乾燥した。
Next, an aqueous solution containing 1-11.91 cobal chloride 100
After adding fnl and stirring for 7 hours, the mixture was dehydrated and dried.

さらに、この磁性粉に対して窒素ガス雰囲気中、150
℃で2時間熱処理を施した。
Furthermore, this magnetic powder was heated at 150° C. in a nitrogen gas atmosphere.
Heat treatment was performed at ℃ for 2 hours.

このようにして得られた針状強磁性酸化鉄磁性粉の抗磁
力Heは5900e 、飽和磁化σSは8Q、l em
u/7であった。また、この磁性粉を温−一60℃で空
気中300時間保存した後の抗磁力Hcは6000eで
あって、抗磁力の経時変化は1゜Oeと後述の比較例と
比べて大幅に低減していた。
The coercive force He of the acicular ferromagnetic iron oxide magnetic powder thus obtained is 5900e, the saturation magnetization σS is 8Q, l em
It was u/7. In addition, the coercive force Hc of this magnetic powder after being stored in air at -60°C for 300 hours was 6000e, and the change in coercive force over time was 1°Oe, which was significantly reduced compared to the comparative example described below. was.

−比較例、。- Comparative example.

抗磁力Hc3570e、飽和磁化σ872.3emu/
S’ (7)γ−Fe203100 ?を水酸化ナトリ
ウム115.:H’を含む水溶液860ゴ中に分散させ
た後、硫酸第1鉄52.23Pと硫酸亜鉛6.44Fを
含む水溶液100−を加え、70℃で30分間攪拌し、
さらに100℃まで昇温して30分間攪拌した。
Coercive force Hc3570e, saturation magnetization σ872.3emu/
S' (7) γ-Fe203100? Sodium hydroxide 115. : After dispersing in an aqueous solution containing 860% of H', 100% of an aqueous solution containing 52.23P of ferrous sulfate and 6.44F of zinc sulfate was added, and the mixture was stirred at 70°C for 30 minutes.
The temperature was further raised to 100°C and stirred for 30 minutes.

次いで、塩化コバル)11.92M’を含む水溶液10
0−を加えて7時間攪拌した後、脱水・乾燥した。
Next, an aqueous solution containing 11.92 M' of cobal chloride
After adding 0- and stirring for 7 hours, the mixture was dehydrated and dried.

このようにして得られた針状強磁性酸化鉄磁性粉の抗磁
力Hcは5800e、飽和磁化σSは8Q、 l) e
mu / ?であった。また、この磁性粉を温度60℃
で空気中300時間保存した後の抗磁力Heば5950
eであり、抗磁力の経時変化は150eであった。
The coercive force Hc of the acicular ferromagnetic iron oxide magnetic powder thus obtained is 5800e, the saturation magnetization σS is 8Q, l) e
mu/? Met. In addition, this magnetic powder was heated to 60°C.
Coercive force after storage in air for 300 hours with Heba 5950
e, and the change in coercive force over time was 150e.

比較例2 先の実施例1と同様のγ−Fe2e31’ 00 tを
水酸化ナトリウム115.2Fを含む水溶液86〇−中
に分散させた後、硫酸第1鉄69.64 ?を含む水溶
液100−を加え、70℃で30分間攪拌し、さらに1
00℃まで昇温して30分間攪拌した。
Comparative Example 2 After dispersing the same γ-Fe2e31'00t as in Example 1 in an aqueous solution containing 115.2F of sodium hydroxide, 69.64% of ferrous sulfate was added. 100°C of an aqueous solution was added, stirred at 70°C for 30 minutes, and
The temperature was raised to 00°C and stirred for 30 minutes.

次いで、塩化コバル)11.9:lを含む水溶液10(
1*を加えて7時間攪拌した後、脱水・乾燥した。
Then an aqueous solution containing 10:1 (cobal chloride) of 11.9:l (cobal chloride)
After adding 1* and stirring for 7 hours, the mixture was dehydrated and dried.

このようにして得られた針状強磁性酸化鉄磁性粉の抗磁
力Hcは5 g 50e 、飽和磁化σsI′isO,
2emu / ?であった。また、この磁性粉を温度6
0℃で空気中300時間保存した後の抗磁力Heは61
00eであり、抗磁力の経時変化は250eであった。
The coercive force Hc of the acicular ferromagnetic iron oxide magnetic powder thus obtained is 5 g 50e, the saturation magnetization σsI′isO,
2emu/? Met. In addition, this magnetic powder was heated at a temperature of 6
The coercive force He after being stored in air at 0°C for 300 hours is 61
00e, and the change in coercive force over time was 250e.

比較例3 比較例2と同様の方法によシ得られた針状強磁性酸化鉄
磁性粉に対して、窒素ガス雰囲気中、150℃で2時間
熱処理を施した。
Comparative Example 3 Acicular ferromagnetic iron oxide magnetic powder obtained by the same method as Comparative Example 2 was heat-treated at 150° C. for 2 hours in a nitrogen gas atmosphere.

このようにして得られた磁性粉の抗磁力Heは598、
Oe、飽和磁化σSは3 Q、l emu / fであ
った。また、この磁性粉を温度60℃で空気中300時
間保存した後の抗磁力Hci(i“150eであシ、抗
磁力の経時変化は170eであった。
The magnetic powder thus obtained has a coercive force He of 598,
Oe, saturation magnetization σS was 3 Q, l emu/f. Further, after this magnetic powder was stored in air at a temperature of 60° C. for 300 hours, the coercive force Hci (i) was 150e, and the change in coercive force over time was 170e.

実施例2 抗磁力HC364エルステツド、飽和磁化σS72.6
 emu/yのr−Fe2u31 Q Q fを水酸化
ナトリウム115.2rを含む水溶液86θ−中に分散
させ、さらに塩化コバル) 10.769を含む水溶液
100mを添加して100℃で4時間攪拌した。
Example 2 Coercive force HC364 Oersted, saturation magnetization σS72.6
r-Fe2u31QQf of emu/y was dispersed in an aqueous solution 86θ- containing 115.2r of sodium hydroxide, and further 100m of an aqueous solution containing 10.769 cobal chloride was added and stirred at 100°C for 4 hours.

次いで、硫酸第1鉄52.23r及び硫酸亜鉛11.3
8 tを含む水溶液を添加して1時間攪拌した後、脱水
・乾燥した。
Then ferrous sulfate 52.23r and zinc sulfate 11.3
After adding an aqueous solution containing 8 t and stirring for 1 hour, the mixture was dehydrated and dried.

さらに、この磁性粉に対して窒素ガス雰囲気中、150
℃で2時間熱処理を施した。
Furthermore, this magnetic powder was heated at 150° C. in a nitrogen gas atmosphere.
Heat treatment was performed at ℃ for 2 hours.

このようにして得られた針状強磁性酸化鉄磁性粉の抗磁
力HcI/′16810e1飽和磁化asは79.9e
mu/lであった。また、この磁性粉を温度60℃で空
気中300時間保存した後の抗磁力Hcは6900eで
あシ、抗磁力の経時変化は90eと極めて少ないもので
あった。
The coercive force HcI/'16810e1 saturation magnetization as of the acicular ferromagnetic iron oxide magnetic powder thus obtained is 79.9e
It was mu/l. Further, after this magnetic powder was stored in air at a temperature of 60° C. for 300 hours, the coercive force Hc was 6900e, and the change in coercive force over time was extremely small at 90e.

比較例4 抗磁力Hc 364エルステツド、飽和磁化σS72.
6 emu/fのγ−Fezes 100 tを水酸化
すトリウム115.2.rを含む水溶液860tnl中
に分散させ、さらに塩化コバル) 10.761を含む
水溶液100mAを添加して100℃で4時間攪拌した
Comparative Example 4 Coercive force Hc 364 oersted, saturation magnetization σS 72.
6 emu/f of γ-Fezes 100 t hydroxide of thorium 115.2. The mixture was dispersed in 860 tnl of an aqueous solution containing 10.761 (cobal chloride), and 100 mA of an aqueous solution containing 10.761 (cobal chloride) was added thereto, followed by stirring at 100°C for 4 hours.

次いで、硫酸第1鉄52.23 f及び硫酸亜鉛11.
38 Fを含む水溶液を添加して1時間攪拌した後、脱
水・乾燥した。
Then 52.23 f of ferrous sulfate and 11.5 f of zinc sulfate.
After adding an aqueous solution containing 38 F and stirring for 1 hour, the mixture was dehydrated and dried.

このようにして得られた針状強磁性酸化鉄磁性粉の抗磁
力Heは673エルステツド、飽和磁化σSは79.9
 emu/li’であった。また、この磁性粉を温度6
0℃で300時間保存した後の抗磁力Hcは689エル
ステツドであシ、抗磁力の経時変化は160eであった
The thus obtained acicular ferromagnetic iron oxide magnetic powder has a coercive force He of 673 oersted and a saturation magnetization σS of 79.9.
emu/li'. In addition, this magnetic powder was heated at a temperature of 6
After storage at 0° C. for 300 hours, the coercive force Hc was 689 oersted, and the change in coercive force over time was 160e.

〔発明の効果〕〔Effect of the invention〕

上述の実施例の説明からも明らかなように、本発明によ
れば、不活性ガス雰囲気中で熱処理を施しているので、
抗磁力Heや飽和磁化σSが太き−く、かつ抗磁力He
の経時変化の極めて少ない針状強磁性酸化鉄磁性粉を製
造することが可能である。
As is clear from the description of the above embodiments, according to the present invention, heat treatment is performed in an inert gas atmosphere.
Coercive force He and saturation magnetization σS are large, and coercive force He
It is possible to produce acicular ferromagnetic iron oxide magnetic powder with extremely little change over time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は酸化鉄層に含まれる亜鉛の割合と飽和磁化σS
の関係を示す特性図、第2図は酸化鉄層に含まれる亜鉛
の割合がZn / Fe ” = IQ原子%である場
合における酸化鉄層の被着量と飽和磁化σSの関係を亜
鉛を添加しない場合と比較して示す特性図、第3図は不
活性ガス雰囲気中で熱処理を施して得られる磁性粉の飽
和磁化σSとそのときの抗磁力Heの経時変化量(上昇
量)ΔHeの関係を熱処理を施さない場合と比較して示
す特性図、第4図は窒素ガス雰囲気中での熱処理温度と
得られる針状強磁性酸化鉄磁性粉の抗磁力Heの関係を
示す特性図である。
Figure 1 shows the proportion of zinc contained in the iron oxide layer and the saturation magnetization σS
Figure 2 shows the relationship between the amount of iron oxide layer deposited and the saturation magnetization σS when the proportion of zinc contained in the iron oxide layer is Zn/Fe'' = IQ atomic %. Figure 3 shows the relationship between the saturation magnetization σS of the magnetic powder obtained by heat treatment in an inert gas atmosphere and the amount of change (increase) ΔHe in the coercive force He over time. FIG. 4 is a characteristic diagram showing the relationship between the heat treatment temperature in a nitrogen gas atmosphere and the coercive force He of the obtained acicular ferromagnetic iron oxide magnetic powder.

Claims (1)

【特許請求の範囲】[Claims] γ−Fe_2O_3粒子を核として、その表面に亜鉛と
2価の鉄とを含有する酸化鉄層及びコバルト化合物層を
形成した後、不活性ガス雰囲気中で熱処理することを特
徴とする針状強磁性酸化鉄磁性粉の製法。
Acicular ferromagnetism characterized by forming an iron oxide layer containing zinc and divalent iron and a cobalt compound layer on the surface of γ-Fe_2O_3 particles as a core, and then heat-treating in an inert gas atmosphere. Manufacturing method of iron oxide magnetic powder.
JP59124413A 1984-06-19 1984-06-19 Manufacture of magnetic powder made of acicular ferromagnetic iron oxide Pending JPS614202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59124413A JPS614202A (en) 1984-06-19 1984-06-19 Manufacture of magnetic powder made of acicular ferromagnetic iron oxide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59124413A JPS614202A (en) 1984-06-19 1984-06-19 Manufacture of magnetic powder made of acicular ferromagnetic iron oxide

Publications (1)

Publication Number Publication Date
JPS614202A true JPS614202A (en) 1986-01-10

Family

ID=14884856

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59124413A Pending JPS614202A (en) 1984-06-19 1984-06-19 Manufacture of magnetic powder made of acicular ferromagnetic iron oxide

Country Status (1)

Country Link
JP (1) JPS614202A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0371384A2 (en) * 1988-12-01 1990-06-06 Ishihara Sangyo Kaisha, Ltd. Process for producing magnetic iron oxide particles for magnetic recording
US5512194A (en) * 1990-09-26 1996-04-30 Ishihara Sangyo Kaisha, Ltd. Acicular ferromagnetic iron oxide particles and process for producing the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106895A (en) * 1978-02-08 1979-08-22 Fuji Photo Film Co Ltd Ferromagnetic powder
JPS54124297A (en) * 1978-03-20 1979-09-27 Fuji Photo Film Co Ltd Ferromagnetic powder

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54106895A (en) * 1978-02-08 1979-08-22 Fuji Photo Film Co Ltd Ferromagnetic powder
JPS54124297A (en) * 1978-03-20 1979-09-27 Fuji Photo Film Co Ltd Ferromagnetic powder

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0371384A2 (en) * 1988-12-01 1990-06-06 Ishihara Sangyo Kaisha, Ltd. Process for producing magnetic iron oxide particles for magnetic recording
US5041307A (en) * 1988-12-01 1991-08-20 Ishihara Sangyo Kaisha, Ltd. Process for producing magnetic iron oxide particles for magnetic recording
EP0371384B1 (en) * 1988-12-01 1995-06-21 Ishihara Sangyo Kaisha, Ltd. Process for producing magnetic iron oxide particles for magnetic recording
US5512194A (en) * 1990-09-26 1996-04-30 Ishihara Sangyo Kaisha, Ltd. Acicular ferromagnetic iron oxide particles and process for producing the same

Similar Documents

Publication Publication Date Title
US4657816A (en) Ferromagnetic recording materials
JP2784794B2 (en) Magnetic iron oxide particle powder
US3977985A (en) Magnetic recording medium comprising cobalt or cobalt alloy coated particles of spicular magnetite
JPS614202A (en) Manufacture of magnetic powder made of acicular ferromagnetic iron oxide
US4303699A (en) Method of manufacturing magnetic powder
JPH06168822A (en) Vertical magnetized film, multilayer film for vertical magnetizing and manufacture of vertical magnetizing film
US4664947A (en) Multi-layer process for cobalt treatment of ferromagnetic oxides
JP3337046B2 (en) Spindle-shaped metal magnetic particles containing cobalt and iron as main components and method for producing the same
JPH0633116A (en) Ferromagnetic metallic powder for magnetic recording medium and production thereof
JPS60208805A (en) Acicular ferromagnetic iron oxide powder
JP2001355001A (en) Spindlelike goethite particle powder, spindlelike hematite particle powder, spindlelike metallic magnetic particle powder essentially consisting of iron and their production method
JPS6123304A (en) Improved magnetic ion oxide pigment and recording medium
JPH0743824B2 (en) Magnetic recording medium and manufacturing method thereof
JP3303896B2 (en) Spindle-shaped iron-based metal magnetic particle powder and method for producing the same
JP2885252B2 (en) Method for producing acicular magnetic iron oxide particles for magnetic recording
JPH1083906A (en) Metallic powder for magnetic recording use and manufacture thereof
JPS6117426A (en) Preparation of magnetic power of cobalt-containing iron oxide
JPS60165703A (en) Acicular magnetic powder of ferromagnetic iron oxide
JP2882111B2 (en) Method for producing acicular metal magnetic particle powder containing iron as a main component
JP3092649B2 (en) Method for producing spindle-shaped metal magnetic particles containing iron as a main component
JP2970705B2 (en) Method for producing acicular magnetic iron oxide particles
JP2982859B2 (en) Magnetic iron oxide particle powder
JPS58159311A (en) Manufacture of metallic magnetic powder
JP2945456B2 (en) Method for producing ferromagnetic iron oxide particles containing cobalt
JPS6136684B2 (en)