JPS61251766A - Air fuel ratio detector - Google Patents

Air fuel ratio detector

Info

Publication number
JPS61251766A
JPS61251766A JP60094610A JP9461085A JPS61251766A JP S61251766 A JPS61251766 A JP S61251766A JP 60094610 A JP60094610 A JP 60094610A JP 9461085 A JP9461085 A JP 9461085A JP S61251766 A JPS61251766 A JP S61251766A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
oxygen
pump
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60094610A
Other languages
Japanese (ja)
Inventor
Shigeru Miyata
繁 宮田
Tsuyoshi Kamiya
剛志 神谷
Sadao Ichikawa
市川 定夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP60094610A priority Critical patent/JPS61251766A/en
Publication of JPS61251766A publication Critical patent/JPS61251766A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To detect an air fuel ratio accurately by acceleration the gas exchange in a diffusion chamber through the operation of a pump current control means and a current supply means when the air fuel ratio varies from a leak area to a rich area or vice versa. CONSTITUTION:When the air fuel ratio varies from the rich area to the leak area and an oxygen concentration electron element M2 generates electromotive force exceeding a set value, a reverse pump current flows to an oxygen pump element M3 and oxygen in exhaust gas is sucked in the diffusion chamber. At this time, the element M2 is operated as a pump element temporarily through the operation of a current supply means M7 to suck the oxygen in the exhaust gas in the chamber M1, thereby accelerating the gas exchange nearby the electrode of the element M2 facing the chamber M1. When the air fuel ratio varies from the leak area to the rich area, on the other hand, the element M2 is operated as a pump element temporarily through the operation of the means M7 and oxygen in the chamber M1 is discharged to the exhaust gas, thereby accelerating the gas exchange nearby the electrode of the element 2 facing the chamber M11. Thus, the gas exchange in the chamber M1 is performed smoothly.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は空燃比検出装置に関し、詳しくは拡散室に面し
て配設された酸素濃淡電池素子と酸素ポンプ素子とを用
い、内燃機関等各種燃焼機器に供給される混合気の空燃
比を排気組成に基づき検出する、空燃比検出装置に関す
るものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an air-fuel ratio detection device, and more specifically, it uses an oxygen concentration cell element and an oxygen pump element arranged facing a diffusion chamber, and is used in internal combustion engines, etc. The present invention relates to an air-fuel ratio detection device that detects the air-fuel ratio of an air-fuel mixture supplied to various combustion devices based on exhaust composition.

[従来の技術] 内燃機関等、各種燃焼機器に供給される混合気の空燃比
を排気組成、特に酸素濃度により検出する空燃比検出装
置の一つとして、板状の酸素イオン伝導性固体電解質の
両面に多孔性電極が設けられた2組の素子を、拡散室を
介して対向配設し、一方の素子を拡散室内の酸素を周囲
に汲み出す酸素ポンプ素子、他方の素子を周囲雰囲気と
拡散室との酸素分圧比によって電圧を生ずる酸素濃淡電
池素子として、少なくとも空燃比のリーン域において空
燃比に対応した信号を検出し得るよう構成されたものが
ある(特開昭59−178354)。
[Prior Art] As an air-fuel ratio detection device that detects the air-fuel ratio of a mixture supplied to various combustion devices such as an internal combustion engine based on exhaust composition, especially oxygen concentration, a plate-shaped oxygen ion conductive solid electrolyte is used. Two sets of elements with porous electrodes on both sides are arranged facing each other with a diffusion chamber in between. One element is an oxygen pump element that pumps oxygen in the diffusion chamber to the surroundings, and the other element is an oxygen pump element that pumps oxygen from the diffusion chamber into the surrounding atmosphere. There is an oxygen concentration battery element that generates a voltage depending on the oxygen partial pressure ratio with respect to the chamber, and is constructed so as to be able to detect a signal corresponding to the air-fuel ratio at least in the lean range of the air-fuel ratio (Japanese Patent Laid-Open No. 59-178354).

またこの種の空燃比検出装置では、第2図に示す如く、
空燃比のリーン域、即ち排気中に残留酸素が存在する場
合だけでなく、空燃比のリッチ域、即ち排気中に残留酸
素が存在しない場合にでも、排気中のGo、CO2、H
20等と反応し、リーン域における信号と同様の信号を
発生するといったことがあり、例えば特願昭59−16
4098号等に記載の如く、近年ではこの特性を利用し
て理論空燃比(空気過剰率λ−1)で出力特性を反転し
、空燃比のリッチ域からリーン域にかけて連続的に変化
する空燃比信号を検出することが考えられている。
Furthermore, in this type of air-fuel ratio detection device, as shown in FIG.
Go, CO2, and H in the exhaust gas not only in the lean range of the air-fuel ratio, that is, when residual oxygen exists in the exhaust gas, but also in the rich range of the air-fuel ratio, that is, when there is no residual oxygen in the exhaust gas.
20, etc., and generates a signal similar to that in the lean region.
As described in No. 4098, etc., in recent years, this characteristic has been utilized to reverse the output characteristic at the stoichiometric air-fuel ratio (excess air ratio λ-1), resulting in an air-fuel ratio that changes continuously from the rich region to the lean region. The idea is to detect signals.

[発明が解決しようとする問題点] ところで、上記のような空燃比検出装置では、通常、酸
素濃淡電池素子にて発生する拡散室内の酸素分圧と排気
中の酸素分圧との比に応じた起電力が設定値となるよう
、酸素ポンプ素子のポンプ電流をIIi1wJシて拡散
室の酸素を排気中に汲み出し、そのポンプ電流を空燃比
信号として検出するよう構成されているのであるが、空
燃比がリーン域からリッチ域へ、あるいは、リッチ域か
らリーン域へ変化する際、その検出される空燃比信号、
即ち、ポンプ電流が空燃比と対応しない値となり、空燃
比を正確に検出することができないといった問題があっ
た。つまり第3図(イ)に示す如く、空燃比が変化する
際、ポンプ電流1pはその空燃比に対応して、第3図(
ロ)の点線で示す値となることが望ましいのであるが、
実際には第3図(口〉の実線で示す如くポンプ電流■p
が空燃比に対応しない値となってしまうのである。
[Problems to be Solved by the Invention] By the way, in the above-mentioned air-fuel ratio detection device, normally, the air-fuel ratio detection device detects an air-fuel ratio according to the ratio of the oxygen partial pressure in the diffusion chamber generated in the oxygen concentration cell element and the oxygen partial pressure in the exhaust gas. The pump current of the oxygen pump element is pumped out to the exhaust gas by turning the pump current of the oxygen pump element IIi1wJ to the set value, and the pump current is detected as an air-fuel ratio signal. When the fuel ratio changes from a lean range to a rich range or from a rich range to a lean range, the detected air-fuel ratio signal,
That is, there is a problem in that the pump current has a value that does not correspond to the air-fuel ratio, making it impossible to accurately detect the air-fuel ratio. In other words, as shown in Fig. 3 (A), when the air-fuel ratio changes, the pump current 1p changes in accordance with the air-fuel ratio as shown in Fig. 3 (A).
It is desirable that the value shown by the dotted line in b) is obtained.
In reality, the pump current ■p is shown by the solid line in Figure 3.
becomes a value that does not correspond to the air-fuel ratio.

これは排気の変化に対して拡散室内のガス交換が遅れる
ことに起因するものである。
This is due to the fact that gas exchange within the diffusion chamber is delayed in response to changes in exhaust gas.

つまりまず排気の状態がリッチ域からリーン域に変化し
た時点t1では、拡散室内のガスは交換されず、未だ、
リッチ域に対応したものとなっていることから、酸素濃
淡電池素子に生ずる起電力が設定値から急激に上昇して
しまう。この時、従来の検出装置は拡散室内の酸素を排
気中に汲み出す方向のみにポンプ電流1pを流すよう構
成されているので、酸素ポンプ素子には拡散室内のガス
交換が終了するまでポンプ電流Ipが流れず、この間検
出される空燃比信号は空燃比に対応しない値となってし
まうのである。
In other words, at time t1 when the exhaust gas condition changes from the rich region to the lean region, the gas in the diffusion chamber is not exchanged and still
Since it corresponds to the rich region, the electromotive force generated in the oxygen concentration battery element will rise rapidly from the set value. At this time, the conventional detection device is configured to flow the pump current 1p only in the direction of pumping out the oxygen in the diffusion chamber into the exhaust gas, so the pump current Ip flows through the oxygen pump element until the gas exchange in the diffusion chamber is completed. does not flow, and the air-fuel ratio signal detected during this period has a value that does not correspond to the air-fuel ratio.

一方排気の状態がリーン域からリッチ域に変化した時点
t2では、上記と同様そのガス交換の遅れによって拡散
室内はまだリーン域に対応したものとなり、酸素濃淡電
池素子に生ずる起電力が設定値から急激に減少してしま
う。この時酸素ポンプ素子にはその電流を設定電圧に制
御するため、過大なポンプ電流1pが流されることとな
り、この場合にも検出される空燃比信号が空燃比に対応
しない値となってしまうのである。
On the other hand, at time t2 when the exhaust gas condition changes from the lean region to the rich region, the interior of the diffusion chamber still corresponds to the lean region due to the delay in gas exchange as described above, and the electromotive force generated in the oxygen concentration cell element changes from the set value. It will decrease rapidly. At this time, in order to control the current to the set voltage, an excessive pump current 1p is passed through the oxygen pump element, and the air-fuel ratio signal detected in this case also becomes a value that does not correspond to the air-fuel ratio. be.

そこで本発明は、上記のような拡散室内のガス交換遅れ
を改善し、空燃比がリーン域からリッチ域、あるいはリ
ッチ域からリーン域へと変化する際にも、その空燃比と
対応した空燃比信号を良好に検出し得る空燃比検出装置
を提供することを目的としてなされたものであって、以
下の如き構成をとった。
Therefore, the present invention improves the gas exchange delay in the diffusion chamber as described above, and even when the air-fuel ratio changes from a lean region to a rich region or from a rich region to a lean region, the air-fuel ratio corresponding to that air-fuel ratio is maintained. This device was designed to provide an air-fuel ratio detection device that can detect signals well, and has the following configuration.

[問題点を解決するための手段〕 即ち上記問題点を解決するための手段としての構成は、
第1図に示す如く、 酸素イオン伝導性の固体電解質両面に多孔性電極を形成
し、該電極の一方を排気の流入が制限された拡散室M1
に面して配設してなる2個の素子M2、M3と 該2個の素子M2、M3のうち、一方を酸素濃淡電池素
子M2、他方を酸素ポンプ素子M3として用い、該酸素
濃淡電池素子M2より発生される起電力に応じて上記酸
素ポンプ素子M3に流れるポンプ電流をIpフィードバ
ック制御するポンプ電流制御手段M4と 咳ポンプ電流制御手段M4で制御されたポンプ電流に応
じて、空燃比に対応した空燃比信号を出力する空燃比信
号出力手段M5と、 を備えた空燃比検出装置において、 理論空燃比を検出し、空燃比のリーン域とリッチ域とで
異なる信号を出力する理論空燃比検出手段M6と、 該理論空燃比検出手段M6の検出信号を受け、空燃比が
リッチ域からリーン域へ変化した時、上記酸素濃淡電池
素子M2に、上記拡散室に面する電極側より一時的に電
流を供給すると共に、空燃比がリーン域からリッチ域へ
変化した時、上記酸素濃淡電池素子M2に、もう一方の
電極側より一時的に電流を供給する電流供給手段M7と
、を設けると共に 更に上記ポンプの電流制御手段M4を、上記酸素濃淡電
池素子より発生される起電力が所定値となるよう、上記
ポンプ電流を双方向にフィードバック制御するよう構成
してなること、を特徴とする空燃比検出装置を要旨とし
ている。
[Means for solving the problem] In other words, the configuration as a means for solving the above problem is as follows.
As shown in FIG. 1, porous electrodes are formed on both sides of an oxygen ion conductive solid electrolyte, and one of the electrodes is connected to a diffusion chamber M1 in which the inflow of exhaust gas is restricted.
Two elements M2 and M3 are arranged facing each other, and one of the two elements M2 and M3 is used as an oxygen concentration battery element M2 and the other as an oxygen pump element M3, and the oxygen concentration battery element Pump current control means M4 performs feedback control of the pump current flowing through the oxygen pump element M3 according to the electromotive force generated by M2, and the pump current controlled by the cough pump current control means M4 corresponds to the air-fuel ratio. an air-fuel ratio signal output means M5 that outputs an air-fuel ratio signal based on the air-fuel ratio; means M6; and upon receiving a detection signal from the stoichiometric air-fuel ratio detection means M6, when the air-fuel ratio changes from a rich region to a lean region, a temporary voltage is applied to the oxygen concentration cell element M2 from the electrode side facing the diffusion chamber. A current supply means M7 is provided that supplies current and temporarily supplies current from the other electrode side to the oxygen concentration cell element M2 when the air-fuel ratio changes from a lean region to a rich region. The air-fuel ratio characterized in that the current control means M4 of the pump is configured to bidirectionally feedback control the pump current so that the electromotive force generated by the oxygen concentration cell element becomes a predetermined value. The gist is the detection device.

ここで拡散室M1としては、2つの素子M3゜M4間に
形成される間隙によって実現してもよいし、2つの素子
M3.M4に面し、酸素分子等の拡散が孔または多孔質
等の拡散抵抗体によって制限された部屋として構成する
こともできる。いずれにせよ酸素ポンプ素子M4よって
汲み出されることによって酸素分子、あるいはリッチ領
域において酸素濃淡電池素子M3に起電力を生じさせる
よう働く他の分子が所定の濃度となるように、排気の拡
散が制限された部屋として突環されれば何ら差支えない
。尚、拡散室内での上記分子の拡散は、できるだけ自由
であることが、応答性の上からも好ましい。
Here, the diffusion chamber M1 may be realized by a gap formed between two elements M3 and M4, or may be realized by a gap formed between two elements M3. It can also be configured as a room facing M4 and in which diffusion of oxygen molecules and the like is restricted by a diffusion resistor such as a hole or a porous material. In any case, the diffusion of the exhaust gas is limited so that oxygen molecules or other molecules that act to generate an electromotive force in the oxygen concentration cell element M3 in the rich region reach a predetermined concentration by being pumped out by the oxygen pump element M4. There is no problem as long as the room is raised as if it were a room. In addition, from the viewpoint of responsiveness, it is preferable that the above-mentioned molecules diffuse as freely as possible within the diffusion chamber.

次に上記酸素濃淡電池素子M3及び酸素ポンプ素子M4
を形成する酸素イオン伝導性の固体電解質としては、ジ
ルコニアとイツトリアとの固溶体、あるいはジルコニア
とカルシアとの固溶体等が代表的なものであり、その他
二酸化セリウム、二酸化トリウム、二酸化ハフニウムの
各固溶体、ペロプスカイト型酸化物固溶体、36I金属
酸化物固溶体等も使用可能である。またその固体電解質
両面に設けられる多孔性電極としては、酸化反応の触媒
作用を有する白金やロジウム等を用いればよく、その形
成方法としては、これらの金属粉末を主成分としてこれ
に固体電解質と同じセラミック材料の粉末を混合してペ
ースト化し、厚膜技術を用いて印刷後、焼結して形成す
る方法、あるいはフレーム溶射、化学メッキ、蒸着等の
薄膜技術を用いて形成する方法等があり、その電極層に
は更に、アルミナ、スピネル、ジルコニア、ムライト等
の多孔質保護層を厚膜技術を用いて形成することが好ま
しく、また拡散室M1側の電極上の多孔質層には白金、
ロジウム等を分散させ、酸化反応の触媒作用を付与する
ことが好ましい。
Next, the oxygen concentration battery element M3 and the oxygen pump element M4
Representative examples of the oxygen ion conductive solid electrolyte that form the A kite type oxide solid solution, a 36I metal oxide solid solution, etc. can also be used. In addition, the porous electrodes provided on both sides of the solid electrolyte may be made of platinum, rhodium, etc., which have a catalytic effect on oxidation reactions, and the formation method is the same as that of the solid electrolyte, with these metal powders as the main components. There are two methods: mixing ceramic material powder into a paste, printing it using thick film technology, and then sintering it, or forming it using thin film technology such as flame spraying, chemical plating, and vapor deposition. It is preferable that the electrode layer is further formed with a porous protective layer of alumina, spinel, zirconia, mullite, etc. using thick film technology, and the porous layer on the electrode on the side of the diffusion chamber M1 is made of platinum,
It is preferable to disperse rhodium or the like to impart a catalytic effect to the oxidation reaction.

このように形成された21Iの素子のうち酸素濃淡電池
素子M3として用いられる素子は、酸素イオン伝導性固
体電解質の、適当な温度条件(例えば固体電解質がジル
コニアの場合400℃以上)において、固体電解質表面
の酸素ガス分圧の高い所から酸素ガス分圧の低い所へと
固体電解質中を酸素イオンが移動し、固体電解質に酸素
ガス透過性の電極をつけることによって電極間の酸素ガ
ス分圧の差を起電力(電極間電圧)として取り出すこと
ができる性質を利用したものであって、拡散室内の酸素
分圧と、周囲雰囲気、即ち排気の酸素分圧との比に応じ
た電圧を発生するものである。
Among the 21I elements formed in this way, the element used as the oxygen concentration battery element M3 is made of an oxygen ion conductive solid electrolyte under suitable temperature conditions (for example, 400°C or higher when the solid electrolyte is zirconia). Oxygen ions move in the solid electrolyte from areas with high oxygen gas partial pressure on the surface to areas with low oxygen gas partial pressure, and by attaching oxygen gas permeable electrodes to the solid electrolyte, the oxygen gas partial pressure between the electrodes can be reduced. It takes advantage of the property that the difference can be extracted as an electromotive force (voltage between electrodes), and it generates a voltage according to the ratio of the oxygen partial pressure in the diffusion chamber and the oxygen partial pressure in the surrounding atmosphere, that is, the exhaust gas. It is something.

一方酸素ボンブ素子M4として用いられる素子は、酸素
イオン伝導性固体電解質の、電圧をかけることにより固
体電解質中を酸素イオンが移動する性質を利用したもの
であり、2つの電極間に電圧をかけることによって拡散
室の酸素を排気中に汲み出すものである。
On the other hand, the element used as the oxygen bomb element M4 utilizes the property of an oxygen ion conductive solid electrolyte that oxygen ions move through the solid electrolyte by applying a voltage. The oxygen in the diffusion chamber is pumped out into the exhaust gas.

次にポンプ電流制御手段M5はディスクリートな回路に
より、容易に実現することができるが、酸素濃淡電池素
子M3の電極間電圧を−Hディジタル値に変換して読み
込み、周知のマイクロプロセッサを用いた論理演算回路
によってポンプ電流を制御するような構成とすることも
できる。この場合、空燃比検出装置を内燃機関等の電子
式燃料噴射制御装置(EFI)等と一体に構成すること
も可能である。
Next, the pump current control means M5 can be easily realized by a discrete circuit, but it converts the inter-electrode voltage of the oxygen concentration battery element M3 into a -H digital value and reads it, and uses a logic using a well-known microprocessor. It is also possible to adopt a configuration in which the pump current is controlled by an arithmetic circuit. In this case, it is also possible to configure the air-fuel ratio detection device integrally with an electronic fuel injection control device (EFI) of an internal combustion engine or the like.

また本発明ではこのポンプ電流制御手段M5がポンプ電
流[を双方向に制御するよう構成されているが、これは
酸素濃淡電池素子M2で発生される起電力が設定値を越
えた時、拡散室M1内に排気中の酸素を汲み込むように
することによって、空燃比がリッチ域からリーン域に変
化した時の拡散室M1内のガス交換を促進しようとして
いるのである。
Further, in the present invention, this pump current control means M5 is configured to control the pump current [in both directions], but this means that when the electromotive force generated in the oxygen concentration battery element M2 exceeds a set value, By pumping oxygen from the exhaust into M1, gas exchange within the diffusion chamber M1 is promoted when the air-fuel ratio changes from a rich range to a lean range.

次に理論空燃比検出手段M6は、空燃比のり−ン域・リ
ッチ域を判別し得る理論空燃比信号を出力するものであ
るが、これには理論空燃比で抵抗値の大きく変化する金
属酸化物半導体(例えばT j 02 N G G O
等)を用いることができる。
Next, the stoichiometric air-fuel ratio detecting means M6 outputs a stoichiometric air-fuel ratio signal that can determine the air-fuel ratio slope region and rich region. physical semiconductors (e.g. T j 02 N G G O
etc.) can be used.

電流供給手段M7は、上記理論空燃比検出手段M6から
の検出信号に基づき、空燃比がリーン域からリッチ域、
あるいはリッチ域からリーン域に変化した旨を検知して
、その時酸素濃淡電池素子M2に一時的に電流を流すこ
とによって、酸素濃淡電池素子M2を一時的にポンプ素
子として動作させ、拡散室M1内のガス交換を促進させ
るためのものである。
The current supply means M7 changes the air-fuel ratio from a lean range to a rich range based on the detection signal from the stoichiometric air-fuel ratio detection means M6.
Alternatively, by detecting a change from a rich region to a lean region and temporarily supplying current to the oxygen concentration battery element M2, the oxygen concentration battery element M2 is temporarily operated as a pump element, and the oxygen concentration battery element M2 is temporarily operated as a pump element. This is to promote gas exchange.

[作用] 上記の如く構成された本発明の空燃比検出装置フ においては、空燃比がリッチ域がらリーン域に変化し、
酸素濃淡電池素子より設定値を越える起電力が発生され
ると、酸素ポンプ素子M3に逆方向のポンプ電流が流さ
れ、拡散室M1内に排気中の酸素が汲み入れられる。ま
たこの時電流供給手段M7の動作によって酸素濃淡電池
素子M2が一時的にポンプ素子として動作され、拡散室
M1内に排気中の酸素が汲み入れられ、酸素濃淡電池素
子M2の拡散室M1に面する電極近傍のガス交換が促進
される。一方空燃比がリーン域がらリッチ域に変化した
場合にも、電流供給手段M7の動作によって酸素濃淡電
池素子M2が一時的にポンプ素子として動作され、拡散
室M1内の酸素が排気中に汲み出され、酸素濃淡電池素
子M2の拡散室M1に面する電極近傍のガス交換が促進
される。
[Operation] In the air-fuel ratio detection device of the present invention configured as described above, the air-fuel ratio changes from a rich range to a lean range,
When an electromotive force exceeding a set value is generated by the oxygen concentration battery element, a pump current in the opposite direction is caused to flow through the oxygen pump element M3, and oxygen in the exhaust gas is pumped into the diffusion chamber M1. Further, at this time, the oxygen concentration battery element M2 is temporarily operated as a pump element by the operation of the current supply means M7, and the oxygen in the exhaust gas is pumped into the diffusion chamber M1, and the oxygen concentration battery element M2 is brought into the diffusion chamber M1 of the oxygen concentration battery element M2. gas exchange near the electrode is promoted. On the other hand, even when the air-fuel ratio changes from a lean range to a rich range, the oxygen concentration cell element M2 is temporarily operated as a pump element by the operation of the current supply means M7, and the oxygen in the diffusion chamber M1 is pumped out into the exhaust gas. As a result, gas exchange near the electrode facing the diffusion chamber M1 of the oxygen concentration battery element M2 is promoted.

従って本発明の空燃比検出装置によれば、空燃比がリー
ン域からリッチ域、あるいはリッチ域からリーン域に変
化した場合にでも、拡散室M1内のガス交換はスムーズ
に行なわれ、ガス交換遅れに起因する空燃比信号の誤検
出を防止することができ、実際の空燃比に対応した空燃
比信号を得ることができるようになる。
Therefore, according to the air-fuel ratio detection device of the present invention, even when the air-fuel ratio changes from a lean range to a rich range or from a rich range to a lean range, gas exchange within the diffusion chamber M1 is performed smoothly, and gas exchange is delayed. Erroneous detection of the air-fuel ratio signal due to this can be prevented, and an air-fuel ratio signal corresponding to the actual air-fuel ratio can be obtained.

[実施例] 以下、本発明の実施例を図面に基づき説明する。[Example] Embodiments of the present invention will be described below based on the drawings.

まず第4図は本実施例の空燃比検出装置における検出素
子部、即ち前記酸素濃淡電池素子M2、酸素ポンプ素子
M3及び理論空燃比検出手段M6が、内燃機関の排気管
10に取り付は部材11を介して一体に取り付けられた
状態を表している。
First, FIG. 4 shows how the detection element portion of the air-fuel ratio detection device of this embodiment, that is, the oxygen concentration cell element M2, the oxygen pump element M3, and the stoichiometric air-fuel ratio detection means M6 are attached to the exhaust pipe 10 of the internal combustion engine. It shows a state in which they are integrally attached via 11.

図において酸素濃淡電池素子を表わし、第5図に示す如
く、例えば、安定化または部分安定化されたジルコニア
、ドリア、セリア等からなる厚さが約0.5mmの平板
状のイオン伝導性固体電解質13の両側面に夫々厚膜技
術を用いて約20μの厚さの多孔質白金電極層14a、
14b及び出力取り出し用の白金電極15a115bが
設けられている。又、16は上記酸素濃淡電池素子12
と同様に構成され、イオン伝導性固体電解質17の両側
面に多孔性白金電極層180118d及び白金電極19
c、19dが設けられた酸素ポンプ素子を表わしている
The figure represents an oxygen concentration battery element, and as shown in FIG. A porous platinum electrode layer 14a having a thickness of about 20μ is formed on both sides of the electrode 13 using thick film technology, respectively.
14b and a platinum electrode 15a115b for output extraction. Further, 16 is the oxygen concentration battery element 12
A porous platinum electrode layer 180118d and a platinum electrode 19 are provided on both sides of the ion conductive solid electrolyte 17.
c, 19d represents the oxygen pump element provided.

次に20は上述の理論空燃比検出素子を表わし、第6図
に示す如く、例えばアルミナ等からなる厚さ0.7R1
111の平板状の電気絶縁性部材21側面に厚膜技術を
用いて発熱低坑体パターン22及び電極パターン23e
 123fを形成し、これらパターン面上に電極23e
123fを露出させるように設けた開口部24aを有す
る厚さ0.1111の電気絶縁性部材24を接合燃焼し
、更に開口部24aに電極パターン23e1及び23f
に接合される例えばチタニア等からなる厚さ約150μ
程度の金属酸化物25を設けることによって作成されて
いる。
Next, 20 represents the above-mentioned stoichiometric air-fuel ratio detection element, which is made of, for example, alumina and has a thickness of 0.7R1, as shown in FIG.
A low heat generation pattern 22 and an electrode pattern 23e are formed using thick film technology on the side surface of the flat electrically insulating member 21 of 111.
123f, and electrodes 23e are formed on these pattern surfaces.
An electrically insulating member 24 having a thickness of 0.1111 mm and having an opening 24a provided to expose 123f is bonded and burned, and electrode patterns 23e1 and 23f are formed in the opening 24a.
A thickness of approximately 150μ made of titania, etc., bonded to
It is made by providing a metal oxide 25 of about 100 mL.

そして上記各素子は耐熱性で絶縁性のスペーサ27を介
して取り付は部材11に一体に把持され、排気管10に
取り付けられている。またスペーサ27は上記酸素濃淡
電池素子12と酸素ポンプ素子16とを、その間を0.
1mm程度の小間隙として、拡散室28を形成するよう
構成されている。
Each of the above-mentioned elements is integrally held by the member 11 via a heat-resistant and insulating spacer 27, and is attached to the exhaust pipe 10. Further, the spacer 27 connects the oxygen concentration battery element 12 and the oxygen pump element 16 with a 0.0-degree gap between them.
The diffusion chamber 28 is configured to be formed as a small gap of about 1 mm.

次に第7図は上記検出素子部を動作させ、空燃比信号を
検出するための空燃比信号検出回路を表わしている。
Next, FIG. 7 shows an air-fuel ratio signal detection circuit for operating the detection element section and detecting an air-fuel ratio signal.

この空燃比検出回路は、酸素1gl!電池素子12の起
電力が一定となるようポンプ電流Ipを双方向に制御す
る、前記ポンプ電流制御手段M4に相当するポンプ電流
制御回路30と、ポンプ電流制御回路30により制御さ
れたポンプ電流II)を検出し、空燃比信号Vfを検出
する、前記空燃比信号出力手段M5に相当する空燃比信
号出力回路32と、理論空燃比検出素子20からの信号
を受は空燃比がリーン域からリッチ域、あるいはリッチ
域からリーン域に変化した時、一時的に酸素濃淡電池素
子12に電流を供給する、前記電流供給手段M7に相当
する電流供給回路34と、から構成されている。また、
各端子a、b、c、d、e。
This air-fuel ratio detection circuit detects 1gl of oxygen! A pump current control circuit 30 corresponding to the pump current control means M4 bidirectionally controls the pump current Ip so that the electromotive force of the battery element 12 is constant; and a pump current II controlled by the pump current control circuit 30) The air-fuel ratio signal output circuit 32 corresponding to the air-fuel ratio signal output means M5 detects the air-fuel ratio signal Vf, and receives the signal from the stoichiometric air-fuel ratio detection element 20 when the air-fuel ratio is in the lean range to the rich range. , or a current supply circuit 34 corresponding to the current supply means M7, which temporarily supplies current to the oxygen concentration battery element 12 when changing from a rich region to a lean region. Also,
Each terminal a, b, c, d, e.

tは、それぞれ上記検出素子部の電極15a、15b 
、18c 、18d 、23e 、23fに接続され、
端子g、h間に空燃比信号Vλが生ずることとなる。
t are the electrodes 15a and 15b of the detection element section, respectively.
, 18c, 18d, 23e, 23f,
An air-fuel ratio signal Vλ is generated between terminals g and h.

まずポンプ電流制御回路30は、 オペアンプoP1、抵抗R1ないしR5及びコンデンサ
C1から構成され、ms濃淡電池素子12で生じた起電
力を電圧信号として検出し、増幅して電圧■Sを出力す
る非反転増幅回路と、オペアンプOP2、抵抗器R6、
R7及びコンデンサC2とから構成され、抵抗R8及び
R9にて決定される設定電圧■0と上記増幅された電圧
とを比較して、その差分の電圧を酸素ポンプ素子16の
一方の電極19dに印加する積分回路と、オペアンプo
P3、抵抗R10及び可変抵抗VR1から構成され、抵
抗R8およびR9にて決定された電定電圧VOを増幅し
て、定電圧Viを抵抗ROを介して酸素ポンプ素子16
のもう一方の電極19Cに印加する非反転増幅回路と、
から構成されている。このように構成されたポンプ電流
111111回路30では、酸素濃淡電池素子12で生
ずる起電力が一定になるよう、つまり、電圧VSが設定
電圧VOとなるよう酸素ポンプ素子16に流れるポンプ
電流Ipを双方向に制御するよう動作する。
First, the pump current control circuit 30 is composed of an operational amplifier oP1, resistors R1 to R5, and a capacitor C1, and detects the electromotive force generated in the ms density battery element 12 as a voltage signal, amplifies it, and outputs a voltage S. Amplification circuit, operational amplifier OP2, resistor R6,
Compare the set voltage 0 determined by resistors R8 and R9 with the amplified voltage, and apply the difference voltage to one electrode 19d of the oxygen pump element 16. Integrating circuit and operational amplifier o
P3, resistor R10, and variable resistor VR1, amplifies the constant voltage VO determined by resistors R8 and R9, and supplies the constant voltage Vi to the oxygen pump element 16 via the resistor RO.
a non-inverting amplifier circuit that applies voltage to the other electrode 19C;
It consists of In the pump current 111111 circuit 30 configured in this way, the pump current Ip flowing through the oxygen pump element 16 is controlled so that the electromotive force generated in the oxygen concentration battery element 12 becomes constant, that is, so that the voltage VS becomes the set voltage VO. It operates to control the direction.

次に空燃比信号出力回路32は、酸素ポンプ素子16に
流れるポンプ電流Ipを抵抗ROを介して検出し、オペ
アンプOP4、抵抗R11、R12に、及びコンデンサ
C3、C4を用いて構成されたバッファ回路を介して空
燃比信号Vλを出力するよう構成されている。
Next, the air-fuel ratio signal output circuit 32 detects the pump current Ip flowing through the oxygen pump element 16 via the resistor RO, and includes a buffer circuit configured using an operational amplifier OP4, resistors R11, R12, and capacitors C3, C4. The air-fuel ratio signal Vλ is output via the air-fuel ratio signal Vλ.

電流供給回路34は、理論空燃比検出素子20の一端よ
り、所定電圧E1を供給し、理論空燃比検出素子20の
抵抗値の変化に伴ない生ずる第8図に示す如き特性の理
論空燃比信号VrlをオペアンプOP5を介して検出し
、その理論空燃比検出素子Vrlがリーン域からリッチ
域あるいはリッチ域からリーン域に変化した時、酸素濃
淡電池素子12の拡散室28とは反対側の電極15aに
、正の電圧あるいは負の電圧を一時的に供給するよう構
成されている。即ち、オペアンプの出力端子をコンデン
サC5、抵抗R15を介して酸素濃淡電池素子12の電
極15aに接続し、抵抗R15と並列にダイオードD1
及び抵抗R16の直列回路を設けると共に、抵抗R15
とコンデンサC5との中点をダイオードD2及び抵抗R
17の直列回路を用いて接地するこ−とによって、空燃
比がリーン域からリッチ域に変化した時電極15aの電
位を一時的に上昇し、酸素濃淡電池素子12を用いて拡
散室28内の酸素を排気中に汲み出すと共に、空燃比が
リッチ域からリーン域に変化した時、電極15aの電位
を一時的に下げ(負の電位)、酸素濃淡電池素子12を
用いて拡散室28内に排気中の酸素を汲み入れるように
されているのである。
The current supply circuit 34 supplies a predetermined voltage E1 from one end of the stoichiometric air-fuel ratio detection element 20, and generates a stoichiometric air-fuel ratio signal having characteristics as shown in FIG. Vrl is detected via the operational amplifier OP5, and when the stoichiometric air-fuel ratio detection element Vrl changes from a lean range to a rich range or from a rich range to a lean range, the electrode 15a of the oxygen concentration battery element 12 on the opposite side from the diffusion chamber 28 The device is configured to temporarily supply a positive voltage or a negative voltage to the device. That is, the output terminal of the operational amplifier is connected to the electrode 15a of the oxygen concentration battery element 12 via a capacitor C5 and a resistor R15, and a diode D1 is connected in parallel with the resistor R15.
and a resistor R16 are provided in series, and a resistor R15
and capacitor C5, connect diode D2 and resistor R
By grounding using a series circuit of 17, when the air-fuel ratio changes from a lean range to a rich range, the potential of the electrode 15a is temporarily increased, and the oxygen concentration cell element 12 is used to increase the potential of the electrode 15a. While pumping oxygen into the exhaust gas, when the air-fuel ratio changes from a rich region to a lean region, the potential of the electrode 15a is temporarily lowered (negative potential), and the oxygen is pumped into the diffusion chamber 28 using the oxygen concentration cell element 12. It is designed to suck in oxygen from the exhaust gas.

以上のように構成された本実施例の空燃比検出装置では
、第9図(イ)、(ロ)に示す如く空燃比がリーン域か
らリッチ域、あるいはリッチ域からリーン域に変化した
時にでも、前記第3図に示した従来の空燃比検出装置の
ような応答遅れやオ−バーシュートを生ずることなく空
燃比に対応したポンプ電流Ip  (即ち空燃比信号)
を得ることができるようになる。尚、これは本実施例の
空燃比検出装置が酸素ポンプ素子16のポンプ電流ip
を双方向に流すことによって空燃比がリッチ域からリー
ン域に変化した時の拡散室28内のガス交換を促進し、
その時の応答性を向上させると共に、更に電流供給回路
34の動作によって酸素濃淡電池素子12に第9図(ハ
)に示す如き電圧を印加し、酸素濃淡電池素子12を一
時的にポンプ素子として動作させ、拡散室28内のガス
交換をより促進するよう構成されているためである。尚
、第10図は、単に酸素ポンプ素子16のポンプ電流I
pを双方向に制御するだけで電流供給回路34は動作さ
せない場合のポンプ電流It)の変化を表わしているが
、このようにするだけでも空燃比がリッチ域からリーン
域に変化する際の応答性を改善できることがわかる。
In the air-fuel ratio detection device of this embodiment configured as described above, even when the air-fuel ratio changes from a lean range to a rich range, or from a rich range to a lean range, as shown in FIGS. 9(a) and 9(b), , pump current Ip (i.e., air-fuel ratio signal) corresponding to the air-fuel ratio without causing response delay or overshoot unlike the conventional air-fuel ratio detection device shown in FIG.
You will be able to obtain Incidentally, this is because the air-fuel ratio detection device of this embodiment detects the pump current ip of the oxygen pump element 16.
By flowing in both directions, gas exchange within the diffusion chamber 28 is promoted when the air-fuel ratio changes from a rich region to a lean region,
In addition to improving the responsiveness at that time, a voltage as shown in FIG. 9(c) is applied to the oxygen concentration battery element 12 by the operation of the current supply circuit 34, and the oxygen concentration battery element 12 temporarily operates as a pump element. This is because the structure is configured to further promote gas exchange within the diffusion chamber 28. Note that FIG. 10 simply shows the pump current I of the oxygen pump element 16.
This figure shows the change in the pump current It) when the current supply circuit 34 is not operated by only controlling p in both directions. It turns out that sex can be improved.

[発明の効果] 以上詳述した如く、本発明の空燃比検出装置によれば、
空燃比がリーン域からリッチ域に、あるいはリッチ域か
らリーン域に変化する時、拡散室内のガス交換をポンプ
電流11JII1手段及び電流供給手段の動作によって
促進するよう構成されている。
[Effects of the Invention] As detailed above, according to the air-fuel ratio detection device of the present invention,
When the air-fuel ratio changes from a lean range to a rich range or from a rich range to a lean range, gas exchange within the diffusion chamber is promoted by the operation of the pump current 11JII1 means and the current supply means.

従って空燃比を応答遅れなく正確に検出することができ
るようになり、空燃比制御を精度よく実行することが可
能となる。
Therefore, it becomes possible to accurately detect the air-fuel ratio without response delay, and it becomes possible to execute air-fuel ratio control with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の構成を示すブロック図、第2図は従来
より空燃比検出装置で検出される空燃比信号を表わす1
11図、第3図は従来の空燃比検出装置により得られる
空燃比信号(ポンプ電流)の問題点を説明する線図、第
4図ないし第9図は本発明の一実施例を示し、第4図は
本実施例の空燃比検出装置の検出素子部を表わす断面図
、第5図は酸素濃淡電池素子の構成を表わす斜視図、第
6図は理論空燃比検出素子の構成を表わす分解斜視図、
第7図は空燃比信号検出回路を表わす回路図、第8図は
理論空燃比検出素子により得られる理論空燃比信号Vr
lの特性を表わす縮図、第9図は本実施例の空燃比検出
装置の動作、及びこれにより得られる空燃比信号(ポン
プ電流)を説明するm図、第10図は電流供給回路を動
作しない場合に得られる空燃比信号(ポンプ電流)を説
明する線図である。 12・・・酸素濃淡電池素子 16・・・酸素ポンプ素子 20・・・理論空燃比検出素子 30・・・ポンプ電流l11vA回路 32・・・空燃比信号出力回路 34・・・電流供給回路
Fig. 1 is a block diagram showing the configuration of the present invention, and Fig. 2 shows an air-fuel ratio signal detected by a conventional air-fuel ratio detection device.
11 and 3 are diagrams explaining problems with the air-fuel ratio signal (pump current) obtained by a conventional air-fuel ratio detection device, and FIGS. 4 to 9 show an embodiment of the present invention. FIG. 4 is a sectional view showing the detection element section of the air-fuel ratio detection device of this embodiment, FIG. 5 is a perspective view showing the configuration of the oxygen concentration cell element, and FIG. 6 is an exploded perspective view showing the configuration of the stoichiometric air-fuel ratio detection element. figure,
FIG. 7 is a circuit diagram showing the air-fuel ratio signal detection circuit, and FIG. 8 is the stoichiometric air-fuel ratio signal Vr obtained by the stoichiometric air-fuel ratio detection element.
Figure 9 is a miniature diagram showing the characteristics of l, Figure 9 is a diagram m explaining the operation of the air-fuel ratio detection device of this embodiment and the air-fuel ratio signal (pump current) obtained thereby, and Figure 10 is a diagram showing the current supply circuit not operating. FIG. 3 is a diagram illustrating an air-fuel ratio signal (pump current) obtained in this case. 12... Oxygen concentration battery element 16... Oxygen pump element 20... Theoretical air-fuel ratio detection element 30... Pump current l11vA circuit 32... Air-fuel ratio signal output circuit 34... Current supply circuit

Claims (1)

【特許請求の範囲】  酸素イオン伝導性の固体電解質両面に多孔性電極を形
成し、該電極の一方を排気の流入が制限された拡散室に
面して配設してなる2個の素子と、該2個の素子のうち
、一方を酸素濃淡電池素子、他方を酸素ポンプ素子とし
て用い、該酸素濃淡電池素子より発生される起電力に応
じて上記酸素ポンプ素子に流れるポンプ電流をフィード
バック制御するポンプ電流制御手段と 該ポンプ電流制御手段で制御されたポンプ電流に応じて
、空燃比に対応した空燃比信号を出力する空燃比信号出
力手段と、 を備えた空燃比検出装置において、 理論空燃比を検出し、空燃比のリーン域とリツチ域とで
異なる信号を出力する理論空燃比検出手段と、 該理論空燃比検出手段の検出信号を受け、空燃比がリッ
チ域からリーン域へ変化した時、上記酸素濃淡電池素子
に、上記拡散室に面する電極側より一時的に電流を供給
すると共に、空燃比がリーン域からリツチ域へ変化した
時、上記酸素濃淡電池素子に、もう一方の電極側より一
時的に電流を供給する電流供給手段と、 を設けると共に 更に上記ポンプ電流制御手段を、 上記酸素濃淡電池素子より発生される起電力が所定値と
なるよう、上記ポンプ電流を双方向にフィードバック制
御するよう構成してなること、を特徴とする空燃比検出
装置。
[Claims] Two elements comprising porous electrodes formed on both sides of an oxygen ion conductive solid electrolyte, with one of the electrodes facing a diffusion chamber in which the inflow of exhaust gas is restricted. Of the two elements, one is used as an oxygen concentration battery element and the other as an oxygen pump element, and the pump current flowing through the oxygen pump element is feedback-controlled in accordance with the electromotive force generated by the oxygen concentration battery element. An air-fuel ratio detection device comprising: a pump current control means; and an air-fuel ratio signal output means for outputting an air-fuel ratio signal corresponding to an air-fuel ratio according to the pump current controlled by the pump current control means, comprising: a stoichiometric air-fuel ratio; a stoichiometric air-fuel ratio detection means that detects the air-fuel ratio and outputs different signals depending on the lean range and the rich range of the air-fuel ratio; , a current is temporarily supplied to the oxygen concentration battery element from the electrode side facing the diffusion chamber, and when the air-fuel ratio changes from a lean region to a rich region, the other electrode is supplied to the oxygen concentration battery element. current supply means for temporarily supplying current from the side; An air-fuel ratio detection device characterized by being configured to perform feedback control.
JP60094610A 1985-04-30 1985-04-30 Air fuel ratio detector Pending JPS61251766A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60094610A JPS61251766A (en) 1985-04-30 1985-04-30 Air fuel ratio detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60094610A JPS61251766A (en) 1985-04-30 1985-04-30 Air fuel ratio detector

Publications (1)

Publication Number Publication Date
JPS61251766A true JPS61251766A (en) 1986-11-08

Family

ID=14115013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60094610A Pending JPS61251766A (en) 1985-04-30 1985-04-30 Air fuel ratio detector

Country Status (1)

Country Link
JP (1) JPS61251766A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863584A (en) * 1987-05-12 1989-09-05 Ngk Spark Plug Co., Ltd. Apparatus for sensing air-fuel ratio

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4863584A (en) * 1987-05-12 1989-09-05 Ngk Spark Plug Co., Ltd. Apparatus for sensing air-fuel ratio

Similar Documents

Publication Publication Date Title
US4416763A (en) Air/fuel ratio detecting device for use in exhaust gas of IC engine
JPH0548420B2 (en)
JPS62276453A (en) Air/fuel ratio sensor
JPH03167467A (en) Air/fuel ratio sensor
JPS61195349A (en) Device for detecting air fuel ratio for internal-combustion engine
KR890000080B1 (en) Method for detecting an air-fuel ratio
JPS63279161A (en) Air/fuel ratio detector
JPS61251766A (en) Air fuel ratio detector
JP2000097903A (en) Apparatus and method for measuring gas concentration
US5366611A (en) Oxygen sensor
JPS61180131A (en) Air fuel ratio sensor for automobile
JPS61195338A (en) Air fuel ratio sensor
JP3943262B2 (en) NOx gas concentration measuring apparatus and NOx gas concentration measuring method
JPS6141960A (en) Air fuel ratio detecting device
JPS61234352A (en) Air/fuel ratio detector
JPH0668482B2 (en) Air-fuel ratio sensor
JPS6082952A (en) Oxygen concentration detector
JPH0521426B2 (en)
JPS61205858A (en) Apparatus for detecting air/fuel ratio
JP2002071641A (en) Complex gas detector
JPH0516544B2 (en)
JPH0643986B2 (en) Activation detection device for air-fuel ratio sensor
US20020011409A1 (en) Gas sensor
JPS6258160A (en) Air/fuel ratio detection element
JP2000009686A (en) Carbon monoxide detecting sensor and detection method for carbon monoxide using the same