JPH0643986B2 - Activation detection device for air-fuel ratio sensor - Google Patents

Activation detection device for air-fuel ratio sensor

Info

Publication number
JPH0643986B2
JPH0643986B2 JP61032495A JP3249586A JPH0643986B2 JP H0643986 B2 JPH0643986 B2 JP H0643986B2 JP 61032495 A JP61032495 A JP 61032495A JP 3249586 A JP3249586 A JP 3249586A JP H0643986 B2 JPH0643986 B2 JP H0643986B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
voltage
ratio sensor
detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61032495A
Other languages
Japanese (ja)
Other versions
JPS62190461A (en
Inventor
哲正 山田
暢博 早川
和憲 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP61032495A priority Critical patent/JPH0643986B2/en
Publication of JPS62190461A publication Critical patent/JPS62190461A/en
Publication of JPH0643986B2 publication Critical patent/JPH0643986B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は内燃機関等、各種燃焼機器の排気中の酸素濃度
に基づき空燃比を検出する空燃比センサの活性化検出装
置に関するものである。
TECHNICAL FIELD The present invention relates to an activation detection device for an air-fuel ratio sensor that detects an air-fuel ratio based on the oxygen concentration in the exhaust gas of various combustion equipment such as an internal combustion engine.

[従来の技術] 内燃機関等各種燃焼機器に供給される混合気の空燃比を
排気中の酸素濃度より検出する空燃比センサの一つとし
て、板状の酸素イオン伝導性固体電解質両面に多孔質電
極を備えた二個の検出素子が、各検出素子の一方の多孔
質電極が排気の拡散が制限された測定ガス室に接するよ
うに配設すると共に、一方の検出素子の測定ガス室に接
しない側の電極が漏出低抗部を介して外部と連通された
内部基準酸素源に接するように配設してなる空燃比セン
サが考えられている(特願昭60−137586(特開
昭61−296262号公報)、特願昭60−2140
04(特開昭62−148849号公報))。
[Prior Art] As one of the air-fuel ratio sensors for detecting the air-fuel ratio of the air-fuel mixture supplied to various combustion equipment such as an internal combustion engine from the oxygen concentration in the exhaust gas, a porous oxygen ion conductive solid electrolyte on both sides of a plate is porous. Two detection elements equipped with electrodes are arranged such that one porous electrode of each detection element is in contact with the measurement gas chamber in which the diffusion of exhaust gas is restricted, and is in contact with the measurement gas chamber of one detection element. An air-fuel ratio sensor has been proposed in which the electrode on the non-contact side is arranged so as to come into contact with an internal reference oxygen source that is in communication with the outside through a leakage resistance portion (Japanese Patent Application No. 137586/60. -296262), Japanese Patent Application No. 60-2140.
04 (JP-A-62-148849).

この種の空燃比センサでは、内部基準酸素源に接する側
の検出素子を酸素濃淡電池素子、他方の検出素子を酸素
ポンプ素子として用い、酸素濃淡電池素子に所定の電流
を流して内部基準酸素源に酸素を発生させ、そのとき酸
素濃淡電池素子両端の電極に生ずる電圧が一定となるよ
う酸素ポンプ素子に流れる電流を双方向に制御すること
によって、空燃比のリーン域からリッチ域にかけて連続
的に変化する空燃比信号が得られるようになる。つまり
酸素濃淡電池素子に一定電流を流すことによって内部基
準酸素源に測定ガス室内の酸素が汲み込まれ、酸素濃淡
電池素子ではその内部基準酸素源の酸素分圧と、測定ガ
ス室内の酸素分圧との比に応じた電圧が生ずることか
ら、この電圧が一定となるよう、即ち測定ガス室内の酸
素分圧が一定となるよう酸素ポンプ素子に流れる電流を
双方向に制御し、その電流値を検出すれば空燃比に対応
した検出信号が得られることとなるのである。
In this type of air-fuel ratio sensor, the detection element on the side in contact with the internal reference oxygen source is used as the oxygen concentration battery element, and the other detection element is used as the oxygen pump element. Oxygen is generated in the air-fuel ratio, and by controlling the current flowing in the oxygen pump element bidirectionally so that the voltage generated at the electrodes at both ends of the oxygen concentration battery element becomes constant, the air-fuel ratio is continuously changed from the lean region to the rich region. A changing air-fuel ratio signal can be obtained. That is, oxygen in the measurement gas chamber is pumped into the internal reference oxygen source by passing a constant current through the oxygen concentration battery element, and in the oxygen concentration battery element, the oxygen partial pressure of the internal reference oxygen source and the oxygen partial pressure in the measurement gas chamber are Since a voltage is generated according to the ratio of the above, the current flowing through the oxygen pump element is bidirectionally controlled so that this voltage becomes constant, that is, the oxygen partial pressure in the measurement gas chamber becomes constant, and the current value is If detected, a detection signal corresponding to the air-fuel ratio will be obtained.

ところでこの種の空燃比センサにおいて、空燃比を良好
に検出するためには上記各検出素子が所定温度以上とな
り活性化している必要がある。このため従来より空燃比
センサには、その活性化を検出する活性化検出装置が設
けられ、これによってセンサの活性化を確認した後空燃
比の検出を行なうようにされている。
By the way, in this type of air-fuel ratio sensor, in order to detect the air-fuel ratio satisfactorily, it is necessary that each of the above-mentioned detection elements is above a predetermined temperature and activated. For this reason, conventionally, an air-fuel ratio sensor is provided with an activation detection device for detecting its activation, and thereby the air-fuel ratio is detected after confirming the activation of the sensor.

[発明が解決しようとする問題点] しかし従来の活性化検出装置においては、空燃比センサ
に設けられたヒータの通電時間や、ヒータ電流等によっ
てセンサの発熱状態を確認することで空燃比センサの活
性化を判断るようされていることから、空燃比センサの
活性化を直接検知することができず、空燃比センサが活
性化しているにもかかわらず空燃比が検出できないとい
った問題があった。
[Problems to be Solved by the Invention] However, in the conventional activation detection device, the air-fuel ratio sensor is checked by confirming the heat generation state of the heater provided in the air-fuel ratio sensor, the heater current, and the like. Since the activation is judged, there is a problem that the activation of the air-fuel ratio sensor cannot be directly detected and the air-fuel ratio cannot be detected even though the air-fuel ratio sensor is activated.

つまり例えば空燃比センサの作動停止後、直ぐにその作
動を再開したような場合、空燃比センサは当然活性化し
ているのであるが、従来では空燃比センサが作動され、
ヒータが通電されて所定時間経過した時、空燃比センサ
の活性化が確認されることから、それまでの間は空燃比
センサが活性化しているにもかかわらず空燃比を検出す
ることができず、内燃機関等の空燃比制御を良好に行な
えないといった問題があったのである。
That is, for example, when the operation of the air-fuel ratio sensor is stopped and then restarted immediately, the air-fuel ratio sensor is naturally activated, but conventionally, the air-fuel ratio sensor is operated,
The activation of the air-fuel ratio sensor is confirmed after the heater has been energized for a predetermined period of time, so the air-fuel ratio cannot be detected until then even though the air-fuel ratio sensor has been activated. However, there is a problem that the air-fuel ratio control of the internal combustion engine or the like cannot be performed well.

そこで、本発明は空燃比センサの活性化を空燃比センサ
の動作状態から速やかに検出することができる空燃比セ
ンサの活性化検出装置を提供することを目的としなされ
たものであって、以下の如き構成をとった。
Therefore, the present invention has been made for the purpose of providing an activation detection device for an air-fuel ratio sensor that can quickly detect activation of the air-fuel ratio sensor from the operating state of the air-fuel ratio sensor. It took such a structure.

[問題点を解決するための手段] 即ち上記問題点を解決するための手段としての本発明の
構成は、酸素イオン伝導性の固体電解質両面に一対の多
孔質電極を配設してなる2個の検出素子と、 該各検出素子の一方の多孔質電極と接して形成され、ガ
ス拡散制限部を介して測定ガス雰囲気と連通される測定
ガス室と、 一方の検出素子の上記測定ガス室とは反対側の多孔質電
極と接して形成され、漏出抵抗部を介して外部と連通さ
れる内部基準酸素源と、により構成された空燃比センサ
の活性化検出装置であつて、 上記内部基準酸素源に接して形成された検出素子に所定
の電流を供給し、該内部基準酸素源に酸素を発生させる
電流供給手段と、 該電流供給手段によつて電流供給された検出素子の上記
多孔質電極間に生ずる電圧を検出する電圧検出手段と、 該電圧検出手段により検出された電圧が予め設定された
設定電圧以下であるか否かを判断し、該電圧が予め設定
された設定電圧以下あるとき当該空燃比センサの活性化
を検出する活性化判断手段と、 を備え、上記設定電圧を、 内燃機関を空燃比リッチ域で運転した際の排気中で空燃
比センサを作動させて、該空燃比センサが実際に活性化
したときに上記検出素子の多孔質電極間に生じる電圧を
測定し、該測定結果に基づき予め設定してなることを特
徴とする空燃比センサの活性化検出装置を要旨としてい
る。
[Means for Solving the Problems] That is, the constitution of the present invention as a means for solving the above-mentioned problems is a structure in which a pair of porous electrodes are provided on both surfaces of an oxygen ion conductive solid electrolyte. Detection element, a measurement gas chamber formed in contact with one porous electrode of each detection element and communicating with a measurement gas atmosphere through a gas diffusion limiting section, and the measurement gas chamber of one detection element Is an activation detection device for an air-fuel ratio sensor, which is formed by being in contact with a porous electrode on the opposite side and which is communicated with the outside through a leakage resistance part, Current supply means for supplying a predetermined current to the detection element formed in contact with the source to generate oxygen in the internal reference oxygen source, and the porous electrode of the detection element supplied with current by the current supply means. Voltage detection to detect the voltage generated between Means for determining whether or not the voltage detected by the voltage detecting means is less than or equal to a preset setting voltage, and detecting activation of the air-fuel ratio sensor when the voltage is less than or equal to the preset setting voltage. When the internal combustion engine is operated in an air-fuel ratio rich region, the air-fuel ratio sensor is activated in the exhaust gas when the air-fuel ratio sensor is actually activated. The activation detection device for an air-fuel ratio sensor is characterized in that the voltage generated between the porous electrodes of the detection element is measured and preset based on the measurement result.

ここで検出素子に使用される酸素イオン伝導性固体電解
質としては、ジルコニアとイットリアの固溶体、あるい
はジルコニアとカルシアとの固溶体等が代表的なもので
あり、その他二酸化セリウム、二酸化トリウム、二酸化
ハフニウムの各固溶体、ペロブスカイト型酸化物固溶
体、3価金属酸化物固溶体も使用可能である。またその
固体電解質両面に設けられる多孔質電極としては、酸化
反応の触媒作用を有する白金やロジウム等を用いればよ
く、その形成方法しては、これらの金属粉末を主成分と
してこれに固体電解質と同じセラミック材料の粉末を混
合してペースト化し、厚膜技術を用いて印刷後、焼結し
て形成する方法、あるいはフレーム溶射、化学メッキ、
蒸着等の薄膜技術を用いて形成する方法等が挙げられ
る。尚、排気に直接的に接する電極や測定ガス室側の電
極は上記電極層に更に、アルミナ、スピネル、ジルコニ
ア、ムライト等の多孔質保護層を厚膜技術を用いて形成
することが好ましい。
As the oxygen ion conductive solid electrolyte used in the detection element here, a solid solution of zirconia and yttria, or a solid solution of zirconia and calcia is typical, and other cerium dioxide, thorium dioxide, and hafnium dioxide A solid solution, a perovskite type oxide solid solution, and a trivalent metal oxide solid solution can also be used. As the porous electrodes provided on both sides of the solid electrolyte, platinum or rhodium, which has a catalytic action for the oxidation reaction, may be used. A method of mixing powders of the same ceramic material into a paste, printing using thick film technology, and then sintering, or flame spraying, chemical plating,
Examples thereof include a method of forming using a thin film technique such as vapor deposition. In addition, it is preferable that the electrode directly in contact with the exhaust gas and the electrode on the measurement gas chamber side are formed by further forming a porous protective layer of alumina, spinel, zirconia, mullite or the like on the electrode layer by using a thick film technique.

次に測定ガス室は、測定ガス、即ち排気の拡散を制限す
るガス拡散制限部を介して、周囲の排気を拡散制限的に
導入する室であって、例えば2個の検出素子の間にAl
、スピネル、フォルステライト、ステアタイト、
ジルコニア等からなる中空のスペーサを挟み、ガス拡散
制限部としてこのスペーサの一部に周囲の測定ガス雰囲
気と測定ガス室とを連通させる孔を設けることによって
形成することができる。このガス拡散制限部は、周囲排
ガス雰囲気と測定ガス室とを拡散制限的に連通させるも
のであって形状は限定されなく、例えば上記スペーサの
一部あるいは全部を多孔質体で置き換えたり、スペーサ
(厚膜コートを含む)に孔を設けたり、更には、スペー
サ2個の検出素子の端子側に設けて各検出素子の間に空
隙を形成し、この空隙を測定ガス室と一体のガス拡散制
限間隙として設けることもできる。また測定ガス室全体
に、電気絶縁性であることが望ましい多孔質材を配して
もよい。
Next, the measurement gas chamber is a chamber in which ambient exhaust gas is introduced in a diffusion-limited manner via a gas diffusion limiting section that limits diffusion of the measurement gas, that is, exhaust gas.
2 O 3 , spinel, forsterite, steatite,
It can be formed by sandwiching a hollow spacer made of zirconia or the like, and forming a hole as a gas diffusion limiting portion in a part of the spacer so as to communicate the surrounding measurement gas atmosphere with the measurement gas chamber. The gas diffusion limiting portion is for communicating the ambient exhaust gas atmosphere with the measurement gas chamber in a diffusion limiting manner and is not limited in shape. For example, a part or all of the spacer may be replaced with a porous body, or the spacer ( Holes (including thick film coating), or even on the terminal side of the two detector elements to form a gap between the detector elements, and this gap is integrated with the measurement gas chamber to limit gas diffusion. It can also be provided as a gap. Further, a porous material, which is preferably electrically insulative, may be arranged throughout the measurement gas chamber.

また内部基準酸素源は、この内部基準酸素源に接する検
出素子に流す電流によって測定ガス室から移動せしめ酸
素を蓄える部分であって、例えば検出素子の測定ガス室
とは反対側の電極に対応する凹部を備えたAl
スピネル、フォルステライト、ステアタイト、ジルコニ
ア等からなる遮蔽体を積層することによって形成でき
る。また更にこの内部基準酸素源は、内部の酸素を測定
ガス室側に漏出できるように漏出抵抗部を介して測定ガ
ス室と連通されるが、この漏出抵抗部としては、例えば
検出素子に測定ガス室と連通するスルーホールを形成
し、このスルーホールと内部基準酸素源との間に多孔質
層を設けることによって形成できる。
Further, the internal reference oxygen source is a portion that stores oxygen by moving it from the measurement gas chamber by a current flowing through the detection element in contact with the internal reference oxygen source, and corresponds to, for example, the electrode of the detection element on the side opposite to the measurement gas chamber. Al 2 O 3 with recesses,
It can be formed by stacking shields made of spinel, forsterite, steatite, zirconia, or the like. Further, this internal reference oxygen source is communicated with the measurement gas chamber via a leakage resistance part so that the internal oxygen can be leaked to the measurement gas chamber side. It can be formed by forming a through hole communicating with the chamber and providing a porous layer between the through hole and the internal reference oxygen source.

尚この漏出抵抗部は内部基準酸素源内の酸素を徐々に測
定ガス室または外部(例えば外部の測定ガス)へ移動さ
せることができればよいので、内部基準酸素源と測定ガ
ス室または外部とを微孔で連通するようにしてもよい。
また上記内部基準酸素源しては、上記のように凹部を有
する遮蔽体を検出素子に積層し、その凹部を基準酸素源
としてもよいが、単に多孔質電極の連通孔自体を内部基
準酸素源とし、検出素子に偏平な遮蔽体をそのまま積層
するようにしてもよい。
It should be noted that this leakage resistance part needs only to be able to gradually move the oxygen in the internal reference oxygen source to the measurement gas chamber or to the outside (for example, the external measurement gas). You may be made to communicate by.
Further, as the internal reference oxygen source, a shield having a recess as described above may be laminated on the detection element, and the recess may be used as the reference oxygen source, but the communication hole itself of the porous electrode itself may be used as the internal reference oxygen source. Alternatively, the flat shield may be directly laminated on the detection element.

このように構成された空燃比センサは通常、内部基準酸
素源と接する側の検出素子を酸素発生及び酸素濃淡電池
素子、他方の検出素子を酸素ポンプ素子、として用いら
れる。即ち内部基準酸素源と接する側の検出素子(酸素
濃淡電池素子)では、この検出素子両端の電極に電圧を
印加し定電流を流すことによって、内部基準酸素源内に
測定ガス室内の酸素を汲み込むと同時に、その汲み込み
によって生成した内部基準酸素源内の酸素ガス分圧を基
準として測定ガス室内の酸素ガス分圧に応じた電圧を発
生させることができ、他方の検出素子(酸素ポンプ素
子)では、両端の電極に所定の電圧を印加し双方向に電
流を流すことによって、測定ガス室内の酸素を周囲の排
気中に汲み出したり、あるいは排気中の酸素を測定ガス
室内に汲み入れて、上記酸素濃淡電池素子の発生電圧を
制御することができることから、例えば上記酸素濃淡電
池素子に抵抗を介して一定電圧を印加しておき、その抵
抗両端に生じる電圧が一定となるよう、上記酸素ポンプ
素子に流れる電流を制御し、その制御電流を検出するこ
とによって排気中の醸素濃度、即ち空燃比が検出される
のである。また酸素ポンプ素子に一定電流を流し、測定
ガス室の酸素を所定量だけ汲み出すか汲み入れ、そのと
き酸素濃淡電池素子に生ずる電圧を検出することによっ
ても空燃比を検出することがある。尚この場合にも酸素
濃淡電池素子には一定もしくはほぼ一定の電流を流すこ
とで、内部基準酸素源内の酸素ガス分圧が一定もしくは
ほぼ一定とされる。
In the air-fuel ratio sensor thus configured, the detection element on the side in contact with the internal reference oxygen source is usually used as the oxygen generation and oxygen concentration battery element, and the other detection element is used as the oxygen pump element. That is, in the detection element (oxygen concentration cell element) on the side in contact with the internal reference oxygen source, oxygen in the measurement gas chamber is pumped into the internal reference oxygen source by applying a voltage to the electrodes on both sides of this detection element and passing a constant current. At the same time, a voltage corresponding to the partial pressure of oxygen gas in the measurement gas chamber can be generated based on the partial pressure of oxygen gas in the internal reference oxygen source generated by the pumping, and the other detection element (oxygen pump element) can , By applying a predetermined voltage to the electrodes at both ends and flowing a current in both directions, oxygen in the measurement gas chamber is pumped into the surrounding exhaust gas, or oxygen in the exhaust gas is pumped into the measurement gas chamber, Since the generated voltage of the concentration cell element can be controlled, for example, a constant voltage is applied to the oxygen concentration cell element via a resistor, and the voltage generated across the resistance is constant. So as to control the current flowing through the oxygen pump element, 醸素 concentration in the exhaust by detecting the control current, that is, the air-fuel ratio is detected. The air-fuel ratio may also be detected by applying a constant current to the oxygen pump element to pump out or pump in a predetermined amount of oxygen in the measurement gas chamber and then detect the voltage generated in the oxygen concentration cell element at that time. In this case as well, a constant or almost constant current is passed through the oxygen concentration battery element to make the oxygen gas partial pressure in the internal reference oxygen source constant or substantially constant.

[作用] 本発明は上記のように構成された空燃比センサの活性化
を検出するものであって、電流供給手段によって上記内
部基準酸素源側の検出素子、即ち酸素濃淡電池素子に所
定の電流を流し、そのときこの酸素濃淡電池素子の多孔
質電極間に生ずる電圧を電圧検出手段によって検出し、
この検出された電圧が予め設定された設定電圧以下であ
れば活性化判断手段が空燃比センサの活性化を判断す
る。
[Operation] The present invention detects activation of the air-fuel ratio sensor configured as described above, and a predetermined current is supplied to the detection element on the internal reference oxygen source side, that is, the oxygen concentration battery element, by the current supply means. Flow at that time, the voltage generated between the porous electrodes of this oxygen concentration battery element is detected by the voltage detection means,
If the detected voltage is equal to or lower than the preset set voltage, the activation determining means determines activation of the air-fuel ratio sensor.

つまりこれは、空燃比センサが充分活性化していないと
きには酸素濃淡電池素子の内部抵抗が大きく、酸素濃淡
電池素子に電流を流したときその両端の多孔質電極間に
生ずる電圧が通常より非常に大きくなってしまうことか
ら、これを利用して酸素濃淡電池素子の活性化を検出す
ることで空燃比センサ自体の活性化を判断しているので
ある。
In other words, this is because the internal resistance of the oxygen concentration battery element is large when the air-fuel ratio sensor is not sufficiently activated, and the voltage generated between the porous electrodes at both ends of the oxygen concentration battery element is much larger than usual when a current is applied to the oxygen concentration battery element. Therefore, the activation of the air-fuel ratio sensor itself is judged by detecting the activation of the oxygen concentration battery element using this.

ここで酸素濃淡電池素子が活性化しているときその多孔
質電極間に生ずる電圧は、測定ガスの酸素濃度、即ち空
燃比によって異なることから、上記設定電圧としては、
空燃比センサが活性化するまでの空燃比に応じて設定す
ることが望ましい。
Here, when the oxygen concentration battery element is activated, the voltage generated between the porous electrodes is different depending on the oxygen concentration of the measurement gas, that is, the air-fuel ratio.
It is desirable to set according to the air-fuel ratio until the air-fuel ratio sensor is activated.

一方、この種の空燃比センサを用いて空燃比制御が実行
される内燃機関では、空燃比センサが起動される空燃機
関の始動時には、所謂燃料の始動時増量によって、空燃
比リッチ域で運転される。
On the other hand, in an internal combustion engine in which air-fuel ratio control is executed by using this type of air-fuel ratio sensor, at the time of starting the air-fuel engine in which the air-fuel ratio sensor is started, operation is performed in the air-fuel ratio rich region due to so-called fuel increase at startup. To be done.

そこで本発明では、内燃機関を空燃比リッチ域で運転し
た際の排気中で空燃比センサを作動させて、空燃比セン
サが実際に活性化したときに上記検出素子の多孔質電極
間に生じる電圧を測定し、その測定結果に基づき、活性
化判断手段において空燃比センサの活性化を検知するの
に使用する設定電圧を設定することにより、空燃比セン
サの活性化を、空燃比センサ起動時の測定ガス成分に応
じて正確に検知できるようにしている。
Therefore, in the present invention, by operating the air-fuel ratio sensor in the exhaust gas when the internal combustion engine is operated in the air-fuel ratio rich region, the voltage generated between the porous electrodes of the detection element when the air-fuel ratio sensor is actually activated. Is measured, and based on the measurement result, by setting the set voltage used to detect the activation of the air-fuel ratio sensor in the activation determination means, the activation of the air-fuel ratio sensor Accurate detection is possible according to the measurement gas component.

即ち具体的には、例えば燃料増量補正によって始動時に
空気過剰率λ=0.8のリッチ域で運転される内燃機関
の場合、予めこの運転条件下で空燃比センサを動作さ
せ、得られる検出結果が活性化時の90%となるまでの
時間Twを計時しておき、その後同じ運転条件下で内燃
機関を運転し、対応する時間Twで酸素濃淡電池素子の
多孔質電極間に生ずる電圧を測定し、その測定電圧の設
定電圧とすればよいのである。
That is, specifically, for example, in the case of an internal combustion engine which is operated in the rich region of the excess air ratio λ = 0.8 at the time of starting by the fuel increase correction, the detection result obtained by operating the air-fuel ratio sensor under this operating condition in advance Is timed to 90% of the activation time, the internal combustion engine is operated under the same operating conditions, and the voltage generated between the porous electrodes of the oxygen concentration battery element is measured at the corresponding time Tw. However, the measured voltage may be set as the set voltage.

尚上述したように当該空燃比センサにはその検出回路に
酸素濃淡電池素子に電流を供給するための電流供給回路
が備えられていることから、上記電流供給手段としては
従来より検出回路に備えられている電流供給回路をその
まま用いればよい。
Since the air-fuel ratio sensor is provided with a current supply circuit for supplying a current to the oxygen concentration cell element in the detection circuit as described above, the current supply means is conventionally provided in the detection circuit. The current supply circuit that is used may be used as it is.

[実施例] 以下に本発明の一実施例を図面と共に説明する。[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

まず第2図及び第3は本実施例の活性化検出装置が設け
られる空燃比センサの構成を表しており、第2図はその
部分破断斜視図、第3図はその分解斜視図である。
First, FIGS. 2 and 3 show the structure of an air-fuel ratio sensor provided with the activation detecting device of this embodiment. FIG. 2 is a partially cutaway perspective view thereof, and FIG. 3 is an exploded perspective view thereof.

図に示す如く本実施例の空燃比センサは、固体電解質板
1の両面に多孔質電極2及び3を積層してなる酸素ポン
プ素子4と、同じく固体電解質板5の両面に多孔質電極
6及び7を積層してなる酸素濃淡電池素子8と、これら
各検出素子4及び8の間に積層され、各検出素子4及び
8の対向する多孔質電極3及び6部分で中空部9aが形
成されたスペーサ9と、酸素濃淡電池素子8の多孔質電
極7側に積層される遮薮体10と、により構成されてい
る。
As shown in the figure, the air-fuel ratio sensor of this embodiment has an oxygen pump element 4 formed by laminating porous electrodes 2 and 3 on both sides of a solid electrolyte plate 1, and a porous electrode 6 and a porous electrode 6 on both sides of a solid electrolyte plate 5. The oxygen concentration battery element 8 formed by stacking 7 and the detection elements 4 and 8 are stacked between the detection elements 4 and 8, and the hollow portions 9a are formed by the facing porous electrodes 3 and 6 of the detection elements 4 and 8. It is composed of a spacer 9 and a shield 10 laminated on the porous electrode 7 side of the oxygen concentration battery element 8.

ここでまずスペーサ9は、多孔質電極3と多孔質電極6
との間で測定ガスの拡散が制限された測定ガス室を形成
するためのものであって、その中空部9aが測定ガス室
とされる。またそのスペーサ9には、その中空部9a内
に周囲の測定ガスを導入できるよう、中空部9a周囲の
3箇所にガス拡散制限部としての切り欠きTが形成され
ている。
First, the spacer 9 is composed of the porous electrode 3 and the porous electrode 6.
Is to form a measurement gas chamber in which the diffusion of the measurement gas is restricted, and the hollow portion 9a is used as the measurement gas chamber. Further, in the spacer 9, notches T as gas diffusion limiting portions are formed at three locations around the hollow portion 9a so that the measurement gas around the hollow portion 9a can be introduced.

次に遮蔽体10は酸素濃淡電池素子8の多孔質電極7を
内部基準酸素源として用いるために、多孔質電極7を外
部の測定ガスより遮断するためのものである。またこの
遮蔽体10に覆われた多孔質電極7は、内部基準酸素源
として用いた際にその内部に発生された酸素を測定ガス
室、即ち中空部9a内に漏出できるよう、例えばアルミ
ナ等からなる多孔質絶縁体Zと、スルーホールHと、を
介して多孔質電極6のリード部6lと接続されている。
つまり多孔質絶縁体Z、スルーホールH、及び多孔質電
極6のリード部6lが、前述の漏出抵抗部として形成さ
れ、多孔質電極7内に発生された酸素をその漏出抵抗部
を介して中空部9a内に漏出できるようにされているの
である。
Next, the shield 10 is for shielding the porous electrode 7 from the external measurement gas in order to use the porous electrode 7 of the oxygen concentration battery element 8 as an internal reference oxygen source. The porous electrode 7 covered with the shield 10 is made of, for example, alumina or the like so that oxygen generated inside the porous electrode 7 can be leaked into the measurement gas chamber, that is, the hollow portion 9a when used as an internal reference oxygen source. Is connected to the lead portion 6l of the porous electrode 6 via the porous insulator Z and the through hole H.
That is, the porous insulator Z, the through hole H, and the lead portion 6l of the porous electrode 6 are formed as the above-mentioned leakage resistance portion, and the oxygen generated in the porous electrode 7 is hollowed through the leakage resistance portion. It is designed to be able to leak into the portion 9a.

更に酸素ポンプ素子4及び酸素濃淡電池素子8の各多孔
質電極2,3,6,7の電極端子は、当該空燃比センサ
の外壁面に形成されている。つまり、酸素ポンプ素子4
の多孔質電極2は外部に露出して形成されることから、
そのリード部2lがそのまま電極端子とされ、内部に積
層された酸素ポンプ素子4の多孔質電極3あるいは酸素
濃淡電池素子8の多孔質電極6及び7においては、その
リード部3lあるいは6lび7lと、固体電解質板1あ
いるいは遮蔽体10の外壁面に夫々積層された電極端子
3tあるいは6t及び7tとを、スルーホール3hある
いは6h及び7hを介して電気的に接続することによっ
て形成されているのである。
Further, the electrode terminals of the porous electrodes 2, 3, 6, 7 of the oxygen pump element 4 and the oxygen concentration cell element 8 are formed on the outer wall surface of the air-fuel ratio sensor. That is, the oxygen pump element 4
Since the porous electrode 2 of is formed to be exposed to the outside,
In the porous electrode 3 of the oxygen pump element 4 or the porous electrodes 6 and 7 of the oxygen concentration battery element 8 which are laminated inside, the lead portion 2l is directly used as an electrode terminal, and the lead portion 3l or 6l and 7l Formed by electrically connecting the solid electrolyte plate 1 or the electrode terminals 3t or 6t and 7t laminated on the outer wall surface of the shield 10 through through holes 3h or 6h and 7h, respectively. Is there.

このように構成された本実施例の空燃比センサは、第1
図に示す如く、多孔質電極層7の酸素が外部に漏れない
ように密閉し、当該空燃比センサSを固定する固定部1
5、及びねじ16を介して内燃機関の排気管17に取り
付けられ、活性化検出回路20でその活性化が検出され
た後、空燃比検出回路30によって動作される。尚図で
は、空燃比センサ7の取り付け状態を解り易くするため
に、各多孔質電極のリード部及び電極端子は省略されて
いる。
The air-fuel ratio sensor of this embodiment configured as described above has the first
As shown in the figure, the fixing portion 1 that seals the porous electrode layer 7 so that oxygen does not leak to the outside and fixes the air-fuel ratio sensor S.
5 is attached to the exhaust pipe 17 of the internal combustion engine through the screw 16 and the activation is detected by the activation detection circuit 20, and then the air-fuel ratio detection circuit 30 operates. In the figure, the lead portion and electrode terminal of each porous electrode are omitted in order to facilitate understanding of the attachment state of the air-fuel ratio sensor 7.

活性化検出回路20は空燃比センサSの酸素濃淡電池素
子8に一定の電流(例えば22[μA])を流し、基準
酸素源としての多孔質電極7内に酸素を発生させるため
の、演算増幅器OP1を用いて構成された定電流回路2
1と、このとき酸素濃淡電池素子8両端の多孔質電極6
及び7に生ずる電圧を検出する、演算増幅器OP2を用
いて構成された電圧検出回路22と、この電圧検出回路
22により検出された電圧が予め設定された設定電圧E
o以下となったとき、空燃比センサSの活性化を検出
し、活性化検出信号を出溶力する、演算増幅器OP3を
用いて構成された活性化判別回路23と、この活性化判
別回路23より出力される活性化検出信号により切り替
えられ、上記空燃比検出回路30と空燃比センサSとを
接続して空燃比検出回路30により空燃比を検出させる
アナログスイッチ24及び25と、から構成されてい
る。
The activation detection circuit 20 supplies a constant current (for example, 22 [μA]) to the oxygen concentration cell element 8 of the air-fuel ratio sensor S to generate oxygen in the porous electrode 7 serving as a reference oxygen source, and is an operational amplifier. Constant current circuit 2 configured using OP1
1 and the porous electrodes 6 at both ends of the oxygen concentration battery element 8 at this time
And a voltage detecting circuit 22 configured by using an operational amplifier OP2 for detecting the voltage generated in the voltage detecting element 7, and a voltage detected by the voltage detecting circuit 22 is a preset voltage E
When it becomes less than or equal to o, the activation determination circuit 23 configured by using the operational amplifier OP3 that detects the activation of the air-fuel ratio sensor S and outputs the activation detection signal, and the activation determination circuit 23 And the analog switches 24 and 25 which are switched by the activation detection signal output from the air-fuel ratio detection circuit 30 and connect the air-fuel ratio detection circuit 30 and the air-fuel ratio sensor S to detect the air-fuel ratio by the air-fuel ratio detection circuit 30. There is.

尚上記定電流回路21、電圧検出回路22、活性化判別
回路23は、夫々、前述の電流供給手段、電圧検出手
段、活性化判断手段に相当する。また上記活性化検出回
路23で用いる設定電圧Eoについては後に詳しく説明
する。
The constant current circuit 21, the voltage detection circuit 22, and the activation determination circuit 23 correspond to the above-mentioned current supply means, voltage detection means, and activation determination means, respectively. The set voltage Eo used in the activation detection circuit 23 will be described later in detail.

次に空燃比検出回路30は、上記活性化検出回路20で
空燃比センサSの活性化が検出され、上記各アナログス
イッチ24及び25が図とは反対方向に切り替えられる
ことによって空燃比センサSと接続される。そしてこの
空燃比検出回路30では、上記定電流回路21の動作に
よって酸素濃淡電池素子8の多孔質電極7内に発生され
た酸素ガス分圧と、測定ガス室としての中空部9a内の
酸素ガス分圧との比に応じて酸素濃淡電池素子8の両端
の電極に生ずる電圧が一定となるよう、即ち中空部9a
内の酸素ガス分圧が一定となるよう、酸素ポンプ素子4
に流れる電流を双方向に制御し、その電流値を空燃比信
号として出力するように構成されている。
Next, the air-fuel ratio detection circuit 30 detects that the air-fuel ratio sensor S has been activated by the activation detection circuit 20, and the analog switches 24 and 25 are switched in the opposite direction to that shown in FIG. Connected. In the air-fuel ratio detection circuit 30, the partial pressure of oxygen gas generated in the porous electrode 7 of the oxygen concentration battery element 8 by the operation of the constant current circuit 21 and the oxygen gas in the hollow portion 9a serving as the measurement gas chamber. The voltage generated at the electrodes at both ends of the oxygen concentration battery element 8 becomes constant according to the ratio with the partial pressure, that is, the hollow portion 9a.
Oxygen pump element 4 so that the partial pressure of oxygen gas inside is constant
It is configured to bi-directionally control the current flowing through and output the current value as an air-fuel ratio signal.

即ち空燃比検出回路30は、第4図に示す如く、酸素濃
淡電池素子8の両側の電極に発生し、基準電圧Va(例
えば5[V])で以って嵩上げされた電圧を検出する、
演算増幅器OP4により構成されたバッファ回路31
と、このバッファ回路31より出力される検出電圧を増
幅する、演算増幅器OP5により構成された非反転増幅
回路32と、この非反転増幅回路32により増幅された
検出電圧を所定の基準電圧Vcと比較し、検出電圧が基
準電圧Vcに対し大きいときに所定の積分定数で以って
徐々に低下し逆の場合に所定の積分定数で以つて徐々に
増加する第5図に示す如き制御電圧を出力する、演算増
幅器OP6を用いて構成された比較・積分回路33と、
上記基準電圧Vaを出力する、演算増幅器OP7により
構成されたバッファ回路34と、バッファ回路34から
の基準電圧Vaを酸素ポンプ素子4の中空部9a側の多
孔質電極3に印加し、その電極3と比較・積分回路33
からの制御電圧が印加されたもう一方の多孔質電極2と
の間で流れる電流を検出するための電流検出用抵抗Ri
と、この抵抗Riに生ずる電圧を空燃比信号Vλとして
出力する、演算増幅器OP8により構成された出力回路
35と、から構成されているのである。尚この空燃比検
出回路30によって得られる空燃比信号は、例えば第6
図に示す如く、空燃比リッチ域からリーン域にかけて連
続的に変化する。
That is, as shown in FIG. 4, the air-fuel ratio detection circuit 30 detects a voltage generated at the electrodes on both sides of the oxygen concentration battery element 8 and raised by the reference voltage Va (for example, 5 [V]).
Buffer circuit 31 composed of operational amplifier OP4
And a non-inverting amplifier circuit 32 configured by an operational amplifier OP5 for amplifying the detection voltage output from the buffer circuit 31, and the detection voltage amplified by the non-inverting amplifier circuit 32 is compared with a predetermined reference voltage Vc. Then, when the detected voltage is larger than the reference voltage Vc, it gradually decreases with a predetermined integration constant, and in the opposite case, it gradually increases with a predetermined integration constant and outputs a control voltage as shown in FIG. And a comparison / integration circuit 33 configured using the operational amplifier OP6,
The buffer circuit 34 configured by the operational amplifier OP7 that outputs the reference voltage Va and the reference voltage Va from the buffer circuit 34 are applied to the porous electrode 3 on the hollow portion 9a side of the oxygen pump element 4, and the electrode 3 And comparison / integration circuit 33
Current detection resistor Ri for detecting a current flowing between the other porous electrode 2 to which the control voltage from
And an output circuit 35 constituted by an operational amplifier OP8, which outputs the voltage generated in the resistor Ri as an air-fuel ratio signal Vλ. The air-fuel ratio signal obtained by the air-fuel ratio detection circuit 30 is, for example, the sixth
As shown in the figure, it continuously changes from the air-fuel ratio rich region to the lean region.

このように構成された空燃比検出装置では、空燃比セン
サSの活性化が活性化検出回路20で以て検出され、そ
の動作によって空燃比検出回路30が空燃比センサSと
接続されることとなるのであるが、次に上記活性化検出
回路20で空燃比センサSの活性化を判断する際用いる
設定電圧Eoの設定方法について説明する。
In the air-fuel ratio detection device configured as described above, activation of the air-fuel ratio sensor S is detected by the activation detection circuit 20, and the operation causes the air-fuel ratio detection circuit 30 to be connected to the air-fuel ratio sensor S. However, a method of setting the set voltage Eo used when the activation detection circuit 20 determines whether the air-fuel ratio sensor S is activated will be described below.

この設定電圧Eoは、空燃比センサSが動作を開始する
内燃機関の始動時には内燃機関が燃料の過濃な空燃比リ
ッチ域にて運転されるため、内燃機関を始動時の空燃比
リッチ域で運転して、そのとき上記空燃比検出回路30
によって得られる空燃比信号を測定することにより、実
験的に設定される。
The set voltage Eo is set in the air-fuel ratio rich region when the internal combustion engine is started, because the internal combustion engine is operated in the air-fuel ratio rich region where the fuel is rich when the internal combustion engine is started when the air-fuel ratio sensor S starts operating. The air-fuel ratio detection circuit 30 is operated at that time.
It is set experimentally by measuring the air-fuel ratio signal obtained by

即ち第7図は、次表に示す如き寸法で作成された空燃比
センサSを、4サイクル,1.5[]内燃機関の排気
管に装着し、内燃機関を、回転数1200[r.p.m.]、
吸気管負圧−500[mmHg]、排気温170[℃]、空
燃比A/F:12の条件下で運転したときに、上記空燃
比検出回路30で以って空燃比センサSを同時に動作し
たときの酸素ポンプ素子4に流れるポンプ電流Ip、そ
の両端に生ずる電圧Vp、及び酸素濃淡電池素子8の両
端に生ずる電圧Vs、を夫々表わす測定データである
が、この測定データから空燃比センサSが90%活性化
するまでの時間Tw(この場合22[sec])をとり、
この時間Twに対応する空燃比検出回路30オープン時
の酸素濃淡電池素子8両端に生ずる電圧を実験的に求
め、この値を設定電圧Eoとすればよいのである。
That is, FIG. 7 shows that the air-fuel ratio sensor S having the dimensions shown in the following table is mounted on the exhaust pipe of a 1.5 [] internal combustion engine for 4 cycles, and the internal combustion engine is rotated at a rotation speed of 1200 [rpm],
The air-fuel ratio sensor S is simultaneously operated by the air-fuel ratio detection circuit 30 when operated under the conditions of intake pipe negative pressure -500 [mmHg], exhaust temperature 170 [° C], and air-fuel ratio A / F: 12. The measured data represents the pump current Ip flowing through the oxygen pump element 4 at that time, the voltage Vp generated at both ends thereof, and the voltage Vs generated at both ends of the oxygen concentration cell element 8, respectively. From the measured data, the air-fuel ratio sensor S Takes 90% of time Tw (22 [sec] in this case)
The voltage generated across the oxygen concentration battery element 8 when the air-fuel ratio detection circuit 30 is open corresponding to the time Tw is experimentally obtained, and this value may be set as the set voltage Eo.

第8図はその実験結果を表わすものであるが、上記の如
き構成の空燃比センサSの場合、上記測定データから求
める活性化90%までの時間Tw(22[sec]に相当
する酸素濃淡電池素子両端の電圧は約1100[mV]
となることから、設定電圧Eoを1100[mV]に設
定すればよい。尚定電流回路21により酸素濃淡電池素
子8に流す電流は22[μA]とし、センサはヒータで
以て加熱した。
FIG. 8 shows the result of the experiment, and in the case of the air-fuel ratio sensor S having the above-mentioned configuration, the oxygen concentration battery corresponding to the time Tw (22 [sec]) of activation up to 90% obtained from the above measurement data. The voltage across the element is approximately 1100 [mV]
Therefore, the set voltage Eo may be set to 1100 [mV]. The current passed through the oxygen concentration battery element 8 by the constant current circuit 21 was 22 [μA], and the sensor was heated by a heater.

以上のように構成された本実施例の空燃比センサの活性
化検出装置においては、空燃比検出回路30による空燃
比の検出前に、空燃比センサSの動作状態から直接その
活性化を検出できるようになり、空燃比センサが活性化
された後、空燃比検出回路30で以て空燃比を速やかに
検出させることが可能となる。従って従来のように空燃
比センサが活性化しているにもかかわらず空燃比を検出
することができず、内燃機関等の空燃比制御を良好に行
なうことができなくなるといったことはなく、空燃比制
御を常に良好に実行させることが可能となる。
In the air-fuel ratio sensor activation detection device of the present embodiment configured as described above, the activation can be directly detected from the operating state of the air-fuel ratio sensor S before the air-fuel ratio detection circuit 30 detects the air-fuel ratio. After the air-fuel ratio sensor is activated, the air-fuel ratio detection circuit 30 can promptly detect the air-fuel ratio. Therefore, even though the air-fuel ratio sensor is activated as in the past, the air-fuel ratio cannot be detected and the air-fuel ratio control of the internal combustion engine or the like cannot be performed satisfactorily. Can be always executed well.

[発明の効果] 以上詳述したように、本発明の空燃比センサの活性化検
出装置においては、空燃比センサの活性化を酸素濃淡電
池素子として用いられる内部基準酸素源側の検出素子を
通電したときの電極間電圧から直接検出するようにされ
ているため、空燃比センサの活性化を応答遅れなく速や
かに検出でき、空燃比センサが活性化した後の空燃比制
御を速やかに実行させることができる。
[Effects of the Invention] As described in detail above, in the activation detection device of the air-fuel ratio sensor of the present invention, activation of the air-fuel ratio sensor is performed by energizing the detection element on the internal reference oxygen source side used as the oxygen concentration battery element. It is possible to detect the activation of the air-fuel ratio sensor promptly without a response delay because it is directly detected from the inter-electrode voltage when the air-fuel ratio sensor is activated, and to promptly execute the air-fuel ratio control after the activation of the air-fuel ratio sensor. You can

また、本発明では、空燃比センサを実際に起動される空
燃比リッチ域の排気中で作動させて、センサが実際に活
性化したときに多孔質電極間に生じた電圧を測定し、そ
の測定結果に基づき活性化判定用の設定電圧を設定して
いるため、空燃比センサの活性化を極めて正確に判定す
ることができる。
Further, in the present invention, the air-fuel ratio sensor is operated in the exhaust gas in the air-fuel ratio rich region that is actually activated, and the voltage generated between the porous electrodes when the sensor is actually activated is measured, and the measurement is performed. Since the set voltage for activation determination is set based on the result, activation of the air-fuel ratio sensor can be determined extremely accurately.

また電流供給手段としては当該空燃比センサに従来より
設けられている電流供給回路をそのまま用いることがで
き、活性化検出のために電流供給回路を設ける必要がな
い。
Further, as the current supply means, the current supply circuit conventionally provided in the air-fuel ratio sensor can be used as it is, and it is not necessary to provide the current supply circuit for activation detection.

【図面の簡単な説明】[Brief description of drawings]

第1図ないし第8図は本発明の一実施例を示し、第1図
は本実施例の空燃比センサ及び活性化検出回路全体の構
成を表わす構成図、第2図は空燃比センサの部分破断斜
視図、第3図はその分解斜視図、第4図は空燃比検出回
路を表わす電気回路図、第5図は空燃比検出回路内で発
生される酸素ポンプ素子の制御信号を表わす線図、第6
図は空燃比検出回路により得られる空燃比信号を表わす
線図、第7図は空燃比センサを空燃比リッチ域の排気中
で動作したときの活性化状態を表わす線図、第8図は空
燃比リッチ域での酸素濃淡電池素子に生ずる電圧の変化
を表わす線図である。 1,5……固体電解質板 2,3,6,7……多孔質電極 4……酸素ポンプ素子 8……酸素濃淡電池素子 9……スペーサ 9a……中空部(測定ガス室) 20……活性化検出回路 21……定電流回路 22……電圧検出回路 23……活性化判別回路 30……空燃比検出回路
1 to 8 show an embodiment of the present invention, FIG. 1 is a configuration diagram showing the overall configuration of an air-fuel ratio sensor and an activation detection circuit of this embodiment, and FIG. 2 is a portion of the air-fuel ratio sensor. Fig. 3 is a broken perspective view, Fig. 3 is an exploded perspective view thereof, Fig. 4 is an electric circuit diagram showing an air-fuel ratio detection circuit, and Fig. 5 is a diagram showing control signals of an oxygen pump element generated in the air-fuel ratio detection circuit. , Sixth
FIG. 7 is a diagram showing an air-fuel ratio signal obtained by the air-fuel ratio detection circuit, FIG. 7 is a diagram showing an activated state when the air-fuel ratio sensor is operated in the exhaust gas in the air-fuel ratio rich region, and FIG. It is a diagram showing the change of the voltage which occurs in the oxygen concentration battery element in the fuel ratio rich region. 1, 5 ... Solid electrolyte plate 2, 3, 6, 7 ... Porous electrode 4 ... Oxygen pump element 8 ... Oxygen concentration battery element 9 ... Spacer 9a ... Hollow part (measurement gas chamber) 20 ... Activation detection circuit 21 ... constant current circuit 22 ... voltage detection circuit 23 ... activation determination circuit 30 ... air-fuel ratio detection circuit

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭60−224051(JP,A) 特開 昭60−86457(JP,A) 特開 昭52−104991(JP,A) 特開 昭56−22949(JP,A) ─────────────────────────────────────────────────── ─── Continuation of front page (56) Reference JP-A-60-224051 (JP, A) JP-A-60-86457 (JP, A) JP-A-52-104991 (JP, A) JP-A-56- 22949 (JP, A)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】酸素イオン伝導性の固体電解質両面に一対
の多孔質電極を配設してなる2個の検出素子と、該各検
出素子の一方の多孔質電極と接して形成され、ガス拡散
制限部を介して測定ガス雰囲気と連通される測定ガス室
と、一方の検出素子の上記測定ガス室とは反対側の多孔
質電極と接して形成され、漏出抵抗部を介して外部と連
通される内部基準酸素源と、により構成された空燃比セ
ンサの活性化検出装置であって、 上記内部基準酸素源に接して形成された検出素子に所定
の電流を供給し、該内部基準酸素源に酸素を発生させる
電流供給手段と、 該電流供給手段によって電流供給された検出素子の上記
多孔質電極間に生ずる電圧を検出する電圧検出手段と、 該電圧検出手段により検出された電圧が予め設定された
設定電圧以下であるか否かを判断し、該電圧が予め設定
された設定電圧以下あるとき当該空燃比センサの活性化
を検知する活性化判断手段と、 を備え、上記設定電圧を、 内燃機関を空燃比リッチ域で運転した際の排気中で空燃
比センサを作動させて、該空燃比センサが実際に活性化
したときに上記検出素子の多孔質電極間に生じる電圧を
測定し、該測定結果に基づき予め設定してなることを特
徴とする空燃比センサの活性化検出装置。
1. A gas diffusion device which is formed by contacting two detection elements each having a pair of porous electrodes disposed on both surfaces of an oxygen ion conductive solid electrolyte and one porous electrode of each of the detection elements. The measurement gas chamber is communicated with the measurement gas atmosphere through the restriction portion, and is formed in contact with the porous electrode on the opposite side of the one measurement element from the measurement gas chamber, and is communicated with the outside through the leakage resistance portion. An internal reference oxygen source, and an activation detection device for an air-fuel ratio sensor, which supplies a predetermined current to a detection element formed in contact with the internal reference oxygen source, A current supply means for generating oxygen, a voltage detection means for detecting a voltage generated between the porous electrodes of the detection element to which current is supplied by the current supply means, and a voltage detected by the voltage detection means are set in advance. Below the set voltage Activation determining means for determining whether the air-fuel ratio sensor is activated when the voltage is equal to or lower than a preset set voltage, and the set voltage is set in the air-fuel ratio rich region. By operating the air-fuel ratio sensor in the exhaust gas during operation, the voltage generated between the porous electrodes of the detection element when the air-fuel ratio sensor is actually activated is measured, and preset based on the measurement result. An activation detection device for an air-fuel ratio sensor, characterized in that
JP61032495A 1986-02-17 1986-02-17 Activation detection device for air-fuel ratio sensor Expired - Lifetime JPH0643986B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61032495A JPH0643986B2 (en) 1986-02-17 1986-02-17 Activation detection device for air-fuel ratio sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61032495A JPH0643986B2 (en) 1986-02-17 1986-02-17 Activation detection device for air-fuel ratio sensor

Publications (2)

Publication Number Publication Date
JPS62190461A JPS62190461A (en) 1987-08-20
JPH0643986B2 true JPH0643986B2 (en) 1994-06-08

Family

ID=12360575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61032495A Expired - Lifetime JPH0643986B2 (en) 1986-02-17 1986-02-17 Activation detection device for air-fuel ratio sensor

Country Status (1)

Country Link
JP (1) JPH0643986B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3520163B2 (en) * 1996-09-30 2004-04-19 日本特殊陶業株式会社 Method and apparatus for controlling oxygen sensor
JP4662207B2 (en) * 2005-11-28 2011-03-30 日本特殊陶業株式会社 Air-fuel ratio detection device
JP5903992B2 (en) * 2012-04-02 2016-04-13 株式会社デンソー Oxygen sensor control device
JP5809095B2 (en) * 2012-04-03 2015-11-10 日本特殊陶業株式会社 Gas sensor circuit device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2608245C2 (en) * 1976-02-28 1983-08-11 Robert Bosch Gmbh, 7000 Stuttgart Method and device for monitoring the operational readiness of an oxygen measuring probe
JPS6029899B2 (en) * 1979-08-02 1985-07-13 日産自動車株式会社 Exhaust sensor bias circuit of air-fuel ratio control device
JPS6086457A (en) * 1983-10-19 1985-05-16 Hitachi Ltd Air fuel ratio sensor for controlling engine
JPS60224051A (en) * 1984-04-23 1985-11-08 Nissan Motor Co Ltd Air-fuel ratio detecting device

Also Published As

Publication number Publication date
JPS62190461A (en) 1987-08-20

Similar Documents

Publication Publication Date Title
US4765880A (en) Air/fuel ratio sensor
US4722779A (en) Air/fuel ratio sensor
US4839018A (en) Air/fuel ratio detector
US6214207B1 (en) Method and apparatus for measuring oxygen concentration and nitrogen oxide concentration
US4770760A (en) Electrochemical NOx sensor
US4487680A (en) Planar ZrO2 oxygen pumping sensor
JP3855483B2 (en) Stacked air-fuel ratio sensor element
EP0859232A2 (en) Apparatus for detecting concentration of nitrogen oxide
WO1998012550A1 (en) Gas sensor
JPH01277751A (en) Measuring device of concentration of nox
JPH0542624B2 (en)
KR890000080B1 (en) Method for detecting an air-fuel ratio
US4863584A (en) Apparatus for sensing air-fuel ratio
JP2000146906A (en) Gas sensor element
JPH0643986B2 (en) Activation detection device for air-fuel ratio sensor
JPH0521499B2 (en)
JPH07122626B2 (en) Electrochemical device
JPH0588780B2 (en)
JPH0668482B2 (en) Air-fuel ratio sensor
JP3431493B2 (en) Nitrogen oxide concentration detector
US20220178869A1 (en) Gas sensor
JPS62197759A (en) Activation detector for air/fuel ratio detector
JPH0641931B2 (en) Air-fuel ratio detector
JPH0635956B2 (en) Air-fuel ratio detector for internal combustion engine
JPH0921782A (en) Oxygen concentration sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term