JPS6258160A - Air/fuel ratio detection element - Google Patents

Air/fuel ratio detection element

Info

Publication number
JPS6258160A
JPS6258160A JP60198227A JP19822785A JPS6258160A JP S6258160 A JPS6258160 A JP S6258160A JP 60198227 A JP60198227 A JP 60198227A JP 19822785 A JP19822785 A JP 19822785A JP S6258160 A JPS6258160 A JP S6258160A
Authority
JP
Japan
Prior art keywords
air
oxygen
fuel ratio
detection element
ratio detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60198227A
Other languages
Japanese (ja)
Inventor
Tetsumasa Yamada
哲正 山田
Takao Kojima
孝夫 小島
Hiroyuki Ishiguro
石黒 宏之
Yoshitake Kawachi
川地 良毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP60198227A priority Critical patent/JPS6258160A/en
Publication of JPS6258160A publication Critical patent/JPS6258160A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To simplify the constitution of the titled detection element, by combining an oxygen concn. cell element having a pair of electrodes different in the intensity of catalytic action in oxidizing reaction with an oxygen pump element. CONSTITUTION:An oxygen pump element 2 and an oxygen conc. cell element 3 are assembled to constitute an integrated air/fuel ratio detection element 1 having a gap part 9. At this time, a spacer 11 having the same outer shape as each of both elements 2, 3 is interposed between both elements 2, 3 and the part thereof corresponding to the electrodes 5, 6 of both elements 2, 3 is punched so as to form the gap part 9. The spacer 11 has a hole 12 at the leading end side thereof and is laminated to both elements 2, 3, for example, by a heat resistant inorg. adhesive so as to be held between both elements 2, 3. Further, the element 1 controls the current flowing to the element 2, for example, in order to constantly control the output voltage of the element 3 and used in a measuring apparatus constituted so as to take out the air/fuel ratio signal corresponding to the air/fuel ratio of a gaseous mixture. Therefore, the constitution of the apparatus can be simplified.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は燃焼機器に供給される混合気の空燃比を検出す
る空燃比検出素子に関し、特に酸素イオン伝導性固体電
解質を用いた酸素濃淡電池素子及び酸素ポンプ素子を間
隙を介して対向配置するとともに上記間隙が周囲被測定
ガスと連通されるようにしてなる混合気の空燃比を検出
し得る空燃比検出素子に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an air-fuel ratio detection element for detecting the air-fuel ratio of an air-fuel mixture supplied to combustion equipment, and particularly relates to an oxygen concentration battery using an oxygen ion-conducting solid electrolyte. The present invention relates to an air-fuel ratio detection element capable of detecting the air-fuel ratio of an air-fuel mixture, in which an element and an oxygen pump element are disposed opposite to each other with a gap therebetween, and the gap is communicated with a surrounding gas to be measured.

[従来の技術] 従来より、例えば、内燃機関等の燃焼機器において、燃
費やエミッションの改善を図るべく、排気中の酸素濃度
を検出し、燃焼容器中で燃焼される混合気を理論空燃比
近傍に制御するといった、いわゆるフィードバック制御
を実行するものがある。そしてこめ種の制御装置に用い
られ、排気中の酸素IIrtiを検出する酸素センサと
して、例えばイオン伝導性固体電解質に多孔質電極層を
被着して構成され、排気の酸素分圧と空気の酸素分圧と
の差によって生ずる起電力の変化によって理論空燃比近
傍の燃焼状態を検知するm素センサ等、一般には混合気
の理論空燃比を境として出力電圧がスイッチング的に変
化する酸素センサが知られている。
[Prior Art] Conventionally, for example, in combustion equipment such as internal combustion engines, in order to improve fuel efficiency and emissions, the oxygen concentration in the exhaust gas has been detected and the air-fuel mixture combusted in the combustion vessel has been adjusted to near the stoichiometric air-fuel ratio. There are devices that perform so-called feedback control. An oxygen sensor used in a rice seed control device to detect oxygen IIrti in the exhaust gas is composed of, for example, an ion-conductive solid electrolyte coated with a porous electrode layer, and is used to detect oxygen partial pressure in the exhaust gas and oxygen in the air. Generally, oxygen sensors whose output voltage changes in a switching manner around the stoichiometric air-fuel ratio of the air-fuel mixture are well-known, such as oxygen sensors that detect combustion conditions near the stoichiometric air-fuel ratio based on changes in electromotive force caused by differences in partial pressure. It is being

ところで近年、混合気の空燃比を単に理論空燃比近傍に
制御するだけでなく、機器の運転状態に応じて目標とす
る空燃比を変化してフィードバック制御を実行すること
により、燃費やエミッションをより改善すると共に機器
の運転性を向上させるといったことが考えられているが
、上記従来の酸素センサにあっては混合気の理論空燃比
を検知し得るだけであることから、混合気を所望の空燃
比に制御することができなかった。
By the way, in recent years, it has become possible to not only simply control the air-fuel ratio of the air-fuel mixture to near the stoichiometric air-fuel ratio, but also to execute feedback control by changing the target air-fuel ratio according to the operating status of equipment, thereby improving fuel efficiency and emissions. Although it is considered that the conventional oxygen sensor described above can only detect the stoichiometric air-fuel ratio of the air-fuel mixture, it is difficult to adjust the air-fuel mixture to the desired air-fuel ratio. It was not possible to control the fuel ratio.

一方近年、上記の如き空燃比のフィードバック制御を実
現すべく、板状の酸素イオン導電性固体電解質の先側の
両面に電極層を設けた素子を、2枚間隔をおいて平行状
に配して上記先側に周囲被測定ガスと連通ずる間隙部を
設けて該画素子を固定し、一方の素子をlll!l素ポ
ンプ素子、他方の素子を周囲雰囲気と前記間隙部との酸
素・濃度差によって作動するM累濃淡電池素子とした酸
素センサが提案され、少なくとも混合気のリーン域にお
いて空燃比に応じた信号を検出し得るように構成したも
のが考えられている。
On the other hand, in recent years, in order to realize feedback control of the air-fuel ratio as described above, two elements each having electrode layers provided on both sides of the front side of a plate-shaped oxygen ion conductive solid electrolyte are arranged in parallel at intervals. A gap portion communicating with the surrounding gas to be measured is provided on the tip side, the pixel element is fixed, and one element is lll! An oxygen sensor has been proposed in which one element is a pump element and the other element is an M cumulative concentration battery element which operates based on the oxygen concentration difference between the surrounding atmosphere and the gap, and the sensor generates a signal according to the air-fuel ratio at least in the lean range of the air-fuel mixture. A device configured to be able to detect is being considered.

し発明が解決しようとする問題点コ しかし、この酸素はンサの場合、混合気のり一ン域、即
ち排気中に残留酸素が存在する場合のみならず、混合気
のリッチ域、即ち排気中に残留酸素が微量にしか存在し
ない場合でも、排気中の00%CO2、H2O等と反応
し、リーン域における信号と同様の信号をリッチ域にお
ける空燃比に応じて検出するので1つの出力値に対して
2つの空燃比が対応してしまうという問題点を有するこ
とがわかった。
Problems to be Solved by the Invention However, in the case of a sensor, this oxygen is present not only in the lean region of the mixture, that is, when residual oxygen exists in the exhaust gas, but also in the rich region of the mixture, that is, when residual oxygen exists in the exhaust gas. Even when oxygen is present in only a trace amount, it reacts with 00% CO2, H2O, etc. in the exhaust gas, and a signal similar to that in the lean range is detected depending on the air-fuel ratio in the rich range, so it can be detected for one output value. It has been found that there is a problem in that the two air-fuel ratios correspond to each other.

[問題点を解決するための手段] 本発明は、発明の構成として上記の問題点を解決するた
めに次の様な技術的手段を採用した。
[Means for Solving the Problems] The present invention employs the following technical means as a configuration of the invention in order to solve the above problems.

即ち、本発明の空燃比検出素子は、 酸素イオン伝導性の固体電解質の表裏面に酸素ガス透過
性でありかつ表面と裏面とでは酸化反応の触媒作用の強
さの異なる一対の電極を持つ酸素濃淡電池素子と、 酸素イオン伝導性の固体電解質の両面に酸素ガス透過性
である一対の電極を持つ酸素ポンプ素子と、 を間隙を介して、上記酸素濃淡電池素子の酸化反応の触
媒作用の強い電極を酸素ポンプ素子側に向けて対向配設
するとともに上記間隙が周囲被測定ガスと孔あるいは多
孔質からなる拡散制御部を介して連通されるようにした
ことを特徴とする。
That is, the air-fuel ratio detection element of the present invention comprises an oxygen ion conductive solid electrolyte and a pair of electrodes that are permeable to oxygen gas and have different oxidation reaction catalytic strengths on the front and back surfaces of the oxygen ion conductive solid electrolyte. an oxygen pump element having a pair of electrodes that are permeable to oxygen gas on both sides of an oxygen ion conductive solid electrolyte; The present invention is characterized in that the electrodes are disposed facing toward the oxygen pump element, and the gap is communicated with the surrounding gas to be measured via a diffusion control section made of holes or porous material.

酸素濃淡電池素子は、酸素イオン伝導性固体電解質の適
当な温度条件(例えば固体電解質がジルコニアの場合4
00℃以上)において、固体電解質表面の酸素ガス分圧
の高い所から、酸素ガス分圧の低い所へと固体電解質中
を酸素イオンが移動し、固体電解質に酸素ガス透過性の
電極をつけることにより電極間の酸素ガス分圧の差を電
圧(起電力)として取り出すことができる性質を利用し
たものである。
Oxygen concentration battery elements are manufactured under appropriate temperature conditions of an oxygen ion conductive solid electrolyte (for example, when the solid electrolyte is zirconia,
00℃ or higher), oxygen ions move in the solid electrolyte from a place on the surface of the solid electrolyte where the oxygen gas partial pressure is high to a place where the oxygen gas partial pressure is low, and an oxygen gas permeable electrode is attached to the solid electrolyte. This method takes advantage of the property that the difference in oxygen gas partial pressure between electrodes can be extracted as a voltage (electromotive force).

ここで、上記酸素濃淡電池素子の電極の一方を酸化反応
の触媒作用の強い電極(カソード)に、他方を触媒作用
の弱い電極(アノード)とすると、測定される排ガス中
に未燃焼の炭化水素や一酸化炭素がある状態(いわゆる
リッチ)では、カソードにおいて、酸化反応が促進され
て、酸素が消費されることにより、酸素ガス分圧がほと
んどOに近くなるが、アノードにおいては、酸素ガス分
圧が上記排ガスとほとんど変らない。このため、アノー
ド側から、カソード側に酸素イオンが移動し、電圧が出
力される。逆に未燃焼の炭化水素や一酸化炭素がないか
、あるいは少ない状S<いわゆるリーン)には、カソー
ドにおいても酸素はほとんど消費されないので、どちら
の電極においても酸素ガス分圧は変らないために、電圧
は出力されない。
Here, if one of the electrodes of the oxygen concentration battery element is an electrode with a strong catalytic effect (cathode) for oxidation reactions and the other is an electrode with a weak catalytic effect (anode), unburned hydrocarbons will be present in the measured exhaust gas. In the presence of carbon monoxide and carbon monoxide (so-called rich conditions), the oxidation reaction is promoted at the cathode and oxygen is consumed, resulting in an oxygen gas partial pressure almost close to O.However, at the anode, the oxygen gas partial pressure is almost O. The pressure is almost the same as the exhaust gas above. Therefore, oxygen ions move from the anode side to the cathode side, and a voltage is output. Conversely, in a state where there is no or little unburned hydrocarbons and carbon monoxide (so-called lean), almost no oxygen is consumed at the cathode, so the oxygen gas partial pressure remains the same at both electrodes. , no voltage is output.

酸素ポンプ素子は、酸素イオン伝導性固体電解質の、電
圧をかけることにより固体電解質中を酸素イオンが移動
する性質を利用するものであり、固体電解質は酸素ガス
透過性の電極をつけることにより、酸素ポンプとして利
用することができる。
Oxygen pump elements utilize the property of an oxygen ion conductive solid electrolyte that oxygen ions move through the solid electrolyte by applying a voltage. Can be used as a pump.

即ち、上記電極電位の低い方から高い方へ、酸素イオン
が移動するために、電極電位の低い側では酸素ガス分圧
が減り、逆に電、憧電位の高い側では酸素ガス分圧が増
加する。又、上記固体電解質の荷電担体は酸素イオンで
あるために、上記電極間に流れる電流量を調節すること
により、酸素イオンの移動量を調節することができる。
In other words, since oxygen ions move from the lower electrode potential to the higher electrode potential, the oxygen gas partial pressure decreases on the lower electrode potential side, and conversely, the oxygen gas partial pressure increases on the higher electrode potential side. do. Furthermore, since the charge carrier of the solid electrolyte is oxygen ions, the amount of movement of oxygen ions can be adjusted by adjusting the amount of current flowing between the electrodes.

又、本発明の空燃比検出素子の酸素ポンプ素子における
酸素濃淡電池素子に対向しない電極は、周囲雰囲気と接
触する。このため空燃比検出素子の構造が簡単になる。
Furthermore, the electrode in the oxygen pump element of the air-fuel ratio detection element of the present invention that does not face the oxygen concentration cell element comes into contact with the surrounding atmosphere. This simplifies the structure of the air-fuel ratio detection element.

上記酸素ポンプ素子及び酸素濃淡電池素子を形成してい
る固体電解質は酸素イオン導電体の性質を有することが
必要であり、ジルコニアのイツトリアあるいはカルシア
等との固溶体が代表的なものであり、その他二酸化セリ
ウム、二酸化トリウム、二酸化ハフニウムの各固溶体、
ペロブスカイト型酸化物固溶体、3価金属酸化物固溶体
等が酸素イオン導電性の固体電解質として使用可能であ
る。
The solid electrolyte forming the oxygen pump element and oxygen concentration battery element must have the properties of an oxygen ion conductor, and a typical solid electrolyte is a solid solution of zirconia with itria or calcia; Solid solutions of cerium, thorium dioxide, and hafnium dioxide,
Perovskite oxide solid solutions, trivalent metal oxide solid solutions, and the like can be used as oxygen ion conductive solid electrolytes.

又、酸化反応の触媒作用の強さの異なる電極材料の組み
合せとしては、触媒作用の強いPtと触媒作用の弱いA
u、以下同様にPtとAg、PtとPt +Au  (
1〜20%)、PtとPt +Ru(1〜20%>、p
t+Rh(1〜15%)とPt 、ptと触媒被毒した
Pt 、Ptと半導電性金属酸化物を添加したPt等が
ある。これらは、原料粉末を主成分としてペースト化し
厚膜技術を用いて印刷後、焼結して形成してもよく、ま
たフレーム爆射あるいは化学メッキもしくは蒸着などの
薄膜技術を用いて形成してもよいが、その場合には、電
極の上に重ねてアルミナ、スピネル、ジルコニア、ムラ
イト等の多孔質保護層を厚膜技術を用いて設けることが
より好ましい。
In addition, as a combination of electrode materials with different strengths of catalytic action for oxidation reactions, Pt has a strong catalytic action and A has a weak catalytic action.
u, similarly Pt and Ag, Pt and Pt +Au (
1-20%), Pt and Pt + Ru (1-20%>, p
Examples include t+Rh (1 to 15%) and Pt, pt and catalyst-poisoned Pt, and Pt with a semiconductive metal oxide added. These may be formed by making a paste with raw material powder as the main component, printing using thick film technology, and then sintering, or may be formed using thin film technology such as flame bombardment, chemical plating, or vapor deposition. However, in that case, it is more preferable to provide a porous protective layer of alumina, spinel, zirconia, mullite, etc. over the electrode using thick film technology.

又、電極の保護層に酸化反応の触媒作用を付与するには
、保護層として用いるアルミナ、スピネル、ジルコニア
、ムライト等にPt 、Ril等を分散させればよい。
Further, in order to impart oxidation reaction catalytic action to the protective layer of the electrode, Pt, Ril, etc. may be dispersed in alumina, spinel, zirconia, mullite, etc. used as the protective layer.

間隙の周囲被測定ガスとの連通は、この間隙を拡散制限
部である孔によってのみ周囲被測定ガスと連通する密閉
空間としたり、あるいは上記孔や酸素ポンプ素子と酸素
濃淡電池素子との対向端部を周囲被測定ガスに対して開
放される端部に多孔質材料を拡散制限部として充填する
ことによって行なう。
Communication between the gap and the surrounding gas to be measured can be achieved by making the gap a closed space that communicates with the surrounding gas to be measured only through a hole that is a diffusion restriction part, or by using the hole or the opposite end between the oxygen pump element and the oxygen concentration battery element. This is done by filling the end portion, which is open to the surrounding gas to be measured, with a porous material as a diffusion restriction portion.

[作用] 本発明の空燃比検出素子の作用について説明する。[Effect] The operation of the air-fuel ratio detection element of the present invention will be explained.

先ず、混合気がリーン域である時、該空燃比検出素子を
排ガス中に入れ、酸素ポンプ素子の大気側の電極に正、
間隙側の電極に負の電圧を印加することにより、酸素ポ
ンプ素子と酸素濃淡電池素子との間の間隙部に存在する
@素ガスが汲み出されると、酸素濃淡電池素子の外側つ
まり周囲雰囲気と間隙部との連通する部分の酸素拡散制
限的作用によって酸素ガス濃度の差を生ずる。この濃度
差により、酸素濃淡電池素子に起電力を生ずるのである
First, when the air-fuel mixture is in a lean range, the air-fuel ratio detection element is placed in the exhaust gas, and a positive electrode is connected to the atmospheric side electrode of the oxygen pump element.
By applying a negative voltage to the electrode on the gap side, when the @ elemental gas present in the gap between the oxygen pump element and the oxygen concentration battery element is pumped out, it is connected to the outside of the oxygen concentration battery element, that is, the surrounding atmosphere. A difference in oxygen gas concentration occurs due to the oxygen diffusion limiting action of the portion communicating with the gap. This concentration difference generates an electromotive force in the oxygen concentration battery element.

上記起電力は、上記間隙部へ制限的に拡散流入する酸素
ガス量と、酸素ポンプ素子により間隙部から外側へ汲み
出される酸素ガス量とが平衡に達した時点で一定となる
。そしてこの起電力が予め定めた一定値に維持されるよ
うに、酸素ポンプ素子側に流す電流量(ポンプ電流)を
変化させると、定温においてその電流量は、周囲雰囲気
内の酸素ガスの含有率にほぼ直線的に比例するようにす
ることができ、ポンプ電流から酸素ガス濃度を求めるこ
とができる。
The electromotive force becomes constant when the amount of oxygen gas that diffuses and flows into the gap in a limited manner and the amount of oxygen gas that is pumped out from the gap by the oxygen pump element reach an equilibrium. Then, by changing the amount of current (pump current) flowing through the oxygen pump element so that this electromotive force is maintained at a predetermined constant value, at a constant temperature, the amount of current changes depending on the content of oxygen gas in the surrounding atmosphere. The oxygen gas concentration can be determined from the pump current.

次に、混合気がリッチ側である時に、上記空燃比検出素
子を排ガス中に入れると、前述したように酸素濃淡電池
素子は両電極の間に、酸素ポンプ素子を働かせて酸素ガ
ス分圧の差を惹起させなくても起電力が発生するので、
酸素濃淡電池素子の起電力を一定にするために、酸素ポ
ンプ素子に流すポンプ電流は非常に少ないか、あるいは
むしろポンプ電流の向きは逆となる。即ち、酸素′濃淡
電池素子のカソードにおいて、酸素が排ガス中の未燃焼
の炭化水素や一酸化炭素によって消費されるために、カ
ソード側とアノード側との酸素ガス分圧の差が大きくな
りすぎてしまい、起電力が所定の値よりも大きくなって
しまうのである。そのため、起電力を所定の値に維持す
るよう、酸素ポンプ素子により間隙部に酸素を送りこむ
ことが必要となる。この時、ポンプ電流は、リーン域に
おけるポンプ電流と逆向きになり、又、ポンプ電流は排
ガス中の未燃焼の炭化水素や一酸化炭素の量に対応する
。したがって、リッチ域においてポンプ電流は空燃比に
対応する。
Next, when the air-fuel ratio detection element is put into the exhaust gas when the air-fuel mixture is on the rich side, the oxygen concentration battery element operates the oxygen pump element between the two electrodes to increase the partial pressure of oxygen gas. Since electromotive force is generated even without causing a difference,
In order to keep the electromotive force of the oxygen concentration battery element constant, the pump current flowing through the oxygen pump element is very small, or rather the direction of the pump current is reversed. That is, at the cathode of the oxygen concentration cell element, oxygen is consumed by unburned hydrocarbons and carbon monoxide in the exhaust gas, so the difference in oxygen gas partial pressure between the cathode side and the anode side becomes too large. As a result, the electromotive force becomes larger than a predetermined value. Therefore, in order to maintain the electromotive force at a predetermined value, it is necessary to send oxygen into the gap using an oxygen pump element. At this time, the pump current is in the opposite direction to the pump current in the lean region, and the pump current corresponds to the amount of unburned hydrocarbons and carbon monoxide in the exhaust gas. Therefore, in the rich region, the pump current corresponds to the air-fuel ratio.

即ち、上記空燃比検出素子の酸素ill淡電池素子の起
電力が予め定めた一定値に維持されるようにポンプ素子
側に流すポンプ電流を調節する時、そのポンプ電流は空
燃比に対応する。
That is, when adjusting the pump current flowing to the pump element so that the electromotive force of the oxygen ill cell element of the air-fuel ratio detection element is maintained at a predetermined constant value, the pump current corresponds to the air-fuel ratio.

なお、上記ポンプ電流を一方向にのみ制御する制御回路
によって上記空燃比検出素子を使用すると、リーン域に
ついてはポンプ電流が空燃比と対応し、又リッチ域では
ポンプ電流が出力されないようになる。即ち、リッチ域
における空燃比と対応じない信号をなくすことができる
Note that when the air-fuel ratio detection element is used by a control circuit that controls the pump current only in one direction, the pump current corresponds to the air-fuel ratio in the lean region, and no pump current is output in the rich region. That is, it is possible to eliminate signals that do not correspond to the air-fuel ratio in the rich region.

又、ポンプ電流を一定にした時の起電力がら空燃比を求
めることができる。ここで、ポンプ電流の向きを、間隙
部から酸素を汲み出す時を正とする。
Furthermore, the air-fuel ratio can be determined from the electromotive force when the pump current is kept constant. Here, the direction of the pump current is defined as positive when oxygen is pumped out from the gap.

ポンプ電流がOの時、起電力の値が急激に変化する変化
点は、はぼ理論空燃比(A/F−14゜6)である。
When the pump current is O, the point at which the value of the electromotive force changes rapidly is approximately the stoichiometric air-fuel ratio (A/F-14°6).

又、ポンプ電流が負の時、即ち、間隙部に酸素が供給さ
れる時、変化点はリッチ域に移動する。
Furthermore, when the pump current is negative, that is, when oxygen is supplied to the gap, the change point moves to the rich region.

さらに、ポンプN流が正の時は、起電力の変化はポンプ
電流が0又は負の時に比べてなめらかになるが、変化点
は、リーン域に移動する。
Furthermore, when the pump N flow is positive, the change in electromotive force is smoother than when the pump current is 0 or negative, but the point of change moves to the lean region.

そして、この変化点の移動量はポンプ電流と対応してい
る。
The amount of movement of this change point corresponds to the pump current.

[実施例] 本発明の第1実施例を図面を用いて説明する。[Example] A first embodiment of the present invention will be described using the drawings.

第1図は本実施例の空燃比検出素子の分解斜視図、第2
図はその端面図を示す。ここにおいて、1が本実施例の
空燃比検出素子、2が酸素ポンプ素子、3が酸素濃淡電
池素子である。
Fig. 1 is an exploded perspective view of the air-fuel ratio detection element of this embodiment;
The figure shows its end view. Here, 1 is an air-fuel ratio detection element of this embodiment, 2 is an oxygen pump element, and 3 is an oxygen concentration battery element.

酸素ポンプ素子2の主体は酸素イオン導電性固体電解質
の長方形の焼結板状体からなる。ポンプ素子2の先側2
aには、その表裏面の相対する位置でかつ先側の三方の
端縁から少しひかえた位置に耐熱金属層よりなる電極4
.5が方形状に設けられている。一方の方形電極4の元
側方向の2つの角の内の1つより耐熱金属層よりなる引
き出し1!4aが、板状体の元側2bへ真直ぐに伸びる
帯形状に設けられている。同様に他方の方形電極5の元
側方向の2つの角の内、電極4と反対側の角より引き出
し線5aが板状体の元側2bへ真直ぐに伸びる帯形状に
設けられている。引き出し線5aは元側2bで板状体の
表裏を貫通しているスルーホール5dを通じて、その反
対面の取り出し部5bに電気的に接続されている。引き
出し線4aは元側2bで取り出し部4bを形成し、その
結果、同一面に2つの電極4.5の取り出し部4b、5
bが配設されることになる。
The main body of the oxygen pump element 2 is a rectangular sintered plate-like body made of an oxygen ion conductive solid electrolyte. Tip side 2 of pump element 2
In a, there are electrodes 4 made of a heat-resistant metal layer at opposing positions on the front and back surfaces and at a position slightly away from the three edges on the tip side.
.. 5 is provided in a rectangular shape. A drawer 1!4a made of a heat-resistant metal layer is provided in a band shape extending straight toward the base side 2b of the plate-like body from one of the two corners in the base side direction of one of the rectangular electrodes 4. Similarly, out of the two corners of the other rectangular electrode 5 in the direction toward the base, a lead wire 5a is provided in the shape of a band extending straight from the corner opposite to the electrode 4 toward the base side 2b of the plate-like body. The lead wire 5a is electrically connected to the lead-out portion 5b on the opposite side of the base side 2b through a through hole 5d penetrating the front and back sides of the plate-like body. The lead wire 4a forms a lead-out portion 4b on the base side 2b, and as a result, the lead-out portions 4b, 5 of the two electrodes 4.5 are formed on the same surface.
b will be placed.

酸素濃淡電池素子3もポンプ素子2と同様に主体は酸素
イオン導電性固体電解質の長方形の焼結板状体からなる
。酸素濃淡電池素子3の先側3aには、その表裏面の相
対する位置に、裏面に酸化反応の触媒作用の強い電極材
料からなる電極(カソード)6が表面に酸化反応の触媒
作用の弱い電極材料からなる電極(アノード)7が各々
方形状に設けられている。カソード6の元側方向の2つ
の角の内の1つより耐熱金属層よりなる引き出し線6a
が、板状体の元側3bへ真直ぐに伸びる帯形状に設けら
れている。同様にアノード7の元側方向の2つの角の内
、カソード6と反対側の角より引き出し線7aが板状体
の元側3bへ真直ぐに伸びる帯形状に設けられている。
Like the pump element 2, the oxygen concentration battery element 3 also mainly consists of a rectangular sintered plate-like body of an oxygen ion conductive solid electrolyte. On the front side 3a of the oxygen concentration battery element 3, an electrode (cathode) 6 made of an electrode material with a strong oxidation reaction catalytic effect is placed on the back side, and an electrode with a weak oxidation reaction catalytic effect on the front side, at opposing positions on the front and back sides. Each electrode (anode) 7 made of a material is provided in a rectangular shape. A lead wire 6a made of a heat-resistant metal layer from one of the two corners in the original direction of the cathode 6
is provided in a band shape extending straight toward the base side 3b of the plate-like body. Similarly, out of the two corners of the anode 7 in the direction toward the base side, a lead wire 7a is provided in a band shape extending straight from the corner opposite to the cathode 6 toward the base side 3b of the plate-like body.

引き出し線6aは元側1bで板状体の表裏を貫通してい
るスルーホール6dを通じて、その反対面の取り出し部
6bに電気的に接続されている。引き出し線7aは元側
3bで取り出し部7bを形成し、その結果、同一面に、
2つの電極6.7の取り出し部6b、7bが配設されて
いることになる。
The lead wire 6a is electrically connected to the lead-out portion 6b on the opposite side of the base side 1b through a through hole 6d penetrating the front and back sides of the plate-like body. The lead wire 7a forms a take-out part 7b on the base side 3b, and as a result, on the same plane,
Two take-out portions 6b and 7b of the electrodes 6.7 are provided.

酸素ポンプ素子2及び酸素濃淡電池素子3の各板状体を
形成している固体電解質は酸素イオン導電体の性質を有
することが必要であり、ジルコニアのイツトリアあるい
はカルシア等との固溶体が代表的なものであり、その他
二酸化セリウム、二酸化トリウム、二酸化ハフニウムの
各固溶体、ペロブスカイト型酸化物固溶体、3価金属酸
化物固溶体等が酸素イオン導電性の固体電解質として使
用可能である。
The solid electrolyte forming each plate-like body of the oxygen pump element 2 and the oxygen concentration battery element 3 must have the properties of an oxygen ion conductor, and a typical example is a solid solution of zirconia with ittria or calcia. In addition, solid solutions of cerium dioxide, thorium dioxide, hafnium dioxide, perovskite oxide solid solutions, trivalent metal oxide solid solutions, etc. can be used as oxygen ion conductive solid electrolytes.

各板状体の表面に形成されるカソード6及び7ノード7
以外のN極4.5、引き出し線4a、5a 、5a 、
7aおよび取り出し部4b 、5b 、 6b、7bは
耐熱金属層よりなり主にPt 、RU、Pd、Rh、I
r、Au、Ag等のペーストがプリント印刷焼結または
フレーム溶射または化学メッキもしくは蒸着などの方法
を用いて被着形成される。又、酸素濃淡電池素子の表裏
面に形成されるカソード6及びアノード7の材質は、こ
こではカソード6としてPtとアノード7としてpt+
Auを用いたが、PtとA!It 、PiとAll 、
 ptとPt +Ru 、Pt +RhとPt 、Pt
と触媒被毒したPt 、Ptと半導電性金属酸化物を添
加したpt等の組み合せの場合も他の電極と同様の方法
で形成される。
Cathode 6 and 7 nodes 7 formed on the surface of each plate-shaped body
N poles other than 4.5, lead wires 4a, 5a, 5a,
7a and the take-out parts 4b, 5b, 6b, and 7b are made of heat-resistant metal layers, mainly Pt, RU, Pd, Rh, and I.
A paste of R, Au, Ag, etc. is deposited using methods such as printing sintering, flame spraying, chemical plating or vapor deposition. In addition, the materials of the cathode 6 and anode 7 formed on the front and back surfaces of the oxygen concentration battery element are Pt for the cathode 6 and PT+ for the anode 7.
Although Au was used, Pt and A! It, Pi and All,
pt and Pt +Ru, Pt +Rh and Pt, Pt
Combinations of Pt with catalyst poisoning, Pt with Pt and semiconductive metal oxide added, etc. are also formed in the same manner as the other electrodes.

これらは素子1枚毎に製作してもよいが、一般に生産性
を考慮して、焼結前の固体電解質の大型の生のセラミッ
クシートに電極用等の金属ペーストを多数同時にプリン
ト印刷し、その後、素子毎に切り抜き焼成する方法を採
用するのが有利である。
These may be manufactured for each element, but in general, in consideration of productivity, a large number of metal pastes for electrodes etc. are printed at the same time on a large raw ceramic sheet of solid electrolyte before sintering, and then It is advantageous to adopt a method in which each element is cut out and fired.

次に画素子2.3を間隙部9を有する一体の空燃比検出
素子1に組み立てるには、画素子2.3の間に外形が画
素子と同じであり、画素子の電極5.6に対応する部分
が間隙部9として打ち抜かれており、その先側に孔12
を有するスペーサ11を例えば耐熱性無機質接着剤によ
って画素子がスペーサ11を挾むように貼り合わせるこ
とによってなされる。
Next, in order to assemble the pixel element 2.3 into an integrated air-fuel ratio detection element 1 having a gap 9, the outer shape is the same as that of the pixel element, and the electrode 5.6 of the pixel element is connected to the pixel element 2.3. A corresponding part is punched out as a gap 9, and a hole 12 is formed on the tip side.
This is done by bonding the spacer 11 having the following properties to the pixel elements using, for example, a heat-resistant inorganic adhesive so that the spacer 11 is sandwiched between the pixel elements.

本実施例の空燃比検出素子1は、例えば、酸素濃淡電池
素子3の出力電圧を一定に制御すべく酸素ポンプ素子2
に流れるポンプ電流を制御し、混合気の空燃比に応じた
空燃比信号を取り出すよう構成された空燃比測定装置に
用いることができる。
The air-fuel ratio detection element 1 of this embodiment is, for example, an oxygen pump element 2 in order to control the output voltage of an oxygen concentration battery element 3 at a constant level.
The present invention can be used in an air-fuel ratio measuring device configured to control the pump current flowing through the air-fuel ratio and extract an air-fuel ratio signal according to the air-fuel ratio of the air-fuel mixture.

第5図は上記の空燃比測定装置に用いた場合のポンプ電
流から求められた空燃比信号と、空燃比の関係を示して
いる。適当な回路構成とすることにより、第3図の如く
、リーンからリッチ(約A/F−10>までの空燃比範
囲において空燃比の測定が可能となる。
FIG. 5 shows the relationship between the air-fuel ratio signal obtained from the pump current and the air-fuel ratio when used in the above air-fuel ratio measuring device. With an appropriate circuit configuration, it is possible to measure the air-fuel ratio in the air-fuel ratio range from lean to rich (approximately A/F-10>) as shown in FIG.

本実施例は酸素ポンプ素子の酸素源として周囲雰囲気中
の酸素を使用している。従ってリッチ域において約A/
F=10程度までしか測定できない。しかし、通常の内
燃機関の運転では空燃比が最もリッチになるアクセルを
踏み込んだ時でもA/F−13程度である。従って本実
施例の空燃比検出素子は、実用上の空燃比範囲を全て測
定することができる。
This embodiment uses oxygen in the surrounding atmosphere as the oxygen source for the oxygen pump element. Therefore, in the rich region, approximately A/
It can only measure up to about F=10. However, in normal internal combustion engine operation, the air-fuel ratio is about A/F-13 even when the accelerator is depressed, which is the richest. Therefore, the air-fuel ratio detection element of this embodiment can measure the entire practical air-fuel ratio range.

又、本実施例の空燃比検出素子はポンプ電流が0である
時、空燃比が理論空燃比点よりリッチ側で、被測定ガス
中の酸素濃度が極めて低く可燃性ガスが急増するために
、酸素濃淡電池素子3の起電力が階段状に増大し、その
現染を利用して理論空燃比点を検出する手段として使用
することができる。そして、ポンプ電流を変化させるこ
とにより、この階段状に変化する点を移動させることが
でき、これは、ポンプ電流によって、フィードバック制
御の中心となる空燃比を理論空燃比点から、ずらすこと
ができることを意味する。
Further, in the air-fuel ratio detection element of this embodiment, when the pump current is 0, the air-fuel ratio is richer than the stoichiometric air-fuel ratio point, and the oxygen concentration in the measured gas is extremely low, and the combustible gas increases rapidly. The electromotive force of the oxygen concentration cell element 3 increases stepwise, and the current dyeing can be used as a means for detecting the stoichiometric air-fuel ratio point. By changing the pump current, it is possible to move the stepwise changing point, which means that the air-fuel ratio, which is the center of feedback control, can be shifted from the stoichiometric air-fuel ratio point by changing the pump current. means.

第4図はポンプ電流1pによって空燃比(A/F)と起
電力Eとの関係がどのように変化するかを示す図である
。ただし、ポンプ電流の向きは、酸素を間隙部9から汲
み出す方向を正としている。
FIG. 4 is a diagram showing how the relationship between the air-fuel ratio (A/F) and the electromotive force E changes depending on the pump current 1p. However, the direction of the pump current is defined as the direction in which oxygen is pumped out from the gap 9.

空燃比検出素子1は上記の使い方をすると、出力が理論
空燃比点で急激に変化する従来の酸素センサーを利用し
ている空燃比制御装置にその構成をほとんど変えること
なく使用でき、又より細かな!!111611が行なえ
ることになる。
When the air-fuel ratio detection element 1 is used as described above, it can be used in an air-fuel ratio control device that uses a conventional oxygen sensor whose output changes rapidly at the stoichiometric air-fuel ratio point, without changing its configuration, and can be used to What! ! 111611 can be performed.

尚、本実施例の空燃比検出素子1近傍に該素子の加熱を
する加熱素子を設けると、空燃比測定時に温度補償が可
能となりより精密、正確な測定が可能となる。
If a heating element for heating the element is provided near the air-fuel ratio detecting element 1 of this embodiment, temperature compensation can be performed when measuring the air-fuel ratio, allowing more precise and accurate measurement.

又、本実施例は2枚の固体心解質板の間にスペーサを挾
むという簡単な溝造となっているので製造が容易である
Furthermore, this embodiment is easy to manufacture because it has a simple groove structure in which a spacer is sandwiched between two solid-core solute plates.

[発明の効果] 以上詳述した如く、本発明の空燃比検出素子は、酸化反
応の触媒作用の強さの異なる一対の電極をもつIS!1
累濃淡電池素子と酸素ポンプ素子とを組み合せたもので
ある。
[Effects of the Invention] As detailed above, the air-fuel ratio detection element of the present invention has an IS! 1
It is a combination of a cumulative concentration battery element and an oxygen pump element.

本空燃比検出素子は、酸素濃淡電池素子の起電力を一定
とするようIl!ポンプ素子のポンプ電流を制御し該ポ
ンプ電流がら空燃比信号を得るよう構成された空燃比測
定装置に使用した場合、空燃比出力信号がら空燃比が一
義的に決まる。このためリーン域とリッチ域を判別する
ための池のセンサや回路は不必要となり、空燃比検出装
置の構成を非常に単純にすることができる。
This air-fuel ratio detection element is designed to keep the electromotive force of the oxygen concentration cell element constant! When used in an air-fuel ratio measuring device configured to control the pump current of a pump element and obtain an air-fuel ratio signal from the pump current, the air-fuel ratio is uniquely determined from the air-fuel ratio output signal. Therefore, a sensor and a circuit for determining the lean range and the rich range are unnecessary, and the configuration of the air-fuel ratio detection device can be made very simple.

又、酸素ポンプ素子のポンプ電流を一定として、酸素濃
淡電池素子の起電力がら空燃比信号を得るよう構成され
た空燃比測定装置に使用した場合には、ポンプ電流によ
って定められた任意の空燃比を境とした明確な空燃比信
号を出力できる。
In addition, when used in an air-fuel ratio measuring device configured to obtain an air-fuel ratio signal from the electromotive force of an oxygen concentration cell element while keeping the pump current of the oxygen pump element constant, the air-fuel ratio determined by the pump current may be measured. It is possible to output a clear air-fuel ratio signal with a boundary between

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1実施例の空燃比検出素子の分解斜
視図、 第2図はその端部口、 第3図はそのポンプ電流から得られる空燃比信号と空燃
比との関係図、 第4図はそのポンプ電流による起電力と空燃比との変化
を示す関係図である。 1・・・空燃比検出素子 2・・・酸素ポンプ素子 3・・・酸素濃淡電池素子 4.5・・・電極 6・・・電極(カソード) 7・・・電極(アノード) 9・・・間隙部
Fig. 1 is an exploded perspective view of an air-fuel ratio detection element according to a first embodiment of the present invention, Fig. 2 is an end port thereof, and Fig. 3 is a diagram of the relationship between the air-fuel ratio signal obtained from the pump current and the air-fuel ratio. , FIG. 4 is a relationship diagram showing changes in electromotive force and air-fuel ratio due to the pump current. 1... Air-fuel ratio detection element 2... Oxygen pump element 3... Oxygen concentration battery element 4.5... Electrode 6... Electrode (cathode) 7... Electrode (anode) 9... gap area

Claims (1)

【特許請求の範囲】 1 酸素イオン伝導性の固体電解質の表裏面に酸素ガス
透過性でありかつ表面と裏面とでは酸化反応の触媒作用
の強さの異なる一対の電極を持つ酸素濃淡電池素子と、 酸素イオン伝導性の固体電解質の両面に酸素ガス透過性
である一対の電極を持つ酸素ポンプ素子と、 を間隙を介して、上記酸素濃淡電池素子の酸化反応の触
媒作用の強い電極を酸素ポンプ素子側に向けて対向配設
するとともに上記間隙が周囲被測定ガスと孔あるいは多
孔質からなる拡散制御部を介して連通されるようにした
ことを特徴とする空燃比検出素子。 2 酸素濃淡電池素子及び酸素ポンプ素子の電極が、導
電層と保護層との2層からなる特許請求の範囲第1項記
載の空燃比検出素子。 3 酸素濃淡電池素子における電極の保護層にのみ酸化
反応の触媒作用の強弱がある特許請求の範囲第2項記載
の空燃比検出素子。
[Scope of Claims] 1. An oxygen concentration battery element having a pair of electrodes that are permeable to oxygen gas on the front and back surfaces of an oxygen ion conductive solid electrolyte and have different strengths of oxidation reaction catalytic action on the front and back surfaces. an oxygen pump element having a pair of electrodes that are permeable to oxygen gas on both sides of an oxygen ion conductive solid electrolyte; An air-fuel ratio detection element characterized in that the air-fuel ratio detection element is arranged facing toward the element side and the gap is communicated with the surrounding gas to be measured via a diffusion control section made of holes or porous material. 2. The air-fuel ratio detection element according to claim 1, wherein the electrodes of the oxygen concentration battery element and the oxygen pump element are composed of two layers: a conductive layer and a protective layer. 3. The air-fuel ratio detection element according to claim 2, in which only the protective layer of the electrode in the oxygen concentration battery element has a strength or weakness of oxidation reaction catalytic action.
JP60198227A 1985-09-06 1985-09-06 Air/fuel ratio detection element Pending JPS6258160A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60198227A JPS6258160A (en) 1985-09-06 1985-09-06 Air/fuel ratio detection element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60198227A JPS6258160A (en) 1985-09-06 1985-09-06 Air/fuel ratio detection element

Publications (1)

Publication Number Publication Date
JPS6258160A true JPS6258160A (en) 1987-03-13

Family

ID=16387618

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60198227A Pending JPS6258160A (en) 1985-09-06 1985-09-06 Air/fuel ratio detection element

Country Status (1)

Country Link
JP (1) JPS6258160A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043943A (en) * 2006-07-21 2008-02-28 Nippon Soken Inc Catalyst material, electrode for gas sensor including the same, gas sensor and manufacturing method for them

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827055A (en) * 1981-08-12 1983-02-17 Mitsubishi Electric Corp Oxygen gas sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5827055A (en) * 1981-08-12 1983-02-17 Mitsubishi Electric Corp Oxygen gas sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043943A (en) * 2006-07-21 2008-02-28 Nippon Soken Inc Catalyst material, electrode for gas sensor including the same, gas sensor and manufacturing method for them

Similar Documents

Publication Publication Date Title
US4300991A (en) Air-fuel ratio detecting apparatus
JP3855483B2 (en) Stacked air-fuel ratio sensor element
US4298573A (en) Device for detection of oxygen concentration in combustion gas
JP3648063B2 (en) Gas sensor, gas sensor system using the same, and method of manufacturing gas sensor
US4416763A (en) Air/fuel ratio detecting device for use in exhaust gas of IC engine
EP0142992A1 (en) Electrochemical device incorporating a sensing element
JPS6338154A (en) Nox sensor
JPS62276453A (en) Air/fuel ratio sensor
JPS6156779B2 (en)
JPS6365360A (en) Gas sensor and its manufacture
JPH0473551B2 (en)
JPH065222B2 (en) Electrochemical device
JP2744088B2 (en) Air-fuel ratio sensor
JP3587290B2 (en) NOx gas sensor
JPS6029065B2 (en) Air-fuel ratio control signal generator
US4747930A (en) Air/fuel ratio sensor
US5194135A (en) Air/fuel ratio sensor
US4935119A (en) Air/fuel ratio sensor
JPS6382355A (en) Gas sensor
JPS6258160A (en) Air/fuel ratio detection element
JPH0245819B2 (en)
JPS6195243A (en) Air/fuel ratio detecting element
JPS6183957A (en) Air/fuel ratio detection element
JPS61194344A (en) Air-fuel ratio sensor
JPS6183956A (en) Air/fuel ratio sensor