JPS61205858A - Apparatus for detecting air/fuel ratio - Google Patents

Apparatus for detecting air/fuel ratio

Info

Publication number
JPS61205858A
JPS61205858A JP60047016A JP4701685A JPS61205858A JP S61205858 A JPS61205858 A JP S61205858A JP 60047016 A JP60047016 A JP 60047016A JP 4701685 A JP4701685 A JP 4701685A JP S61205858 A JPS61205858 A JP S61205858A
Authority
JP
Japan
Prior art keywords
fuel ratio
air
voltage
oxygen
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60047016A
Other languages
Japanese (ja)
Inventor
Shigeru Miyata
繁 宮田
Takeshi Kamiya
剛 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Niterra Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP60047016A priority Critical patent/JPS61205858A/en
Publication of JPS61205858A publication Critical patent/JPS61205858A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To enable the detection of an air/fuel ratio from a lean region to a rich region with good reponse, by controlling the potential between the electrodes of an oxygen concn. cell to voltage corresponding to a predetermined upper or lower limit value. CONSTITUTION:A detection element part M2 has two elements constituted by forming porous electrodes to both surfaces of the oxygen ion conductive solid electrolyte ar ranged in faced relation to a diffusion chamber M1 wherein the diffusion of componential gas was limited. The electromotive force of an oxygen concn. cell ele ment M3 is detected as the voltage between electrodes and the pump current flowed to an oxygen pump element M4 receives feedback control by a pump current control means M5 so as to hold said voltage to a predetermined value. An air/fuel ratio signal output means M6 outputs the air/fuel ratio signal corresponding to an air/fuel ratio on the basis of the pump current in the lean and rich regions of the air/fuel ratio. When the voltage between the electrodes of the element M3 reached a predetermined upper limit value of more ora predetermined lower limit value or less owing to the delay of the gas exchange in the diffusion chamber M1, the potential between the electrodes is controlled to voltage corresponding to the upper or lower limit value by a voltage correction means M7.

Description

【発明の詳細な説明】 発明の目的 [産業上の利用分野] 本発明は空燃比検出装置に関し、詳しくは拡散室に面し
て酸素濃淡電池素子と酸素ポンプ素子とを配設してなる
検出素子部を備え、内燃機関等の排気組成に基づいてそ
の混合気の空燃比をリーン域もしくはリッチ域またはリ
ッチ域からリーン域に亘る広範囲において検出し得る空
燃比検出装置の改良に関する。
[Detailed Description of the Invention] Purpose of the Invention [Field of Industrial Application] The present invention relates to an air-fuel ratio detection device, and more specifically, to an air-fuel ratio detection device in which an oxygen concentration cell element and an oxygen pump element are disposed facing a diffusion chamber. The present invention relates to an improvement in an air-fuel ratio detection device that is equipped with an element section and is capable of detecting the air-fuel ratio of an air-fuel mixture in a lean region, a rich region, or a wide range from a rich region to a lean region based on the exhaust gas composition of an internal combustion engine or the like.

[従来の技術] 内燃機関等、各種燃焼機器に供給される混合気の空燃比
を排気組成、特に酸素濃度により検出する空燃比検出装
置の一つとして、板状の酸素イオン伝導性固体電解質の
両面に多孔性電極が設けられた2組の素子を、拡散室を
介して対向配設し、一方の素子を該拡散室内の酸素を周
囲に汲み出す酸素ポンプ素子、他方の素子を周囲雰囲気
と拡散室との酸素濃度差によって電圧を生ずる酸素濃淡
電池素子として、少なくとも空燃比のリーン域に、おい
て空燃比に対応した信号を検出し得るよう構成されたも
のがある(特開昭59−178354>また、こうした
2組以上の素子を用い、酸素ポンプ素子による酸素の汲
み出し方向を制御したり、素子周囲の環境を排気とする
か大気とするかといった組合わせにより、空燃比を、よ
り正確に検出しようといった試みも数多くなされている
[Prior Art] As an air-fuel ratio detection device that detects the air-fuel ratio of a mixture supplied to various combustion devices such as an internal combustion engine based on exhaust composition, especially oxygen concentration, a plate-shaped oxygen ion conductive solid electrolyte is used. Two sets of elements each having porous electrodes on both sides are arranged facing each other through a diffusion chamber, one element is an oxygen pump element that pumps out oxygen in the diffusion chamber to the surrounding atmosphere, and the other element is an oxygen pump element that pumps out oxygen in the diffusion chamber to the surrounding atmosphere. As an oxygen concentration battery element that generates a voltage due to the difference in oxygen concentration with the diffusion chamber, there is an oxygen concentration battery element that is configured to be able to detect a signal corresponding to the air-fuel ratio at least in the lean range of the air-fuel ratio (Japanese Patent Application Laid-open No. 1983-1992). 178354> In addition, by using two or more of these elements, the air-fuel ratio can be determined more accurately by controlling the direction in which oxygen is pumped out by the oxygen pump element, and by setting the environment around the elements to exhaust gas or atmosphere. Many attempts have been made to detect this.

[発明が解決しようとする問題点] こうしだは従来技術の目的は、空燃比をリーン領域もし
くはリッチ領域、更には、リーン領域からリッチ領域ま
での広い範囲においても検出しうる空燃比検出装置を提
供することであった。
[Problems to be Solved by the Invention] The purpose of the prior art is to provide an air-fuel ratio detection device that can detect the air-fuel ratio in a lean region or a rich region, or even in a wide range from a lean region to a rich region. The aim was to provide

例えば、特願昭59−164098号公報の「空燃比検
出装置」には、リッチ領域でも拡散室内の排気中の一酸
化炭素(Co>等から酸素を取り出すことを通してCO
やH2の分圧を増加させ、平衡状態酸素分圧を低下させ
ることによって、周囲雰囲気、即ち排気との間で酸素濃
淡電池素子に起電力が生じるとの知見に基づき、リーン
領域からリッチ領域に亘る空燃比を検出する空燃比検出
装置が提案されている。
For example, in the "air-fuel ratio detection device" disclosed in Japanese Patent Application No. 59-164098, CO
Based on the knowledge that an electromotive force is generated in the oxygen concentration cell element between the surrounding atmosphere, that is, the exhaust gas, by increasing the partial pressure of H2 and H2 and lowering the equilibrium state oxygen partial pressure, the shift from the lean region to the rich region An air-fuel ratio detection device that detects air-fuel ratios over a wide range has been proposed.

かかる空燃比検出装置は、基準酸素濃度源として大気を
導入する必要がなく、リッチ領域の空燃比をも検出しう
る優れたものであるが、検出している排気の空燃比が理
論空燃比の極く近傍の場合や、空燃比がリッチ領域から
リーン領域へと、あるいは逆にリーン領域からリッチ領
域へと変化する際に、空燃比の検出が正確に行えなくな
ることがあるという問題が見出された。
Such an air-fuel ratio detection device does not require the introduction of the atmosphere as a reference oxygen concentration source and is excellent in that it can also detect air-fuel ratios in the rich region. A problem has been discovered in which the air-fuel ratio may not be detected accurately when the air-fuel ratio is very close to each other, or when the air-fuel ratio changes from a rich region to a lean region, or conversely from a lean region to a rich region. It was done.

本発明者等は鋭意研究を重ねた結果、上記問題が、拡散
室のガス交換に要する時間に基づく制御遅れに起因する
との知見に至り、本発明を完成した。
As a result of extensive research, the present inventors came to the knowledge that the above problem was caused by a control delay based on the time required for gas exchange in the diffusion chamber, and completed the present invention.

発明の構成 [問題を解決するための手段] 本発明は、問題を解決するための手段として次の構成を
とった。即ち、第1図に示す如(、酸素イオン伝導性の
固体電解質両面に多孔性電極が形成された2個の素子を
、成分ガスの拡散が制限された拡散室M1に面して配設
してなる検出素子部M2と、 上記検出素子部M2の一方の素子を酸素濃淡電池素子M
3、他方の素子を酸素ポンプ素子M4として用いて、該
酸素濃淡電池素子M3の起電力を前記電極間の電圧とし
て検出し、該電圧を所定値に保持するよう前記酸素ポン
プ素子M4に流れるポンプ電流をフィードバック制御す
るポンプ電流制御手段M5と、 空燃比のリーン域及びリッチ域において、前記ポンプ電
流に基づき、空燃比に対応した空燃比信号を出力する空
燃比信号出力手段M6と、を備えた空燃比検出装置にお
いて、 前記電極間電圧が、前記拡散室M1内のガス交換の遅れ
に起因して、すくなくとも所定の上限値以上または下限
値以下のいずれかとなった時、これを検出して前記酸素
濃淡電池素子M3の前記電極間の電位を前記上限値また
は下限値に対応したm電圧に制御する電圧修正手段M7
を備えたことを特徴とする空燃比検出装置の構成がそれ
である。
Structure of the Invention [Means for Solving the Problem] The present invention has the following structure as a means for solving the problem. That is, as shown in FIG. 1, two elements each having a porous electrode formed on both sides of an oxygen ion conductive solid electrolyte are arranged facing a diffusion chamber M1 in which diffusion of component gases is restricted. and one element of the detection element part M2 as an oxygen concentration battery element M.
3. Using the other element as the oxygen pump element M4, the electromotive force of the oxygen concentration battery element M3 is detected as a voltage between the electrodes, and the pump flows through the oxygen pump element M4 so as to maintain the voltage at a predetermined value. Pump current control means M5 that performs feedback control of the current; and air-fuel ratio signal output means M6 that outputs an air-fuel ratio signal corresponding to the air-fuel ratio based on the pump current in the lean region and rich region of the air-fuel ratio. In the air-fuel ratio detection device, when the inter-electrode voltage becomes at least a predetermined upper limit value or more or a predetermined lower limit value or less due to a delay in gas exchange in the diffusion chamber M1, this is detected and the voltage correction means M7 for controlling the potential between the electrodes of the oxygen concentration battery element M3 to m voltage corresponding to the upper limit value or lower limit value;
This is the configuration of an air-fuel ratio detection device characterized by comprising:

ここで拡散室M1しては、2つの索子M3.M4間に形
成される間隙によって実現してもよいし、2つの素子M
3.M4に面し酸素分子等の拡散が孔または多孔質材等
の拡散抵抗付与手段によって制限された室として構成す
るともできる。いずれにせよ酸素ポンプ素子M4よって
汲み出されることによって酸素分子、あるいはリッチ領
域において酸素S淡電池素子M3に起電力を生じさせる
よう働く他の分子が所定の濃度となるように、排気の拡
散が制限された室として実現されれば何ら差支えない。
Here, the diffusion chamber M1 contains two cords M3. It may be realized by a gap formed between M4, or by a gap formed between two elements M4.
3. It can also be constructed as a chamber facing M4 in which the diffusion of oxygen molecules and the like is restricted by diffusion resistance imparting means such as holes or porous material. In any case, the exhaust gas is diffused so that oxygen molecules or other molecules that act to generate an electromotive force in the oxygen S thin cell element M3 in the rich region reach a predetermined concentration by being pumped out by the oxygen pump element M4. There is no problem as long as it is realized as a restricted room.

尚、拡散室内での上記分子の拡散は、できるだけ自由で
あることが、応答性の上からも好ましい。
In addition, from the viewpoint of responsiveness, it is preferable that the above-mentioned molecules diffuse as freely as possible within the diffusion chamber.

また、上記酸素イオン伝導性の固体電解質としては、ジ
ルコニアとイツトリアとの固溶体、あるいはジルコニア
とカルシアとの固溶体等が代表的なものであり、その弛
二酸化セリウム、二酸化トリウム、二酸化ハフニウムの
各固溶体、ベロアスカイト型酸化物固溶体、3価金属酸
化物固溶体等も使用可能である。またその固体電解質両
面に設けられる多孔性電極としては、酸化反応の触媒作
用を有する白金やロジウム等を用いればよく、その形成
方法としては、これらの金属粉末を主成分としてこれに
固体電解質と同じセラミック材料の粉末を混合してペー
スト化し、厚膜技術を用いて印刷後、焼結して形成する
方法、あるいはフレーム溶射、化学メッキ、蒸着等の薄
膜技術を用いて形成し、かつその電極層に更に、アルミ
ナ、スピネル、ジルコニア、ムライト等の多孔質保護層
を厚膜技術を用いて形成することが好ましく、また拡散
室M1側の電極上の多孔質層には白金、ロジウム等を分
散ざぜ、触媒作用を付与することも好ましい。
Further, as the oxygen ion conductive solid electrolyte, a solid solution of zirconia and yttria or a solid solution of zirconia and calcia is typical, and solid solutions of relaxed cerium dioxide, thorium dioxide, and hafnium dioxide, A velorskite-type oxide solid solution, a trivalent metal oxide solid solution, etc. can also be used. In addition, the porous electrodes provided on both sides of the solid electrolyte may be made of platinum, rhodium, etc., which have a catalytic effect on oxidation reactions, and the formation method is the same as that of the solid electrolyte, with these metal powders as the main components. The electrode layer can be formed by mixing ceramic material powder into a paste, printing it using thick film technology, and then sintering it, or by using thin film technology such as flame spraying, chemical plating, or vapor deposition. Furthermore, it is preferable to form a porous protective layer of alumina, spinel, zirconia, mullite, etc. using thick film technology, and platinum, rhodium, etc. are dispersed in the porous layer on the electrode on the diffusion chamber M1 side. It is also preferable to impart catalytic action.

検出素子部M2は空燃比を検出する為に、排気中に置か
れるが、少なくとも酸素濃淡電池素子M3の拡散室M1
に面していない側の面(電極)は周囲排気に晒すように
構成される。酸素ポンプ素子M4の拡散室M1に面して
いない側の面(電極)は、同様に排気に晒す構成として
もよいし、リッチ空燃比での使用において酸素分子を拡
散室M1へ汲み込んで用いる為に大気に接するよう構成
することも考えられる。
The detection element section M2 is placed in the exhaust gas in order to detect the air-fuel ratio, and at least the detection element section M2 is placed in the exhaust gas in order to detect the air-fuel ratio.
The side facing away from the electrode (electrode) is configured to be exposed to ambient exhaust air. The surface (electrode) of the oxygen pump element M4 on the side not facing the diffusion chamber M1 may be similarly exposed to exhaust gas, or may be used by pumping oxygen molecules into the diffusion chamber M1 when used at a rich air-fuel ratio. Therefore, it is conceivable to configure it so that it is in contact with the atmosphere.

ポンプ電流制御手段M5はディスクリートな回路により
、容易に実現することができるが、酸素濃淡電池素子M
3の電極間電圧を−Hディジタル値に変換して読み込み
、周知のマイクロプロセッサを用いた論理演算回路によ
ってポンプ電流を制御するような構成とすることもでき
る。この場合、空燃比検出装置を内燃機関等の電子式燃
料噴射制御装置(EFI)等と一体に構成することも可
能である。
The pump current control means M5 can be easily realized by a discrete circuit, but the oxygen concentration battery element M
It is also possible to adopt a configuration in which the interelectrode voltage of No. 3 is converted into a -H digital value and read in, and the pump current is controlled by a logic operation circuit using a well-known microprocessor. In this case, it is also possible to configure the air-fuel ratio detection device integrally with an electronic fuel injection control device (EFI) of an internal combustion engine or the like.

電圧修正手段M7は、本来ポンプ電流制御手段5によっ
て酸素ポンプ素子M4に供給されるポンプ電流をフィー
ドバック制御することにより一定に保たれている酸素濃
淡電池素子3の電極間電圧が、すくなくとも上限値また
は下限値のいずれか一方を越えてずれた時、酸素濃淡電
池素子M3の電極間電圧をこの上限値または下限値に対
応した所定の電圧に保つよう構成されている。例えば、
M3の電極間電圧が所定の下限値以下となった時には、
酸素濃淡電池素子M3に外部より電流を供給して、その
電極間電圧を上記下限値に保つ。或いは、この電圧が所
定の上限値以上となった時には酸素濃淡電池素子M3に
その起電力とは逆向きの電圧を印加してその電極間電圧
を上記上限値に保つのである。
The voltage correction means M7 adjusts the interelectrode voltage of the oxygen concentration battery element 3, which is originally kept constant by feedback control of the pump current supplied to the oxygen pump element M4 by the pump current control means 5, to at least an upper limit value or When either of the lower limit values is exceeded, the interelectrode voltage of the oxygen concentration battery element M3 is maintained at a predetermined voltage corresponding to the upper limit value or the lower limit value. for example,
When the voltage between the electrodes of M3 becomes below the predetermined lower limit value,
A current is supplied from the outside to the oxygen concentration battery element M3 to maintain the interelectrode voltage at the lower limit value. Alternatively, when this voltage exceeds a predetermined upper limit value, a voltage opposite to the electromotive force is applied to the oxygen concentration battery element M3 to maintain the interelectrode voltage at the above upper limit value.

[作用] このように形成された2個の素子のうち酸素濃淡電池素
子M3として用いられる素子は、酸素イオン伝導性固体
電解質の有する次の性質を利用したちのである。即ち、
適当な温度条件(例えば固体電解質がジルコニアの場合
400℃以上)において、固体電解質表面の酸素ガス分
圧の高い所から酸素ガス分圧の低い所へと固体電解質中
を酸素イオンが移動し、固体電解質に酸素ガス透過性の
電極をつけることによって電極間の酸素ガス分圧   
 ゛の差を起電力(電極間電圧)として取り出すことが
できる。
[Function] Of the two devices thus formed, the device used as the oxygen concentration battery device M3 utilizes the following properties of the oxygen ion conductive solid electrolyte. That is,
Under appropriate temperature conditions (for example, 400°C or higher when the solid electrolyte is zirconia), oxygen ions move within the solid electrolyte from areas with high oxygen gas partial pressure on the solid electrolyte surface to areas with low oxygen gas partial pressure, and the solid electrolyte By attaching oxygen gas permeable electrodes to the electrolyte, the partial pressure of oxygen gas between the electrodes can be reduced.
The difference in ゛ can be extracted as an electromotive force (voltage between electrodes).

一方酸素ポンプ素子として用いられる素子は、酸素イオ
ン伝導性固体電解質の、電圧をかけることにより固体電
解質中を酸素イオンが移動する性質を利用するものであ
り、2つの電極間に電圧をかけることによって、すくな
くともリーン領域においては拡散室の酸素を外部に汲み
出すものである。従って、酸素ポンプ素子M4の拡散室
M1と反対側の面が排気に晒されている時には排気中に
汲み出し、大気に接している時は大気へと酸素分子を汲
み出すことになるが、後者の構成をとる場合には、リッ
チ域において酸素分子を拡散室M1内に汲み込むよう用
いる構成とすることができる。
On the other hand, the device used as an oxygen pump device utilizes the property of an oxygen ion conductive solid electrolyte that oxygen ions move through the solid electrolyte by applying a voltage. , at least in the lean region, the oxygen in the diffusion chamber is pumped out. Therefore, when the surface of the oxygen pump element M4 opposite to the diffusion chamber M1 is exposed to exhaust gas, oxygen molecules are pumped into the exhaust gas, and when it is in contact with the atmosphere, oxygen molecules are pumped into the atmosphere. In this case, it is possible to adopt a configuration in which oxygen molecules are pumped into the diffusion chamber M1 in the rich region.

上記素子M3.M4を備えた検出素子部M2を備えて構
成された本発明の空燃比検出装置は、酸素濃淡電池素子
M3の電極間電圧が所定の値となるように、酸素ポンプ
素子M4によって拡散室M1から汲み出す(場合によっ
ては汲み入れる)酸素分子の量を酸素ポンプ素子M4に
供給するポンプ電流をフィードバック制御することによ
って制御しており、このポンプ電流がら空燃比信号を出
力するよう働く。
The above element M3. The air-fuel ratio detection device of the present invention, which is configured with a detection element section M2 equipped with an oxygen pump element M4, is configured such that the oxygen pump element M4 detects the air-fuel ratio from the diffusion chamber M1 so that the interelectrode voltage of the oxygen concentration cell element M3 becomes a predetermined value. The amount of oxygen molecules pumped out (or pumped in as the case may be) is controlled by feedback control of the pump current supplied to the oxygen pump element M4, and this pump current serves to output an air-fuel ratio signal.

ここで、この電圧修正手段M7の働きについて詳しく説
明する。酸素濃淡電池素子M3の電極間電圧は酸素濃淡
電池素子M3の固体電解質両面間、即ち周囲排気と拡散
室M1内雰囲気との間の酸素分子濃度差(分圧比)に基
づく起電力を反映しているが、この電極間電圧は酸素ポ
ンプ素子M4に供給されるポンプ電流の制御により、拡
散室M1の酸素分子濃度またはCOもしくはH2の濃度
の制御を仲立ちとして一定に保たれる。例えば、リーン
領域では拡散室M1へ排気中より拡散してくる酸素分子
の多寡は排気中の酸素分子濃度に比例するので、酸素濃
淡電池素子M3の起電力(電極間電圧)を一定に保持し
ようとすると、排気組成中の酸素分子濃度が高い程、こ
れを汲み出すのに高いポンプ電流を必要とすることにな
り、このポンプ電流がら空燃比を検出することができる
Here, the function of this voltage correction means M7 will be explained in detail. The interelectrode voltage of the oxygen concentration battery element M3 reflects the electromotive force based on the oxygen molecule concentration difference (partial pressure ratio) between both sides of the solid electrolyte of the oxygen concentration battery element M3, that is, between the ambient exhaust and the atmosphere in the diffusion chamber M1. However, this interelectrode voltage is kept constant by controlling the pump current supplied to the oxygen pump element M4, mediated by controlling the concentration of oxygen molecules or the concentration of CO or H2 in the diffusion chamber M1. For example, in a lean region, the amount of oxygen molecules that diffuse into the diffusion chamber M1 from the exhaust gas is proportional to the concentration of oxygen molecules in the exhaust gas, so the electromotive force (voltage between electrodes) of the oxygen concentration battery element M3 should be kept constant. Then, the higher the concentration of oxygen molecules in the exhaust gas composition, the higher the pump current is required to pump it out, and the air-fuel ratio can be detected from this pump current.

ところが拡散WM1は一定の体積を有する為に、そのガ
ス交換(拡散室M1内雰囲気の定常化)には所定の時間
を必要とする。従って、空燃比がリーンな領域からリッ
チ領域に、あるいはその逆に急に変化するときには、拡
散WMl内の排気組成と外の排気組成とが夫々定常化す
るまでの時間にズレを生じる。空燃比検出装置がリーン
領域で動作していて、急に排気がリッチ領域になったと
すると、拡散室M1内のガス交換が遅れて拡散室内はリ
ーンのままであるため、酸素濃淡電池素子M3の起電力
に急激な低下を生じることがある。この電圧の低下は、
ポンプ電流を大きくして、拡散室内に残留した酸素分子
を汲み出しても急速には回復せず、拡散室M1の酸素分
子濃度を仲立ちとしたポンプ電流のフィードバック制御
はガス交換に要する所定時間、平衡状態からはずれるの
である。従ってポンプ電流に基づいて、出力される空燃
比検出信号も実際の空燃比を反映しなくなってしまうこ
とが考えられる。
However, since the diffusion WM1 has a constant volume, a predetermined time is required for gas exchange (stabilization of the atmosphere inside the diffusion chamber M1). Therefore, when the air-fuel ratio suddenly changes from a lean region to a rich region or vice versa, there is a difference in the time it takes for the exhaust gas composition within the diffused WMI and the exhaust gas composition outside to become steady, respectively. If the air-fuel ratio detection device is operating in a lean region and the exhaust suddenly becomes a rich region, gas exchange in the diffusion chamber M1 is delayed and the diffusion chamber remains lean, so that the oxygen concentration cell element M3 A sudden drop in electromotive force may occur. This voltage drop is
Even if the pump current is increased and the oxygen molecules remaining in the diffusion chamber are pumped out, the oxygen molecules remaining in the diffusion chamber are not recovered quickly, and feedback control of the pump current using the oxygen molecule concentration in the diffusion chamber M1 as a mediator maintains equilibrium for a predetermined time required for gas exchange. It deviates from the state. Therefore, it is conceivable that the air-fuel ratio detection signal that is output based on the pump current no longer reflects the actual air-fuel ratio.

こうした酸素濃淡電池素子M3の電極間電圧Vdと酸素
ポンプ素子M4のポンプ電流II)の変化の様子を第2
図に示した。図示するように、電極間電圧Vdの乱れが
リッチ領域からリーン領域に変化する時に大きく現われ
るのは、リッチ領域で多量に生じるCO等の分子が、吸
着現象によりガス交換しにくい為と考えられる。
The changes in the interelectrode voltage Vd of the oxygen concentration battery element M3 and the pump current II) of the oxygen pump element M4 are shown in the second section.
Shown in the figure. As shown in the figure, the reason that the disturbance in the interelectrode voltage Vd becomes large when changing from the rich region to the lean region is thought to be because molecules such as CO, which are produced in large quantities in the rich region, are difficult to exchange gas due to adsorption phenomena.

ところが本発明では、こうした空燃比のリーン。However, in the present invention, the air-fuel ratio is lean.

リッチ間の切換わりの境界において、拡散室M1のガス
交換の遅れに起因して酸素濃淡電池素子M3の電極間電
圧が所定の上限値または下限値からはずれる状態となっ
た時には、電圧修正手段M7がその電圧を所定の電圧と
するよう働くのである。
When the inter-electrode voltage of the oxygen concentration battery element M3 deviates from a predetermined upper limit value or lower limit value due to a delay in gas exchange in the diffusion chamber M1 at the boundary between rich and rich switching, the voltage correction means M7 works to make that voltage a predetermined voltage.

即ち、空燃比がリーン領域からリッチ領域に変化した時
には拡散室のガス交換が終了するまでは一時的に酸素濃
淡電池素子M3の電極間電圧は低下するが、この時、電
圧修正手段M7は酸素濃淡電池素子M3の電極間電圧が
所定の電圧となるよう電流を供給する。従って、酸素濃
淡電池素子M3は電圧修正手段M7から供給される電流
によって拡散室M1内の酸素分子を汲み出す酸素ポンプ
として働き、ガス交換に要する時間を短縮するよう働く
。一方、空燃比がリッチ領域からリーン領域に変化した
時には、電圧修正手段M7は上記の場合とは逆の電圧を
酸素濃淡電池素子M3に加えるので、酸素濃淡電池素子
M3は拡散室M1に酸素を汲み入れるように働いて、同
じくガス交換時間を短くするよう働く。
That is, when the air-fuel ratio changes from a lean region to a rich region, the voltage between the electrodes of the oxygen concentration cell element M3 temporarily decreases until the gas exchange in the diffusion chamber is completed, but at this time, the voltage correction means M7 A current is supplied so that the voltage between the electrodes of the concentration battery element M3 becomes a predetermined voltage. Therefore, the oxygen concentration battery element M3 functions as an oxygen pump that pumps out oxygen molecules in the diffusion chamber M1 by the current supplied from the voltage correction means M7, and functions to shorten the time required for gas exchange. On the other hand, when the air-fuel ratio changes from the rich region to the lean region, the voltage correction means M7 applies a voltage opposite to that in the above case to the oxygen concentration battery element M3, so that the oxygen concentration battery element M3 supplies oxygen to the diffusion chamber M1. It works to pump up the gas, and it also works to shorten the gas exchange time.

又、酸素濃淡電池素子M3の電極間電圧Vdが所定の範
囲に制御されることから、酸素ポンプ素子M4のポンプ
電流のフィードバック制御も大きく乱れることはなく、
空燃比信号出力手段M6も、空燃比検出信号として常に
安定した値を出力するよう働く。
Furthermore, since the interelectrode voltage Vd of the oxygen concentration battery element M3 is controlled within a predetermined range, the feedback control of the pump current of the oxygen pump element M4 is not significantly disturbed.
The air-fuel ratio signal output means M6 also works to always output a stable value as an air-fuel ratio detection signal.

[実施例] 以下本発明の実施例を図面に基づいて詳細に説明する。[Example] Embodiments of the present invention will be described in detail below based on the drawings.

第3図は本発明の一実施例を表わす構成図でおる。図に
おいて1は内燃機関の排気管、2は排気管1に設けられ
た空燃比検出装置の検出素子部、3は検出素子部2を制
御して、排気中の酸素濃度に対応する空燃比信号を検出
する空燃比信号検出回路である。尚この空燃比信号検出
回路3はポンプ電流制御手段M5.空燃比信号出力手段
M6及び電圧修正手段M7に相当する。
FIG. 3 is a block diagram showing one embodiment of the present invention. In the figure, 1 is an exhaust pipe of an internal combustion engine, 2 is a detection element section of an air-fuel ratio detection device provided in the exhaust pipe 1, and 3 is an air-fuel ratio signal that controls the detection element section 2 and corresponds to the oxygen concentration in the exhaust gas. This is an air-fuel ratio signal detection circuit that detects. Note that this air-fuel ratio signal detection circuit 3 is connected to pump current control means M5. This corresponds to the air-fuel ratio signal output means M6 and the voltage correction means M7.

ここでまず検出素子部2は、厚さ約Q、5mmの平板状
の、例えば安定化ジルコニア等からなる酸素イオン伝導
性の固体電解質4の両側面に、夫々厚膜技術を用いて約
20μの厚さの多孔性電極である多孔質白金買電極層5
,6が設けられた酸素ポンプ素子7と、この酸素ポンプ
素子7と同様に、平板状の酸素イオン伝導性固体電解質
8の両側面に多孔質白金買電極層9,10が設けられた
酸素濃淡電池素子11とを備えている。そして酸素ポン
プ素子7と酸素濃淡電池素子11とは001mm程度(
0,05〜0.15mmが好ましい。
Here, first, the detection element part 2 is made by using thick film technology to coat a flat plate-shaped solid electrolyte 4 of about 20 μm with a thickness of about Q and 5 mm on both sides of an oxygen ion conductive solid electrolyte 4 made of, for example, stabilized zirconia. Porous platinum electrode layer 5 which is a thick porous electrode
. A battery element 11 is provided. The length of the oxygen pump element 7 and the oxygen concentration battery element 11 is about 001 mm (
0.05-0.15 mm is preferred.

)の間隙寸法の前記拡散室M1に相当する間隙aを形成
して、排気管1の内部で対向配置させるため、その足元
部には耐熱性で絶縁性の例えば充填接着剤等からなるス
ペーサ12を介して互いに固定されている。また酸素ポ
ンプ素子7.酸素濃淡電池素子11及び壁面13の足元
部局縁部には、排気管取付用のねじ部14が刻設された
支持台15が、耐熱性で絶縁性の接着部材16を介して
取付けられている。従ってこのような構成の検出素子部
2は、支持台15に刻設されたねじ部14を排気管1に
形成された検出素子部取付用のねじ部17に螺合し、締
め付けることによって排気管1に取り付けられることと
なる。
In order to form a gap a corresponding to the diffusion chamber M1 with a gap size of ) and to dispose them facing each other inside the exhaust pipe 1, a spacer 12 made of a heat-resistant and insulating material such as a filling adhesive is provided at the foot of the exhaust pipe 1. are fixed to each other through. Also, oxygen pump element 7. A support base 15 having a threaded portion 14 for attaching an exhaust pipe is attached to the bottom edge of the oxygen concentration battery element 11 and the wall surface 13 via a heat-resistant and insulating adhesive member 16. . Therefore, the detection element section 2 having such a configuration can be attached to the exhaust pipe by screwing the threaded part 14 carved on the support base 15 into the threaded part 17 for mounting the detection element part formed on the exhaust pipe 1 and tightening it. It will be attached to 1.

次に空燃比信号検出回路3について説明する。Next, the air-fuel ratio signal detection circuit 3 will be explained.

空燃比信号検出回路3は、酸素濃淡電池素子11の電極
9,10間の電圧Vdを一定とするよう酸素ポンプ素子
7に流れるポンプ電流Ipを制御するポンプ電流制御手
段としてのポンプ電流側−御回路30、ポンプ電流Ip
を電圧信号に変換し、空燃比信号として出力する抵抗器
Raf、酸素濃淡電池素子11の電極間電圧Vdを所定
の範囲内に制御する電圧修正手段としての下限設定回路
35゜上限設定回路36、から構成されている。尚、図
において、+E1は正の電源電圧を、−22は負、の電
源電圧を°示している。
The air-fuel ratio signal detection circuit 3 serves as pump current control means for controlling the pump current Ip flowing through the oxygen pump element 7 so as to keep the voltage Vd between the electrodes 9 and 10 of the oxygen concentration battery element 11 constant. Circuit 30, pump current Ip
a resistor Raf that converts the voltage into a voltage signal and outputs it as an air-fuel ratio signal; a lower limit setting circuit 35° and an upper limit setting circuit 36 as voltage correction means for controlling the interelectrode voltage Vd of the oxygen concentration battery element 11 within a predetermined range; It consists of In the figure, +E1 indicates a positive power supply voltage, and -22 indicates a negative power supply voltage.

ポンプ電流制御回路30は、オペアンプOPI。The pump current control circuit 30 is an operational amplifier OPI.

抵抗器R1ないしR5,コンデンサC1から構成された
非反転増幅回路と、オペアンプOP2.抵抗器R10な
いしR13,コンデンサC10から構成された積分回路
とから構成され、検出素子2を含んでポンプ電流Ipの
フィードバック制御を行なう構成とされている。尚、コ
ンデンサC1は検出素子2の酸素濃淡電池素子11の電
極間電圧に重畳されたノイズを除去する為のものでおる
。又、オペアンプOP2の非反転入力端子■には、正の
電源電圧子E1を抵抗器R11,R12にて分圧した電
圧が印加されており、コンデンサC10を用いた積分動
作に加えて、オペアンプの出力をオフセットするように
働き、ポンプ電流Ipを好適に制御する。この結果、酸
素濃淡電池素子11の電極間電圧Vdは、はぼ4omv
i、、保持される。即ち、酸素濃淡電池素子11の起電
力を一定に保つように酸素ポンプ素子4に供給するポン
プ電流IDを制御することになり、空燃比に応じて、ポ
ンプ電流Ipが変化することから、このポンプ電流1p
を抵抗器Rafによって電圧信号に変換すれば、これを
空燃比検出信号Vafとして扱うことができる。尚、空
燃比に対して、このポンプ電流Ipは第4図に示すよう
に、理論空燃比(空気過剰率λ=1)を挟んで二値信号
となるので、特に図示しない理論空燃比センサを設けた
り、燃料噴射量制御と組合わせて用いたりすることによ
って、空燃比のリーン領域からリッチ領域まで測定でき
ることになる。
A non-inverting amplifier circuit consisting of resistors R1 to R5 and a capacitor C1, and an operational amplifier OP2. It is composed of an integrating circuit composed of resistors R10 to R13 and a capacitor C10, and includes a detection element 2 to perform feedback control of the pump current Ip. The capacitor C1 is used to remove noise superimposed on the interelectrode voltage of the oxygen concentration battery element 11 of the detection element 2. In addition, a voltage obtained by dividing the positive power supply voltage E1 by resistors R11 and R12 is applied to the non-inverting input terminal ■ of the operational amplifier OP2, and in addition to the integral operation using the capacitor C10, the operational amplifier It works to offset the output and suitably control the pump current Ip. As a result, the interelectrode voltage Vd of the oxygen concentration battery element 11 is approximately 4 omv
i,, is retained. That is, the pump current ID supplied to the oxygen pump element 4 is controlled so as to keep the electromotive force of the oxygen concentration battery element 11 constant, and since the pump current Ip changes depending on the air-fuel ratio, this pump current 1p
If it is converted into a voltage signal by the resistor Raf, this can be treated as the air-fuel ratio detection signal Vaf. In addition, as shown in FIG. 4, this pump current Ip becomes a binary signal with the stoichiometric air-fuel ratio (excess air ratio λ=1) in between, so a stoichiometric air-fuel ratio sensor (not shown) is used. By providing this function or using it in combination with fuel injection amount control, it becomes possible to measure the air-fuel ratio from the lean range to the rich range.

下限設定回路35と上限設定回路36とは互いによく似
た回路構成を有し、オペアンプ0P3(OR3)を中心
に、抵抗器R20,R21(R30゜R31)を備え、
電極間電圧Vdと基準電圧源E3(R4)との比較によ
り、ダイオードDI(D2)を介して酸素濃淡電池素子
11に電流を供給するソース(シンク)として働くよう
構成されている。
The lower limit setting circuit 35 and the upper limit setting circuit 36 have similar circuit configurations, and are equipped with an operational amplifier 0P3 (OR3) and resistors R20 and R21 (R30°R31).
It is configured to work as a source (sink) for supplying current to the oxygen concentration battery element 11 via the diode DI (D2) by comparing the inter-electrode voltage Vd with the reference voltage source E3 (R4).

基準電圧源E3は35mV、E4は45mVである。The reference voltage source E3 is 35 mV, and the reference voltage source E4 is 45 mV.

酸素濃淡電池素子11の電極間電圧Vd(通常40mV
にフィードバック制御されている)が35mVを以下と
なった時には、オペアンプOP3の出力がハイレベルと
なって、ダイオードD1を介して電流が酸素濃淡電池素
子11に供給され、その電位Vdは35mVに保持され
る。この結果、酸素濃淡電池素子11はあたがも酸素ポ
ンプ素子の如く]辰舞い、拡散室としての間隙a内の酸
素分子は電極10側の排気中へと汲み出される。一方、
酸素濃淡電池素子11の電極間電圧Vdが45mV以上
となると、上限設定回路36のオペアンプOP4の出力
はマイナスの電圧レベルとなり、ダイオードD2を介し
て通常とは逆向きの電流を酸素濃淡電池素子11に流す
ことになる。従って電圧Vdは45mVに保持され、酸
素濃淡電池素子11は排気中の酸素分子を間隙aに汲み
込むよう働く。
The interelectrode voltage Vd of the oxygen concentration battery element 11 (usually 40 mV
) becomes 35 mV or less, the output of the operational amplifier OP3 becomes high level, current is supplied to the oxygen concentration battery element 11 via the diode D1, and its potential Vd is maintained at 35 mV. be done. As a result, the oxygen concentration battery element 11 dances like an oxygen pump element, and the oxygen molecules in the gap a serving as a diffusion chamber are pumped out into the exhaust gas on the electrode 10 side. on the other hand,
When the interelectrode voltage Vd of the oxygen concentration battery element 11 becomes 45 mV or more, the output of the operational amplifier OP4 of the upper limit setting circuit 36 becomes a negative voltage level, and a current in the opposite direction to the normal direction is sent to the oxygen concentration battery element 11 through the diode D2. It will be sent to Therefore, the voltage Vd is maintained at 45 mV, and the oxygen concentration battery element 11 works to draw oxygen molecules in the exhaust gas into the gap a.

以上のように構成された本実施例の空燃比検出装置は、
第5図はにその動作例を示す如く、次のように空燃比の
検出を行なう。
The air-fuel ratio detection device of this embodiment configured as described above is as follows:
As shown in FIG. 5, the air-fuel ratio is detected as follows.

(1) リーン領域、リッチ領域の各々では、酸素濃淡
電池素子11の電極間電圧Vdはほぼ40mVに保持さ
れ、酸素ポンプ素子4に供給されるポンプ電流Ipに応
じて空燃比検出信号Vafが出力される(第5図区間■
)。
(1) In each of the lean region and rich region, the interelectrode voltage Vd of the oxygen concentration battery element 11 is maintained at approximately 40 mV, and the air-fuel ratio detection signal Vaf is output in accordance with the pump current Ip supplied to the oxygen pump element 4. (Figure 5 Section ■
).

(2) 空燃比がリーン領域からリッチ領域へ移行した
場合には、一時的に拡散室として働く間隙a内の排気が
リーン状態のままとなる為、酸素濃淡電池素子11の起
電力は急激に低下する。従って電極間電圧Vdも低下す
るが、下限設定回路35より電流が供給されて、電圧V
dは35mVに保持される。この為、酸素濃淡電池素子
11は酸素ポンプ素子としても働き、間隙aのガス交換
の促進にも資する。一方、ポンプ電流制御回路3Qは入
力ざ灯る電極間電圧Vdが35mVに維持される為、ポ
ンプ電流Ipは安定に増加して、応答性よくリッチ空燃
比の正常な検出状態へと復する(第5図区間■)。
(2) When the air-fuel ratio shifts from the lean region to the rich region, the exhaust gas in the gap a, which temporarily functions as a diffusion chamber, remains in a lean state, so the electromotive force of the oxygen concentration cell element 11 suddenly increases. descend. Therefore, the interelectrode voltage Vd also decreases, but current is supplied from the lower limit setting circuit 35 and the voltage Vd
d is held at 35 mV. Therefore, the oxygen concentration battery element 11 also functions as an oxygen pump element, and also contributes to promoting gas exchange in the gap a. On the other hand, since the input voltage Vd between the electrodes of the pump current control circuit 3Q is maintained at 35 mV, the pump current Ip increases stably and returns to the normal detection state of the rich air-fuel ratio with good responsiveness. 5 Figure section ■).

(3) 空燃比がリッチ領域からリーン領域へと移行し
た場合には、上記(2)とは逆の現象が生じる。この場
合、上限設定回路36によって酸素濃淡電池素子11の
電極間電圧Vdは45mV程度に保たれ、間隙aのガス
交換も促進されて、上記(2)と同様にポンプ電流制御
回路30のポンプ電流Ipはすみやかにリーン空燃比の
正常な検出状態へと復する(第5図区間■)。
(3) When the air-fuel ratio shifts from a rich region to a lean region, a phenomenon opposite to the above (2) occurs. In this case, the interelectrode voltage Vd of the oxygen concentration battery element 11 is maintained at about 45 mV by the upper limit setting circuit 36, gas exchange in the gap a is also promoted, and the pump current of the pump current control circuit 30 is Ip quickly returns to the normal detection state of the lean air-fuel ratio (section ■ in Figure 5).

従って、本実施例の空燃比検出装置によれば、空燃比を
リーン領域からリッチ領域まで検出することができ、し
かも空燃比がリーン領域からリッチ領域へ、あるいはリ
ッチ領域からリーン領域へと移行する境界でも、酸素濃
淡電池素子11の電極間電圧Vdは35mV〜45mV
の範囲に保たれるので、空燃比検出信号Vafが乱れる
ことがなく、空燃比を応答性よく検出することができる
Therefore, according to the air-fuel ratio detection device of this embodiment, the air-fuel ratio can be detected from the lean region to the rich region, and moreover, the air-fuel ratio can be detected from the lean region to the rich region, or from the rich region to the lean region. Even at the boundary, the interelectrode voltage Vd of the oxygen concentration battery element 11 is 35 mV to 45 mV.
Therefore, the air-fuel ratio detection signal Vaf is not disturbed and the air-fuel ratio can be detected with good responsiveness.

この結果、排気の空燃比が理論空燃比の近傍で制御され
ている場合でもハンチングなどを生じることはない。
As a result, hunting does not occur even when the air-fuel ratio of the exhaust gas is controlled near the stoichiometric air-fuel ratio.

以上、本発明の一実施例について説明したが、本発明は
この実施例に何ら限定されるものではなく、例えば上記
実施例のポンプ電流制御回路30を第6図に示すように
構成して、空燃比のリーン領域とリッチ領域の移行の境
界ではポンプ電流のフィードバック制御を実行しないよ
うにするなど、本発明の要旨を逸脱しない範囲において
、種々なる態様にて実施することができることは勿論で
おる。第6図に示す例では、空燃比のリーン領域(また
はリッチ領域)からリッチ領域(またはリーン領域)へ
の移行を下限設定回路35または上限設定回路36の動
作から知って、アナログスイッチ31.32を各々開状
態、閉状態へと切換、上記各回路の動作中はポンプ電流
It)のフィードバック制御を中断するのである。
Although one embodiment of the present invention has been described above, the present invention is not limited to this embodiment in any way. For example, the pump current control circuit 30 of the above embodiment may be configured as shown in FIG. It goes without saying that the invention can be implemented in various ways without departing from the gist of the invention, such as not performing feedback control of the pump current at the transition boundary between the lean and rich air-fuel ratio regions. . In the example shown in FIG. 6, the transition from the lean region (or rich region) to the rich region (or lean region) of the air-fuel ratio is known from the operation of the lower limit setting circuit 35 or the upper limit setting circuit 36, are switched to the open state and closed state, respectively, and feedback control of the pump current It) is interrupted while the above-mentioned circuits are in operation.

発明の効果 以上詳述したように、本発明の空燃比検出装置によれば
、空燃比をリーン領域からリッチ領域まで検出すること
ができ、しかも空燃比が理論空燃比の近傍にある場合や
、空燃比がリーン領域からリッチ領域へ、あるいはリッ
チ領域からリーン領域へと移行する場合でも、応答性よ
く空燃比を検出することができるという優れた効果を奏
する。
Effects of the Invention As detailed above, according to the air-fuel ratio detection device of the present invention, the air-fuel ratio can be detected from the lean region to the rich region, and when the air-fuel ratio is near the stoichiometric air-fuel ratio, Even when the air-fuel ratio shifts from a lean region to a rich region or from a rich region to a lean region, an excellent effect is achieved in that the air-fuel ratio can be detected with good responsiveness.

従って、空燃比がリーン領域とリッチ領域との間を移行
する境界で、空燃比検出信号にオーバーシュートを生じ
たり、場合によってはハンチングを生じるといった問題
は悉く解消される。
Therefore, the problem of overshooting or hunting in the air-fuel ratio detection signal at the boundary where the air-fuel ratio transitions between the lean region and the rich region is completely eliminated.

またこの空燃比検出装置によって内燃機関の空燃比を検
出し、燃料噴射量を制御して空燃比制御を行なう場合に
は、全空燃比範囲で精度良くかつ高い応答性で空燃比制
御を実行することが可能となる。
In addition, when this air-fuel ratio detection device detects the air-fuel ratio of the internal combustion engine and controls the fuel injection amount to perform air-fuel ratio control, the air-fuel ratio control is executed with high precision and high responsiveness over the entire air-fuel ratio range. becomes possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の基本的構成図、第2図は酸素濃淡電池
素子の電極間電圧Vdに基づくポンプ電流IDのフィー
ドバック制御を行なった場合の制御の一例を示すグラフ
、第3図は本発明一実施例としての空燃比検出装置の構
成を回路図と共に示す構成図、第4図は空燃比に対する
空燃比検出信号の変化を示すグラフ、第5図は実施例に
おける制御例を示すグラフ、第6図は本発明の他の実施
例の要部を示す回路図、である。 2・・・検出素子部 3・・・空燃比信号検出回路 4.8・・・固体電解質 5.6,9.10・・・多孔質白金電極層7・・・酸素
ポンプ素子 11・・・酸素濃淡電池素子 30・・・ポンプ電流制御回路 35・・・下限設定回路 36・・・上限設定回路 a・・・間隙
Fig. 1 is a basic configuration diagram of the present invention, Fig. 2 is a graph showing an example of control when feedback control of the pump current ID is performed based on the interelectrode voltage Vd of the oxygen concentration battery element, and Fig. 3 is a graph showing the present invention. A configuration diagram showing the configuration of an air-fuel ratio detection device as an embodiment of the invention together with a circuit diagram, FIG. 4 is a graph showing changes in the air-fuel ratio detection signal with respect to the air-fuel ratio, and FIG. 5 is a graph showing a control example in the embodiment. FIG. 6 is a circuit diagram showing essential parts of another embodiment of the present invention. 2...Detection element section 3...Air-fuel ratio signal detection circuit 4.8...Solid electrolyte 5.6, 9.10...Porous platinum electrode layer 7...Oxygen pump element 11... Oxygen concentration battery element 30...Pump current control circuit 35...Lower limit setting circuit 36...Upper limit setting circuit a...Gap

Claims (1)

【特許請求の範囲】 1 酸素イオン伝導性の固体電解質両面に多孔性電極が
形成された2個の素子を、成分ガスの拡散が制限された
拡散室に面して配設してなる検出素子部と、 上記検出素子部の一方の素子を酸素濃淡電池素子、他方
の素子を酸素ポンプ素子として用いて、該酸素濃淡電池
素子の起電力を前記電極間の電圧として検出し、該電圧
を所定値に保持するよう前記酸素ポンプ素子に流れるポ
ンプ電流をフィードバック制御するポンプ電流制御手段
と、 空燃比のリーン域及びリッチ域において、前記ポンプ電
流に基づき、空燃比に対応した空燃比信号を出力する空
燃比信号出力手段と、 を備えた空燃比検出装置において、 前記酸素濃淡電池素子の電極間電圧が、前記拡散室内の
ガス交換の遅れに起因して、すくなくとも所定の上限値
以上または下限値以下のいずれかとなった時、これを検
出して前記電極間の電位を前記上限値または下限値に対
応した電圧に制御する電圧修正手段を備えたことを特徴
とする空燃比検出装置。 2 前記電圧修正手段が、前記酸素濃淡電池素子電極間
の電圧を前記電圧に制御する時、前記ポンプ電流制御手
段のフィードバック制御を停止するよう構成された特許
請求の範囲第1項記載の空燃比検出装置。
[Claims] 1. A detection element comprising two elements each having a porous electrode formed on both sides of an oxygen ion conductive solid electrolyte and arranged facing a diffusion chamber in which diffusion of component gases is restricted. and detecting the electromotive force of the oxygen concentration battery element as a voltage between the electrodes by using one element of the detection element part as an oxygen concentration battery element and the other element as an oxygen pump element, and detecting the electromotive force of the oxygen concentration battery element as a voltage between the electrodes. a pump current control means for feedback controlling the pump current flowing through the oxygen pump element so as to maintain the same value; and outputting an air-fuel ratio signal corresponding to the air-fuel ratio based on the pump current in a lean region and a rich region of the air-fuel ratio. An air-fuel ratio detection device comprising: an air-fuel ratio signal output means; An air-fuel ratio detecting device characterized by comprising voltage correcting means for detecting this and controlling the potential between the electrodes to a voltage corresponding to the upper limit value or the lower limit value when either of the above occurs. 2. The air-fuel ratio according to claim 1, wherein the voltage correction means is configured to stop feedback control of the pump current control means when controlling the voltage between the electrodes of the oxygen concentration battery element to the voltage. Detection device.
JP60047016A 1985-03-08 1985-03-08 Apparatus for detecting air/fuel ratio Pending JPS61205858A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60047016A JPS61205858A (en) 1985-03-08 1985-03-08 Apparatus for detecting air/fuel ratio

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60047016A JPS61205858A (en) 1985-03-08 1985-03-08 Apparatus for detecting air/fuel ratio

Publications (1)

Publication Number Publication Date
JPS61205858A true JPS61205858A (en) 1986-09-12

Family

ID=12763375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60047016A Pending JPS61205858A (en) 1985-03-08 1985-03-08 Apparatus for detecting air/fuel ratio

Country Status (1)

Country Link
JP (1) JPS61205858A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5893316A (en) * 1996-12-27 1999-04-13 Jidosha Kiki Co., Ltd. Brake booster
WO2002064411A2 (en) 2001-02-15 2002-08-22 Continental Teves Ag & Co. Ohg Brake force transmission device for a brake force amplifier
JP2018173318A (en) * 2017-03-31 2018-11-08 日本碍子株式会社 Gas sensor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5893316A (en) * 1996-12-27 1999-04-13 Jidosha Kiki Co., Ltd. Brake booster
WO2002064411A2 (en) 2001-02-15 2002-08-22 Continental Teves Ag & Co. Ohg Brake force transmission device for a brake force amplifier
JP2018173318A (en) * 2017-03-31 2018-11-08 日本碍子株式会社 Gas sensor

Similar Documents

Publication Publication Date Title
US6303012B1 (en) Gas sensor, gas sensor system using the same
JPH0548420B2 (en)
JP4663000B2 (en) Gas measurement sensor
JPH1172473A (en) Air/fuel ratio detecting device
JPH0814570B2 (en) Air-fuel ratio sensor
JPS6228422B2 (en)
CN116490771A (en) Gas sensor
US20080245666A1 (en) Sensor Element and Method for Determining the Concentration of Gas Components in a Gas Mixture
JP2004354400A (en) Gas sensor and nitrogen oxide sensor
JP7259011B2 (en) gas sensor
JPH0260142B2 (en)
JPS61205858A (en) Apparatus for detecting air/fuel ratio
JPH10153576A (en) Air-fuel ratio sensor
JP2020003284A (en) Gas sensor
JP2007101201A (en) Air-fuel ratio sensor and air-fuel ratio detector
CN110455864B (en) Air-fuel ratio detection device and air-fuel ratio detection method
JPS61234352A (en) Air/fuel ratio detector
JPH0245819B2 (en)
JPH10260158A (en) Method and device for measuring concentration of component to be detected in exhaust gas
JPH10197479A (en) Exhaust gas sensor and exhaust gas sensor system
US20220178869A1 (en) Gas sensor
JPS62148849A (en) Air-fuel ratio sensor
US20240011942A1 (en) Sensor element and gas sensor
US20240011937A1 (en) Sensor element and gas sensor
US20240011938A1 (en) Sensor element and gas sensor