JPS61251744A - Freezing and sampling method for soil quality sample including pebble - Google Patents

Freezing and sampling method for soil quality sample including pebble

Info

Publication number
JPS61251744A
JPS61251744A JP9317385A JP9317385A JPS61251744A JP S61251744 A JPS61251744 A JP S61251744A JP 9317385 A JP9317385 A JP 9317385A JP 9317385 A JP9317385 A JP 9317385A JP S61251744 A JPS61251744 A JP S61251744A
Authority
JP
Japan
Prior art keywords
frozen
tube
freezing
hole
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9317385A
Other languages
Japanese (ja)
Other versions
JPH0452804B2 (en
Inventor
Yorio Makihara
牧原 依夫
Munenori Hatanaka
畑中 宗憲
Yoshio Suzuki
善雄 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO SOIRU RES KK
Takenaka Komuten Co Ltd
Original Assignee
TOKYO SOIRU RES KK
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO SOIRU RES KK, Takenaka Komuten Co Ltd filed Critical TOKYO SOIRU RES KK
Priority to JP9317385A priority Critical patent/JPS61251744A/en
Publication of JPS61251744A publication Critical patent/JPS61251744A/en
Publication of JPH0452804B2 publication Critical patent/JPH0452804B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

PURPOSE:To make possible the direct drawing of a soil quality sample of the pebble ground by as much as needed from the region where the sample is not disturbed by inserting an inside freezing pipe applied with the heat insulation arriving at the upper limit of the sample drawing depth on the outside periphery into an outside freezing pipe and supplying a refriger ant through the inside freezing pipe so that the outside peripheral ground of the outside freezing pipe is frozen down to the desired thickness. CONSTITUTION:A hole 1 of the large diameter corresponding to the diameter of the sample to be drawn is first bored down to the upper limit position D1 of the sample drawing depth D. A steel pipe 12 for preventing collapsion and a bottom plate 15 having through-holes 15a, 15b are installed. A hole 1' of the diameter approximately equal to the outside diameter of the outside freezing pipe 2 and the depth approximately equal to the depth D is bored through the hole 15a at the center in the bottom of the hole 1. The outside pipe 2 is further installed through the holes 1, 1' and the inside freezing pipe 3 applied with the heat insulation 4 to the neighborhood of the upper limit D1 of the depth D on the outside periphery is inserted into the pipe 2. The refrigerant is supplied through the pipe 3 to freeze the outside periphery ground of the outside pipe 2 down to the desired thickness. A double-cored tube 11 is then inserted through the hole 15b of the plate 15 to sample the frozen soil (a). The tube is there after drawn up onto the ground.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、土木、建築の分野において、各種構造物の
設計に際して必要とされる。特に礫を含む砂礫地盤の物
理特性、力学特性を調べるため有効的に実施される土質
試料の凍結サンプリング方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention is required in the fields of civil engineering and architecture when designing various structures. In particular, it relates to a freezing sampling method for soil samples that can be effectively implemented to investigate the physical and mechanical properties of gravel-containing ground.

(従来技術とその問題点など) 従来、凍結法を応用した砂質地盤のサンプリング法とし
ては。
(Conventional techniques and their problems, etc.) Conventionally, the freezing method is used as a sampling method for sandy ground.

■複数の凍結管を地盤中に設置して周辺地盤を大きく凍
結させ、前記凍結管群に囲まれた領域から凍結試料を採
取する方法。
■A method in which multiple freezing tubes are installed in the ground to significantly freeze the surrounding ground, and frozen samples are collected from the area surrounded by the group of freezing tubes.

■単一の凍結管を地盤中に設置して同管の外周地盤を適
切な厚さだけ凍結させ、しかる後に同凍結管を中心とし
て同管ごと凍結土をコアサンプリングし、これを解体し
て乱されていないと思われる領域から土質試料を採取す
る方法、 の2通りがある。
■ A single frozen pipe is installed in the ground, the ground around the pipe is frozen to an appropriate thickness, and then the frozen soil is core sampled around the frozen pipe, and then it is dismantled. There are two methods: collecting soil samples from areas that are thought to be undisturbed.

しかし、上記■の方法の場合、次のような欠点があった
However, in the case of method (2) above, there were the following drawbacks.

(a)複数の凍結管に囲まれた領域は、凍結の進行に伴
ない地下水が閉じ込められて最終的に排水ができないか
又は排水が非常にしにくい状態で凍結することになる。
(a) In an area surrounded by a plurality of frozen pipes, groundwater is trapped as the freezing progresses, and eventually becomes frozen in a state where drainage is impossible or very difficult to drain.

このため凍結時の体積膨張により試料が乱される可能性
が極めて大きい。
Therefore, there is an extremely high possibility that the sample will be disturbed by the volume expansion during freezing.

(b)採取すべき土質試料の体積に比べて、凍結された
地盤の体積が数倍も大きいため、非効率的で経済性が悪
い。
(b) Since the volume of frozen ground is several times larger than the volume of the soil sample to be collected, it is inefficient and uneconomical.

また、上記■の方法の場合は、次のような欠点があった
Furthermore, the method (2) above had the following drawbacks.

(c)凍結外管を中心として、同凍結外管の設置により
乱された領域も含めて、凍結外管の外径の略6〜8倍ぐ
らいの直径をもつ大口径のシングルコアチューブで凍結
土をコアサンプリングするため、コアチューブはもとよ
りのこと、切削用マシーンも大聖化しコスト高になる。
(c) Freezing with a large-diameter single-core tube with a diameter approximately 6 to 8 times the outer diameter of the freezing tube, centering on the freezing tube and including the area disturbed by the installation of the freezing tube. Core sampling of soil requires not only core tubes but also cutting machines, which increases costs.

その上、コア抜きする作業時間が長くなり、凍結試料の
融解の心配がある。
In addition, it takes a long time to extract the core, and there is a concern that the frozen sample may thaw.

(d)試料として必要でない、乱された領域の凍結土も
合一に採取する点に無駄がある。
(d) There is waste in that the frozen soil in the disturbed area, which is not necessary as a sample, is also collected at the same time.

(e)地上に引きあげた凍結土を解体して必要な大きさ
の試料を取り出す作業が面倒である。
(e) It is troublesome to dismantle the frozen soil that has been brought up to the ground and take out a sample of the required size.

(発明の目的) そこで、この発明の目的は、特に礫を含む砂礫地盤にお
ける土質試料の採取に有効的であって、しかも乱されて
いない領域について必要なだけの大きさのものを直接採
取することが可能であり、従って、コアチューブや切削
用マシーンを小型化することができ、コアサンプリング
に必要な時間を短縮できると共に、凍結試料の解体が容
易で、経済性が高い構成に改良した、礫を含む土質試料
の凍結サンプリング方法を提供することにある。
(Objective of the Invention) Therefore, the object of the present invention is to provide a method that is effective for collecting soil samples, especially in sandy and gravelly ground containing gravel, and that is capable of directly collecting samples of the necessary size from an undisturbed area. Therefore, the core tube and cutting machine can be downsized, the time required for core sampling can be shortened, frozen samples can be easily dismantled, and the structure has been improved to be highly economical. The object of the present invention is to provide a freezing sampling method for soil samples containing gravel.

(発明の構成) 上記目的を達成するために、この発明に係る礫を含む土
質試料の凍結サンプリング方法は、(イ)まず凍結外管
設置用の穴を、採取試料の直径に応じた大口径で、かつ
試料採取深さの上限位置に達するまで掘り、穴壁崩壊防
止用の鋼管を設置すると共に、この穴の下底に、凍結外
管の設置位置及びコアチューブの挿入位置に通孔を有す
る位置決め底板を設置する工程と、 (ロ)前記穴の下底の略中央部に、前記位置決め底板の
通孔を通じて凍結外管の外径と略等しい径の穴を試料採
取深さと略等しい深さ掘る工程と、(ハ)前記第1の穴
を通じて第2の穴の中に凍結外管を設置すると共に同凍
結外管の中に凍結内管を挿入設置し、その外周には試料
採取深さの上限位置に達する断熱管を挿入し設置する工
程と。
(Structure of the Invention) In order to achieve the above object, the frozen sampling method for soil samples containing gravel according to the present invention includes: (a) First, a hole for installing a frozen outer tube is formed with a large diameter according to the diameter of the collected sample. Then, a steel pipe is installed to prevent the hole wall from collapsing, and a through hole is made at the bottom of this hole at the location where the frozen outer tube will be installed and where the core tube will be inserted. (b) At approximately the center of the lower bottom of the hole, a hole having a diameter approximately equal to the outer diameter of the freezing outer tube and having a depth approximately equal to the sampling depth is formed through the through hole of the positioning bottom plate. and (c) installing an outer cryotube into the second hole through the first hole, inserting an inner cryotube into the outer cryotube, and setting a sampling depth on the outer periphery of the outer cryotube. A process of inserting and installing an insulated pipe that reaches the upper limit of the height.

(ニ)前記凍結内管を通じて例えば液体窒素あるいは二
多ノールとドライアイスの混合体の如き冷媒を供給し、
凍結外管の外周地盤を必要な厚さまで凍結させる工程と
、 (ホ)前記位置決め底板における所望位置の通孔を通じ
てダブルコアチューブを挿入し前記凍結土を地上に引き
上げる工程と。
(d) supplying a refrigerant, such as liquid nitrogen or a mixture of dipolynol and dry ice, through the freezing inner tube;
(e) inserting a double core tube through a hole at a desired position in the positioning bottom plate and raising the frozen soil to the ground;

よりなる構成とされている。It is said to be composed of

(実施例) さらに、図示した実施例に基いて詳細を説明する。(Example) Furthermore, details will be explained based on the illustrated embodiment.

第1図は、土質試料を採取すべき対象地gIAについて
、凍結外管設置用の穴1を試料採取深さDの上限位置D
+  (第4図)まで略垂直に掘った段階を示している
。この穴1の直径は、礫の径を考慮した採取試料の直径
に応じた大きさ、即ち、通常φ500〜φ1000位と
されている。この穴lの掘削は1通常の泥水工法により
行なわれている。
Figure 1 shows the hole 1 for installing the frozen outer tube at the upper limit position D of the sampling depth D for the target area gIA where soil samples are to be collected.
+ (Fig. 4) shows the stage of almost vertical digging. The diameter of this hole 1 is determined according to the diameter of the collected sample in consideration of the diameter of the gravel, that is, usually about φ500 to φ1000. Excavation of this hole 1 is carried out by the usual muddy method.

第2図は、前記穴1に沿って鋼管12を挿入し設置した
段階を示している。
FIG. 2 shows a stage in which the steel pipe 12 is inserted and installed along the hole 1.

また、第3図Aは、前記穴1の下底に、第3図Bのとお
り中心部に凍結外管設置用の通孔15aを有し、その周
辺部にはコアチューブを挿入設置するための通孔15b
・・・を有する位置決め底板15を設置した段階を示し
ている。この位置決め底板15は通常コンクリート製と
されている。
In addition, as shown in FIG. 3A, the lower bottom of the hole 1 has a through hole 15a for installing a cryotube in the center as shown in FIG. through hole 15b
. . , the positioning bottom plate 15 having been installed is shown. This positioning bottom plate 15 is usually made of concrete.

第4図は、前記位置決め底板15の中央の通孔15aを
通じて穴lの下底略中央部に凍結外管の外径(通常φ5
0〜φ70位)よりも若干大きい口径の第2の穴(1′
)を、試料採取深さく通常3m〜7m位)だけ掘った段
階を示している。この穴1′の掘削も通常の泥水工法に
より行なう。
FIG. 4 shows that the outer diameter of the freezing outer tube (usually φ5
0 to φ70) with a slightly larger diameter (1'
) is shown at the stage where the sample collection depth is usually about 3 m to 7 m). This hole 1' is also excavated by the usual muddy method.

第5図は、前記第1の穴l及びその下底の位置決め底板
15の通孔15aを通じて第2の穴1′の下底に届くま
で、凍結外管2を挿入し設置した段階を示している。
FIG. 5 shows a stage in which the outer cryotube 2 is inserted and installed through the first hole 1 and the through hole 15a of the positioning bottom plate 15 at its bottom until it reaches the bottom of the second hole 1'. There is.

この凍結外管2は、第2の穴1′より上方の浅い部分、
即ち試料採取深さDの上限位置D1より置注部分を断熱
性のよい厚肉塩化ビニル管2aとし、それより深い部分
は熱伝導性の良い金属製(例えば鉄製)の管2bとなし
、両管2aと2Cはねじ継手により一連に接合されてい
る。
This frozen outer tube 2 has a shallow part above the second hole 1',
That is, the part placed from the upper limit position D1 of the sampling depth D is a thick-walled PVC pipe 2a with good heat insulation, and the part deeper than that is a pipe 2b made of metal (for example, iron) with good thermal conductivity. The pipes 2a and 2C are connected in series by a threaded joint.

この凍結外管2の下端には、蓋体(栓体)として断熱性
の良い塩化ビニル丸棒8が固着されている。この塩化ビ
ニル丸棒8には、上下方向に例えば2cm位のピッチで
3個(但し3個の限りではない)の熱電対IO・・・が
地盤の凍結厚さ確認用として設置されている。
A vinyl chloride round rod 8 with good heat insulation is fixed to the lower end of this outer freezing tube 2 as a lid (stopper). On this vinyl chloride round bar 8, three (but not limited to three) thermocouples IO are installed vertically at a pitch of, for example, about 2 cm for checking the frozen thickness of the ground.

即ち、地盤の凍結が進行すると、各熱電対10・・・が
深さ方向の順に零度を検出してゆくので、凍結厚さを確
認できるのである。
That is, as the ground freezes, each thermocouple 10 detects zero degrees in order of depth, so the thickness of the frozen ground can be confirmed.

次に、第6図は、前記凍結外管2内の中心部軸方向に、
外径がφ16〜φ20位のステンレス鋼製又は塩化ビニ
ル製の凍結内管3を挿入して設置すると共に、該凍結内
管3の外周であって凍結外管2との間に、外径がφ40
〜φ50、内径はφ35〜φ45位で厚肉塩化ビニル製
の断熱管4を挿入し設置した段階を示している。
Next, FIG. 6 shows that in the axial direction of the central part of the frozen outer tube 2,
Insert and install an inner freezing tube 3 made of stainless steel or vinyl chloride with an outer diameter of about φ16 to φ20, and place a tube between the outer periphery of the inner freezing tube 3 and the outer freezing tube 2 with an outer diameter of about φ16 to φ20. φ40
~φ50, the inner diameter is approximately φ35 to φ45, and a thick-walled vinyl chloride heat insulating pipe 4 is inserted and installed.

前記凍結内管3は、約2m位のモジュール長さの短管を
ねじ継手により一連に連結して所望長さのものとされて
おり、その下端開口が上記凍結外管2の蓋体8に対しお
よそ20c+s〜30c+s位にまで近接する状態に設
置されている。
The inner cryotube 3 has a desired length by connecting a series of short tubes with a module length of approximately 2 m with a threaded joint, and its lower end opening is connected to the lid 8 of the outer cryotube 2. On the other hand, they are installed close to each other to approximately 20c+s to 30c+s.

前記断熱管4は、およそ試料採取深さDの上限位W D
 + に達する長さのものとして設置されている。
The heat insulating tube 4 is approximately at the upper limit W D of the sampling depth D.
It is installed with a length that reaches +.

また、この段階で凍結外管2の上端を密封するとともに
、同凍結外管2の地上部分に冷媒の出口ノズル6が取り
付けられる。
Further, at this stage, the upper end of the frozen outer tube 2 is sealed, and a refrigerant outlet nozzle 6 is attached to the above-ground portion of the frozen outer tube 2.

第7図は、凍結内管3を通じて液体窒素等の冷媒を供給
し、凍結外管2内を上昇した冷媒は出口ノズル6から導
出させて凍結外管2の外周地盤、特に試料採取深さ部分
りの外周地盤を必要な厚さ゛まで凍結させた段階を示す
FIG. 7 shows that a refrigerant such as liquid nitrogen is supplied through the inner freezing tube 3, and the refrigerant that has risen inside the outer freezing tube 2 is led out from the outlet nozzle 6 to the ground around the outer periphery of the outer freezing tube 2, especially at the sampling depth. This indicates the stage at which the surrounding ground has been frozen to the required thickness.

即ち、凍結内管3の下端から噴出し凍結外管2側へ流入
した冷媒は、凍結外管2を構成する熱伝導性の良い金属
製の管2bの管壁を通じて間管2bの外周地盤から効率
良く熱を奪い、もって試料採取深さD部分の外周地盤の
凍結を急速に進行させる。それも水平方向の一次元凍結
であるから、排水条件は良く、凍結に伴なう悪影響(体
積膨張による乱れ)を防ぐことができる。また、凍結コ
ストが小さくて済むのである。
That is, the refrigerant that has spouted from the lower end of the frozen inner tube 3 and flowed into the frozen outer tube 2 side flows from the outer circumferential ground of the intermediate tube 2b through the pipe wall of the metal tube 2b with good thermal conductivity that constitutes the frozen outer tube 2. Heat is efficiently removed, thereby rapidly freezing the outer ground at the sampling depth D portion. Since it is also one-dimensional freezing in the horizontal direction, drainage conditions are good and the adverse effects (disturbance due to volume expansion) caused by freezing can be prevented. In addition, freezing costs can be reduced.

地盤の凍結厚さは1通常φ500〜φ1000位であり
、その厚さは既述したように熱電対10により地上にお
いてほぼ正確に確認(検出)することができる。
The frozen thickness of the ground is usually about φ500 to φ1000, and as described above, the thickness can be almost accurately confirmed (detected) on the ground using the thermocouple 10.

他方、前記試料採取深さDより置注の部−分は、第1に
凍結内管3を断熱管4で包囲せしめ、第2に凍結外管2
も断熱性の良い塩化ビニル管2aで形成しているので、
その周囲地盤を凍結させるロスは軽微である。
On the other hand, for the injection part from the sample collection depth D, firstly, the inner cryotube 3 is surrounded by a heat insulating tube 4, and secondly, the outer cryotube 2 is surrounded by a heat insulating tube 4.
Since it is also made of PVC pipe 2a with good insulation properties,
The loss caused by freezing the surrounding ground is minor.

かくして、試料採取深さDの部分にのみ限定して周囲地
盤を凍結させる結果、凍結コストを大きく低減できるこ
とは勿論のこと、後々の凍結試料のコアサンプリングが
全深度凍結の場合に比して著るしく容易なのである。
In this way, as a result of freezing the surrounding ground only at the sampling depth D, not only can freezing costs be greatly reduced, but later core sampling of frozen samples is significantly easier than when freezing the whole depth. It's easy and simple.

第8図は、上記の如くして形成した凍結土aに向って、
地表面から穴l下底に設置した位置決め底板15におけ
るいずれかの通孔15bを通じてダブルコアチューブ1
1を挿入し、当該凍結土aをその下端の非凍結部に貫通
するまでコア抜き切削をしたコアサンプリングの段階を
示している。
Figure 8 shows the frozen soil a formed as described above.
The double core tube 1 is inserted from the ground surface through one of the through holes 15b in the positioning bottom plate 15 installed at the bottom of the hole l.
This figure shows the stage of core sampling in which the frozen soil a was cut until it penetrated the unfrozen part at its lower end.

従って、ダブルコアチューブ11は、試料採取深さDの
深度の大小の如何にかかわらず、必らず乱されていない
領域を確実にコア抜き切削することになる。何故なら、
ダブルコアチューブ11の挿入位置(通孔15bの位置
)は、凍結外管2の外表面から同外管2の外径の倍以上
離れた外周位置に確定されているからである。
Therefore, the double core tube 11 ensures that the undisturbed region is cored and cut, regardless of the depth of the sampling depth D. Because,
This is because the insertion position of the double core tube 11 (the position of the through hole 15b) is determined at an outer circumferential position that is more than twice the outer diameter of the outer cryotube 2 from the outer surface of the outer cryotube 2.

ダブルコアチューブ11は、既に知られているとうり、
インナーチューブllaとアウターチューブllbとを
相互に回転自在の関係で組合せた構成のものであり、ア
ウターチューブllbの閉じられた上端面には、地上の
図示省略した切削用マシンにて駆動される中空シャフト
9が固着されている。このダブルコアチューブ11の外
径は、採取試料の外径に応じて1通常φ70〜φ400
位とされる。
As is already known, the double core tube 11 is
It has a structure in which an inner tube lla and an outer tube llb are combined in a mutually rotatable relationship, and the closed upper end surface of the outer tube llb has a hollow hole driven by a cutting machine (not shown) on the ground. A shaft 9 is fixed. The outer diameter of this double core tube 11 is usually φ70 to φ400 depending on the outer diameter of the sample to be collected.
It is considered to be a rank.

ダブルコアチューブ11によるコアサンプリングに際し
ては、コア抜き切削を容易になさしめるため前記中空シ
ャフト9を通じて適温の循環水(低温不凍の循環泥水)
を供給する。
During core sampling using the double core tube 11, circulating water at an appropriate temperature (low-temperature non-freezing circulating mud) is passed through the hollow shaft 9 to facilitate core extraction cutting.
supply.

かくしてダブルコアチューブ11によりコアサンプリン
グする結果、 第1に凍結試料に直接前記コア抜き切削を容易になさし
めるための冷却循環泥水が当らない(凍結試料はインナ
ーチューブllaにより包み込まれた状態にある)から
、凍結試料は融けに〈〈乱されないものを採取できる。
As a result of core sampling using the double core tube 11, firstly, the frozen sample is not directly exposed to the cooling circulation muddy water that facilitates the core removal cutting (the frozen sample is wrapped in the inner tube lla). , frozen samples can be collected that are not disturbed by melting.

第2に、凍結試料の脱落は、インナーチューブ11aの
キャッチャ−で防ぐことができる。
Second, falling of the frozen sample can be prevented by the catcher of the inner tube 11a.

かくして、ダブルコアチューブ、11によるコア抜き切
削を、凍結土aを貫通してその下の非凍結部まで行なっ
たならば、コアチューブ11を地上に引き上げる。そし
て、コアチューブを解体し、中の凍結土を土質試料とし
て採取するのである。
In this way, once the core tube 11 has penetrated the frozen soil a and reached the unfrozen portion below it, the core tube 11 is lifted above the ground. The core tube is then dismantled and the frozen soil inside is collected as a soil sample.

即ち、採取した土質試料は、上述の如く全く乱されてい
ない領域のものであるから、そのままそっくり試料とし
て提供できるのである。
That is, since the collected soil sample is from an area that is completely undisturbed as described above, it can be provided as a sample as it is.

(作用効果) 以上に実施例と併せて詳細に説明したとうりであって、
この発明に係る礫を含む土質試料の凍結サンプリング方
法によれば、コアサンプリングの際のコア抜き切削の掘
削精度が位置決め底板15の通孔15bによりきちんと
確保されるので、地下数m〜数10mの深い地層につい
て、しかも礫を含む砂礫地盤について、全く乱されてい
ない高品質の土質試料を、必要なだけ採取することがで
きる。
(Operation and Effect) As described above in detail in conjunction with the examples,
According to the frozen sampling method for soil samples containing gravel according to the present invention, the excavation accuracy of core extraction cutting during core sampling is properly ensured by the through hole 15b of the positioning bottom plate 15, so that It is possible to collect as many undisturbed, high-quality soil samples as necessary for deep strata, and moreover, for sandy soil containing gravel.

従って、凍結試料のコアサンプリングに必要なコアチュ
ーブ11の直径は試料直径とほぼ等しくてよく小さいの
で、ひいては切削用マシーンが小形で済み、コストダウ
ンが図れる。
Therefore, the diameter of the core tube 11 required for core sampling of a frozen sample is small and approximately equal to the sample diameter, so that the cutting machine can be small and costs can be reduced.

そして、引き上げた土質試料は供試体として必要な大き
さに切断するだけでよく、即ち解体が極めて容易である
。また、解体に必要なスペースの縮小化と時間の短縮、
器具の小形化を図ることが可能であり、コストダウンが
図れる。
The pulled soil sample only needs to be cut into the size required as a specimen, that is, dismantling is extremely easy. It also reduces the space and time required for demolition,
It is possible to downsize the instrument and reduce costs.

しかも、確実に、かつ、実験にとって形のよい試料を採
取でき、試料の整形を容易にすることができる。
Furthermore, it is possible to reliably collect a sample with a good shape for the experiment, and it is possible to easily shape the sample.

また、単一の、凍結管による水平方向の一次元凍結によ
るから、複数管による場合に比して地盤凍結に必要な冷
媒量を低減させられ、凍結時間の短縮とコストダウンを
図ることが可能である。
In addition, since one-dimensional horizontal freezing is performed using a single freezing pipe, the amount of refrigerant required for ground freezing is reduced compared to when using multiple pipes, making it possible to shorten freezing time and reduce costs. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第4図〜第8図Aはこの発明の凍結サンプリング方法を
実施する枢要な工程を順に示した工程説明図、第3図B
は位置決め底板の平面図、第4図〜第8図は同じくこの
発明の凍結サンプリング方法を実施する枢要な工程を順
に示した工程説明図である。 第1図       第2図 第3@A       第4図 bb 11!5IEl        第6図第711 腸 第8!I!1
Figures 4 to 8A are process explanatory diagrams sequentially showing important steps for carrying out the frozen sampling method of the present invention, and Figure 3B
1 is a plan view of the positioning bottom plate, and FIGS. 4 to 8 are process explanatory diagrams sequentially showing the important steps of carrying out the frozen sampling method of the present invention. Figure 1 Figure 2 Figure 3 @A Figure 4 bb 11!5IEl Figure 6 Figure 711 Intestine No. 8! I! 1

Claims (1)

【特許請求の範囲】 【1】(イ)凍結外管(2)設置用の穴(1)を採取試
料の直径に応じた大口径で、かつ試料採取深さ(D)の
上限位置(D_1)に達するまで掘り、穴壁崩壊防止用
の鋼管(12)を設置すると共に、この穴(1)の下底
に、凍結外管(2)の設置位置及びコアチューブ(11
)の挿入位置にそれぞれ通孔(15a)15b)を有す
る位置決め底板(15)を設置する工程と、 (ロ)前記穴(1)の下底の略中央部に、前記位置決め
底板(15)の通孔(15a)を通じて凍結外管(2)
の外径と略等しい径の第2の穴(1′)を試料採取深さ
(D)と略等しい深さ掘る工程と、 (ハ)前記第1の穴(1)を通じて第2の穴(1′)の
中に凍結外管(2)を設置すると共に同凍結外管(2)
の中に凍結内管(3)を挿入して設置し、その外周には
試料採取深さDの上限位置(D_1)に達する断熱管(
4)を挿入し設置する工程と、 (ニ)前記凍結内管(3)を通じて冷媒を供給し、凍結
外管(2)の外周地盤を必要な厚さまで凍結させる工程
と、 (ホ)前記位置決め底板(15)における所望位置の通
孔(15b)を通じてダブルコアチューブ(11)を挿
入し、前記凍結土(a)を非凍結部までコア抜き切削を
してコアサンプリングを行ない、しかる後に同コアチュ
ーブ(11)を地上に引き上げる工程と、 から成ることを特徴とする礫を含む土質試料の凍結サン
プリング方法。 【2】特許請求の範囲第1項に記載した凍結外管(2)
は、試料採取深さ(D)の上限位置D_1より浅い部分
を断熱性の管(2a)とし、それより深い部分は熱伝導
性のよい管(2b)で構成されている、礫を含む土質試
料の凍結サンプリング方法。 【3】特許請求の範囲第1項に記載した凍結外管(2)
は、その下端部に断熱性の蓋体(8)を備え、この蓋体
(8)に地盤の凍結厚さを確認する熱電対(10)を具
備している、礫を含む土質試料の凍結サンプリング方法
。 【4】特許請求の範囲第1項に記載したダブルコアチュ
ーブ(7)によりコアサンプリングを行なう工程は、同
ダブルコアチューブ(7)に適温の循環泥水を供給しつ
つ行なう、礫を含む土質試料の凍結サンプリング方法。
[Scope of Claims] [1] (a) The hole (1) for installing the frozen outer tube (2) has a large diameter according to the diameter of the sample to be collected, and the upper limit position (D_1) of the sample collection depth (D) ), and install a steel pipe (12) to prevent wall collapse. At the bottom of this hole (1), locate the installation position of the frozen outer pipe (2) and the core tube (11).
) installing a positioning bottom plate (15) having through holes (15a, 15b) respectively at the insertion positions of the positioning bottom plate (15); Freeze outer tube (2) through the through hole (15a)
(c) digging a second hole (1') having a diameter approximately equal to the outer diameter of the sample sampling depth (D); At the same time, install the frozen outer tube (2) in the frozen outer tube (2).
The inner cryotube (3) is inserted and installed inside the tube, and on its outer periphery there is an insulated tube (3) that reaches the upper limit position (D_1) of the sampling depth D.
(d) supplying refrigerant through the frozen inner pipe (3) to freeze the outer peripheral ground of the frozen outer pipe (2) to a required thickness; (e) positioning the frozen outer pipe (2); The double core tube (11) is inserted through the through hole (15b) at a desired position in the bottom plate (15), the frozen soil (a) is cut to remove the core to the non-frozen part, and core sampling is performed. (11) A freezing sampling method for a soil sample containing gravel, comprising the steps of: [2] Freezing outer tube (2) according to claim 1
is soil containing gravel, where the part shallower than the upper limit position D_1 of the sampling depth (D) is an insulating tube (2a), and the deeper part is a thermally conductive tube (2b). Sample freezing sampling method. [3] Freezing outer tube (2) according to claim 1
is equipped with an insulating lid (8) at its lower end, and a thermocouple (10) for checking the frozen thickness of the ground. Sampling method. [4] The step of core sampling using the double core tube (7) described in claim 1 is performed by freezing a soil sample containing gravel while supplying circulating mud water at an appropriate temperature to the double core tube (7). Sampling method.
JP9317385A 1985-04-30 1985-04-30 Freezing and sampling method for soil quality sample including pebble Granted JPS61251744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9317385A JPS61251744A (en) 1985-04-30 1985-04-30 Freezing and sampling method for soil quality sample including pebble

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9317385A JPS61251744A (en) 1985-04-30 1985-04-30 Freezing and sampling method for soil quality sample including pebble

Publications (2)

Publication Number Publication Date
JPS61251744A true JPS61251744A (en) 1986-11-08
JPH0452804B2 JPH0452804B2 (en) 1992-08-24

Family

ID=14075176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9317385A Granted JPS61251744A (en) 1985-04-30 1985-04-30 Freezing and sampling method for soil quality sample including pebble

Country Status (1)

Country Link
JP (1) JPS61251744A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132058A (en) * 2005-11-09 2007-05-31 Kansai Electric Power Co Inc:The Sampling method and sampling equipment
JP2010025789A (en) * 2008-07-22 2010-02-04 Asahi Kasei Construction Materials Co Ltd Sampling device and method of waste using it

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132058A (en) * 2005-11-09 2007-05-31 Kansai Electric Power Co Inc:The Sampling method and sampling equipment
JP2010025789A (en) * 2008-07-22 2010-02-04 Asahi Kasei Construction Materials Co Ltd Sampling device and method of waste using it

Also Published As

Publication number Publication date
JPH0452804B2 (en) 1992-08-24

Similar Documents

Publication Publication Date Title
US11142982B2 (en) Undisturbed sampler for granular soil
US3528252A (en) Arrangement for solidifications of earth formations
CN102587365B (en) Method for embedding precession-type backfill grouting ground source thermal energy conversion precast pile device into stratum
DE3266213D1 (en) Method of constructing a tunnel
JPS61251742A (en) Method for freezing and sampling soil quality sample in shallow layer
CN102409691A (en) Freezing process water stopping device of pre-buried freezing pipe at opening of wall body of underground continuous wall
JPS61251744A (en) Freezing and sampling method for soil quality sample including pebble
RU2295608C2 (en) Method for pile driving in permafrost ground (variants)
KR101487422B1 (en) Freezimg pipe and ground freezing method using freezimg pipe
JPS61251743A (en) Method for freezing and sampling soil quality sample of deep layer
JPH03257298A (en) Construction method of large-depth large-scale underground space by ground freezing method and ground freezing pipe therefor
JP3648641B2 (en) In-situ freezing sampling method and guide tube
JP2663035B2 (en) Screw pipe type frozen ground sampling method and apparatus
CN113356243B (en) Slope support anchoring construction method for frozen soil area
CN115522531A (en) Freezing system and construction method of elevator shaft or sump based on freezing method
CN114991775A (en) Ultra-deep shaft waterproof structure applied to narrow space
WO2008091173A1 (en) Method for pitching a pile into a permanently frozen ground
JP7107774B2 (en) Ground sample sampling method and sampling device
JPS62140043A (en) Adiabatic apparatus sampling frozen ground specimen
JP2670990B2 (en) Ground frozen sampling method and device
JPH03132592A (en) Foundation improvement for driving tunnel
JPS60100737A (en) Partial freeze sampling
RU2789940C1 (en) Method for installation of geothermal heat exchangers for extraction of low-potential heat
JP2921935B2 (en) Tunnel formation method
CN117071575A (en) Method for protecting surrounding soil body or building during foundation pit construction

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term