JPS62140043A - Adiabatic apparatus sampling frozen ground specimen - Google Patents

Adiabatic apparatus sampling frozen ground specimen

Info

Publication number
JPS62140043A
JPS62140043A JP28242885A JP28242885A JPS62140043A JP S62140043 A JPS62140043 A JP S62140043A JP 28242885 A JP28242885 A JP 28242885A JP 28242885 A JP28242885 A JP 28242885A JP S62140043 A JPS62140043 A JP S62140043A
Authority
JP
Japan
Prior art keywords
hole
frozen
freezing
drilling
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28242885A
Other languages
Japanese (ja)
Other versions
JPH0516489B2 (en
Inventor
Kazuo Sakai
運雄 酒井
Yasuo Yoshida
吉田 保夫
Tetsuyuki Kataoka
片岡 哲之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Kiso Jiban Consultants Co Ltd
Original Assignee
Central Research Institute of Electric Power Industry
Kiso Jiban Consultants Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry, Kiso Jiban Consultants Co Ltd filed Critical Central Research Institute of Electric Power Industry
Priority to JP28242885A priority Critical patent/JPS62140043A/en
Publication of JPS62140043A publication Critical patent/JPS62140043A/en
Publication of JPH0516489B2 publication Critical patent/JPH0516489B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Sampling And Sample Adjustment (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

PURPOSE:To minimize heat loss by preventing the bending or inclination of a frozen hole and to enable the sampling of a specimen without disturbance by holding underground stress, by forming a guide hole for drilling the frozen hole to a columnar main body formed of a heat-insulating member so as to have a desired dimension in the axial direction thereof. CONSTITUTION:An adiabatic apparatus 100 has a columnar main body having a cross-sectional dimension fitted to the part to be frozen of the grounded almost entirely formed of a heat-insulating member. The main body is constituted so as to connect an upper part 103, a middle part 104 and a lower part 105 by a connection metal fitting 106 and a guide hole 109 for drilling a frozen hole 108, a guide hole 11 for drilling a ground specimen sampling hole 110 and a guide hole 113 for drilling temp. measuring hole 112 are formed to the main body in the internal axial direction thereof. At first, an open end pipe 102 is used to drill a large caliber boring hole and the adiabatic apparatus 100 is arranged in said hole. Next, the frozen hole 108 is drilled down to the lower part of a freezing limit depth to form frozen soil 121 having a desired size. A specimen not disturbed can be sampled from the sampling hole 110 through the guide hole 111.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は砂や壁地Mriを凍結することにより、地中応
力を保持した状態で地盤を所定の径に切削して乱さない
地盤試料を採取するための凍結地盤試料採取用の断熱装
置に係り、特にこのような地盤の凍結を地盤の深層の限
定された部分のみに行う深WJ21結地盤試料採取用に
適した断熱装置に関する。
[Detailed Description of the Invention] Industrial Field of Application The present invention freezes sand and wall MRI, thereby cutting the ground to a predetermined diameter while maintaining underground stress, and collecting undisturbed ground samples. The present invention relates to a heat insulating device for collecting samples from frozen ground, and particularly relates to a heat insulating device suitable for collecting deep ground samples such as WJ21, which freezes the ground only in a limited portion of the deep layer of the ground.

従来の技術 !I!l?Jの所定の深層部を凍結することによってこ
の深層部の地盤試料を採取するためには各種の従来技術
が知られている。
Conventional technology! I! l? Various conventional techniques are known for freezing a predetermined deep part of J and collecting ground samples from this deep part.

例えば、第5図(2)、υに示された例では先づ凍結孔
1を削孔し、この中に凍結!!2を挿入して地表面近く
の不凍結部分を凍結しないように断熱処理をしC限定凍
結部分の凍土3を造成する。凍土3が所定の大きざにな
った時点で試料採取孔ガイドバイブ4を介して試料採取
孔5を削孔しながら乱さない試料6を採取している。
For example, in the example shown in Fig. 5 (2), υ, freezing hole 1 is first drilled, and freezing is carried out in this hole! ! 2 is inserted to insulate the unfrozen part near the ground surface from freezing, and create frozen soil 3 in the C-limited frozen part. When the frozen soil 3 reaches a predetermined size, a sample collection hole 5 is drilled through a sample collection hole guide vibrator 4 to collect a sample 6 without disturbing it.

w46図(2)、(ハ)に示された従来の技術では地上
から数本の凍結孔11を削孔して凍結1!12を挿入し
て第4図の場合と同じように断熱処理してから凍土13
を造成し、試料採取孔ガイドバイブ14を介して試料採
取孔15を削孔している。凍結孔1.11と試料採取孔
5.15の配Sにはいろいろなものがあり、凍土造成の
611認のためには地温検知器(図示せず)等を埋設す
るなどの方法もとられている。
In the conventional technology shown in Figures (2) and (C) of W46, several freezing holes 11 are drilled from the ground, freezing holes 1 and 12 are inserted, and the insulation is treated in the same way as in the case of Figure 4. Tekara Frozen Earth 13
A sample sampling hole 15 is drilled through the sample sampling hole guide vibrator 14. There are various ways to arrange freezing holes 1.11 and sampling holes 5.15, and methods such as burying soil temperature detectors (not shown) are also used to confirm frozen soil creation. ing.

第7図及び第8図に示された各実施例は、限定凍結深度
上附近まで先づ大口径ポーリングをし、次にFI粘結孔
試料採取孔とを削孔するものである。
In each of the embodiments shown in FIGS. 7 and 8, large-diameter poling is first carried out to near the upper limit freezing depth, and then FI coking hole sample collection holes are drilled.

第7図の実施2例は、先進大口径ポーリングによって大
口ポーリング孔20を形成してから凍結孔21と試料採
取孔25のガイド管22.24をセントライザー(図示
せず)等を使用して位置決めして大口径ポーリング孔2
0の底まで挿入し、凍結孔21を掘孔してからこの中に
凍結管(■示せず)を挿入して限定深度部分の凍土23
を造成する。そして、試料採取孔ガイドバイブ24を介
して試料採取孔25を形成する。この場合、ガイド管2
2には断熱9!Illが施されることが多い。また、大
口径ポーリング孔20内には一般に泥水が満たされてい
るので、これが凍結しないように攪拌する等の工夫もな
されている。
In the second embodiment shown in FIG. 7, a large poling hole 20 is formed by advanced large-diameter poling, and then the guide tubes 22 and 24 of the freezing hole 21 and the sampling hole 25 are connected using a centizer (not shown) or the like. Position and large diameter poling hole 2
0 to the bottom, drill a freezing hole 21, insert a freezing pipe (not shown) into this hole, and freeze the frozen soil 23 at the limited depth.
Create. Then, a sample sampling hole 25 is formed via the sample sampling hole guide vibe 24. In this case, guide tube 2
2 has insulation 9! Ill is often applied. Furthermore, since the large-diameter poling hole 20 is generally filled with muddy water, measures such as stirring are taken to prevent it from freezing.

第8図に示された従来の技術では、大口径ポーリング孔
30を形成した後に、この大口径ポーリング孔30の底
にポーリング機械等を設置してから凍結孔31を削孔し
て凍土33を造成する。そして、この凍土33に試料採
取孔35を削孔しながら乱さない試料36を採取してい
る。
In the conventional technique shown in FIG. 8, after forming a large-diameter poling hole 30, a poling machine or the like is installed at the bottom of this large-diameter poling hole 30, and then a freezing hole 31 is drilled to remove frozen soil 33. Create. Then, while drilling a sample sampling hole 35 in this frozen soil 33, an undisturbed sample 36 is sampled.

第9図及び第10図に示す各実施例は凍土柱・を引き抜
いてから試験試料を地上で採取するものである。
In each of the embodiments shown in FIGS. 9 and 10, a test sample is collected on the ground after a frozen soil column is pulled out.

第9図の従来の技術は不凍結深度が浅い場合に適用され
るものであり、凍結孔41を削孔してこの中に凍結管(
図示せず)を挿入して凍土43を造成する。この場合、
不凍結部分は断熱処理42が施されている。このように
して凍土43を造成した後に大口径コアチューブ44を
用いて凍土43の外周付近を縁切りのため削孔してから
凍土柱を引き上げる。なお、引抜力が小さい場合は縁切
りせずにそのまま凍土柱を引き抜くことも行われている
The conventional technique shown in FIG. 9 is applied when the non-freezing depth is shallow, and a freezing hole 41 is drilled and a freezing tube (
(not shown) is inserted to create frozen soil 43. in this case,
The non-freezing portion is subjected to a heat insulation treatment 42. After the frozen soil 43 is created in this way, a large-diameter core tube 44 is used to drill holes near the outer periphery of the frozen soil 43 for edge cutting, and then the frozen soil pillar is pulled up. Note that if the pulling force is small, the frozen soil column may be pulled out without cutting the edges.

第10図は限定凍結深度が深い場合のもので、限定凍結
上面付近まで大口径ポーリングによって大口径ポーリン
グ孔50を形成し、凍結孔51の削孔用ガイド管52を
セントライザー等を使用して位置決めしながら先進孔5
0の底まで降ろしてi結孔51を削孔し、この中に凍結
管(図示せず)を挿入して凍土53を造成する。この時
、大口径ポーリング孔50内の泥水が凍結しないように
攪拌したりガイド′Q52を断熱処理したりしている。
FIG. 10 shows a case where the limited freezing depth is deep, and a large-diameter poling hole 50 is formed by large-diameter poling up to the vicinity of the upper surface of the limited freezing, and a guide tube 52 for drilling the frozen hole 51 is connected using a centrizer or the like. Advanced hole 5 while positioning
0 to the bottom, an i-tube hole 51 is drilled, and a frozen pipe (not shown) is inserted into this hole to create frozen soil 53. At this time, the muddy water in the large-diameter poling hole 50 is stirred and the guide 'Q52 is heat-insulated to prevent it from freezing.

凍土53が所定の形状に達したら、大口径コアチューブ
54を用いて縁切り削孔して凍土を引き上げる。本工法
については工程が**であるため、いろいろな方法が考
案されている。例えば特公昭60−100737がこれ
に該当する。
When the frozen soil 53 reaches a predetermined shape, a large-diameter core tube 54 is used to cut holes at the edges and pull up the frozen soil. Since this construction method requires ** processes, various methods have been devised. For example, Japanese Patent Publication No. 60-100737 falls under this category.

発明が解決しようとする問題点 第5図と第6図とに示された従来の技術の本質的な相違
は、1本の凍結孔の囲りで試料を採取するか数本の凍結
孔で凍土を造成してから試料を採取するかの点で、乱さ
ない試料を採取する砂や櫟地冨に細粒土を混入する場合
には後者の方法で凍土を造成するとn結時に地盤を乱す
恐れがある点のみである。いづれの場合でも、凍結孔や
試料採取孔を別々に地表から削孔するこれらの従来技術
では削孔時に孔面がりや傾斜が発生するので、各孔間を
相当間して位置決めしなければならない。
Problems to be Solved by the Invention The essential difference between the conventional techniques shown in FIGS. 5 and 6 is that the sample is collected around one freezing hole or in several freezing holes. In terms of whether to collect samples after creating frozen soil, it is better to collect samples without disturbing it.When fine-grained soil is mixed with sand or turf, if you create frozen soil using the latter method, the ground will be disturbed during freezing. The only point is that there is fear. In either case, with these conventional techniques in which freezing holes and sampling holes are drilled separately from the ground surface, hole surface cambers and inclinations occur during drilling, so it is necessary to position each hole with a considerable distance between them. .

そのため、凍結範囲を大きくしなければならないことが
最大の問題点である。特に限定凍結深度が深い場合は所
望の削孔は事実上不可能に近い。
Therefore, the biggest problem is that the freezing range must be enlarged. Especially when the limited freezing depth is deep, it is virtually impossible to drill the desired hole.

第7図に示された従来の技術では、211結孔および試
料採取凡用のガイド管を個別に又はこれらを!ll材等
で枠組みして大口径ポーリング孔内に挿入し、その周囲
を孔内泥水で満たしているので、凍結防止工が必要であ
りガイド管および大口径ポーリング孔底からの熱損失が
大であると同時に、大口径ポーリングによる孔底地盤の
乱れと凍結時に上威圧が除去されているため地中応力を
保持した状態で凍結されないなどが問題点である。
In the conventional technique shown in FIG. 7, the guide tubes for 211 conduits and sample collection are provided individually or in combination! Since the pipe is inserted into a large-diameter poling hole with a frame made of LL material, etc., and the surrounding area is filled with muddy water, anti-freezing measures are required, and heat loss from the guide pipe and the bottom of the large-diameter poling hole is large. At the same time, problems include the disturbance of the ground at the bottom of the hole due to large-diameter poling and the fact that it does not freeze while retaining the underground stress because the upper pressure is removed when it freezes.

第8図に示された従来の技術では、ポーリング装置!!
等を大口径ポーリング孔底に設冒しなければならないた
め、地下水位が浅い場合には困難であること、及び大口
径ポーリング孔の必要孔径を試料採取孔の位置からでは
なく作業スペースで決めな1ブればならないためにこれ
が大きくなること、および第6図の従来技術と同様に大
口径ポーリング孔底からの熱損失が大であると同時に地
中応力の解放などの問題がある。
In the conventional technique shown in FIG. 8, the polling device! !
etc. must be installed at the bottom of the large-diameter poling hole, which is difficult when the groundwater level is shallow, and the necessary hole diameter of the large-diameter poling hole must be determined based on the work space rather than the location of the sampling hole. In addition, similar to the prior art shown in FIG. 6, there are problems such as large heat loss from the bottom of the large-diameter poling hole and release of underground stress.

第9図に示された従来の技術は不凍結深度が浅い場合に
は特に問題はないが、不凍結深度が深い場合にはこの技
術を使用することが困難である。
The conventional technique shown in FIG. 9 has no particular problem when the unfreezing depth is shallow, but it is difficult to use this technique when the unfreezing depth is deep.

第10図に示された従来の技術では大口径ポーリング孔
内の泥水の凍結防止のため攪拌の作業を凍結作業中継続
して行う必要があることおよび凍結範囲や地温の水平方
向の情報を直接的に得ることができない欠点がある。ま
た、この従来技術では大口径ポーリング孔底での熱損失
が大であること、地中応力が解放される欠点がある。更
に、この従来技術では、凍土柱外周を縁切りポーリング
する時に大口径コアチューブ5にヘッドを取付けて低温
循ffi流体を圧送するため凍結管と計測ケーブル等を
除去しなければならず、このため凍土柱が解凍し熱管理
ができないことなどの問題がある。
With the conventional technology shown in Figure 10, it is necessary to continuously stir the muddy water in the large-diameter poling hole during the freezing operation to prevent it from freezing, and it is also necessary to directly obtain horizontal information on the frozen area and soil temperature. There are drawbacks that cannot be achieved. Further, this conventional technique has disadvantages of large heat loss at the bottom of the large-diameter poling hole and release of underground stress. Furthermore, in this conventional technology, when performing edge-poling around the outer periphery of a frozen soil column, a head is attached to the large-diameter core tube 5 to pump the cryogenic circulation ffi fluid, so the freezing pipe and measurement cables, etc. must be removed. There are problems such as the pillars thawing and heat management being impossible.

以上を要約するに、深層凍結地盤試料採取においては、
孔面がりや傾斜を防止しなければならず、熱損失を最少
にするために効果的な断熱を行わなければならない。又
、経費を節減するためには凍結範囲をできるだけ小さく
する必要があり、このためには温度管理を効果的に行わ
なければならない。更に、正しい乱さない試料を得るた
めには地中応力を正しく保持しなければならない。
To summarize the above, in deep frozen ground sampling,
Caving and sloping of the holes must be prevented and effective insulation must be provided to minimize heat loss. Furthermore, in order to save costs, it is necessary to minimize the freezing range, and for this purpose, temperature control must be carried out effectively. Furthermore, the subsurface stress must be maintained correctly in order to obtain a correct and undisturbed sample.

然しながら、これらの要求を同時にすべて満足させるこ
とは従来の技術では困難であった。
However, it has been difficult with conventional techniques to simultaneously satisfy all of these requirements.

従って、本発明の目的はこれらの要求を同時に満たすこ
とができる凍結地盤試料採取用の断熱装置を提供するこ
とである。
It is therefore an object of the present invention to provide a thermal insulation device for frozen ground sampling that can simultaneously meet these requirements.

問題点を解決するための手段 本発明による凍結地盤試料採取用の断熱装置は、地盤の
凍結すべき部分に適合する横断寸法を有してほぼ全体が
断熱部材で形成されている柱状の本体を有し、この本体
には凍結孔削孔のためのガイド孔等が軸線方向に形成さ
れている。
Means for Solving the Problems The insulating device for sampling frozen ground according to the present invention comprises a columnar body formed almost entirely of a heat insulating member and having transverse dimensions adapted to the portion of the ground to be frozen. The main body has a guide hole for freezing the hole formed in the axial direction.

作用 本発明による凍結地盤試料採取用の断熱部材を使用する
には先づ所望の寸法の大口径ポーリング孔を削孔し、こ
の中に本発明による柱状の断熱装置を挿入して孔底に載
lする。次に、凍結凡用のガイド孔を利用して所望の大
きざの凍土を造成し、次に試料を採取するためのガイド
孔を利用して所望の試料を採取することができる。
Operation To use the heat insulating member for sampling frozen ground according to the present invention, first, a large-diameter poling hole of desired size is drilled, and the column-shaped heat insulating device according to the present invention is inserted into the hole and placed on the bottom of the hole. I do it. Next, frozen soil of a desired size is created using the guide hole for general freezing, and then a desired sample can be collected using the guide hole for collecting the sample.

実施例 第1図に示された実施例において、作業ステージ101
は地窓を凍結させるための低温流体用および排気管など
の地上配管のため地表面から嵩上げしたものであり、口
元管102は大口径ポーリングを(1うためのものであ
る。この実施例においては、本発明による断熱装!!1
00は上部103、中部104及び下部105に分割さ
れており、接続金具106によって互に結合されている
。断熱装置i ooの下部底面と原地盤とのなじみを良
くし隣接するポーリング孔と貫通しないようにするため
のL1孔防止±107が設けられている。
Embodiment In the embodiment shown in FIG.
is raised above the ground surface for above-ground piping such as low-temperature fluid and exhaust pipes for freezing underground windows, and the mouth pipe 102 is for carrying large-diameter polling (1).In this embodiment, The heat insulation device according to the present invention!!1
00 is divided into an upper part 103, a middle part 104, and a lower part 105, which are connected to each other by a connecting fitting 106. L1 hole prevention ±107 is provided to improve the fit between the lower bottom surface of the heat insulating device ioo and the original ground and to prevent it from penetrating the adjacent polling hole.

断熱[fl 00(7)上m1103、中W104及び
1部105の中には夫々には第2図に承りように区腺方
向に一敗する、凍結孔108を削孔するためのガイド孔
109、地盤試料採取孔110を削孔するためのガイド
孔111、温度計測孔112を削孔するためのガイド孔
113が軸線方向に形成されており、これらの外周には
後述する各種の温度検知器114.115,116等の
ためのケーブルを引き出すためのケーブル引出し孔11
7が形成されている。
Insulation [fl 00 (7) Upper m1103, middle W104 and 1st part 105 each have a guide hole 109 for drilling a freezing hole 108, which goes in the ward direction as shown in Fig. 2. , a guide hole 111 for drilling a ground sample sampling hole 110, and a guide hole 113 for drilling a temperature measurement hole 112 are formed in the axial direction, and various temperature detectors to be described later are installed on the outer periphery of these holes. Cable extraction hole 11 for pulling out cables for 114, 115, 116, etc.
7 is formed.

断熱vt置各W103.104.105は実質的に断熱
材で作られており、その外周は必要に応じてプラスチッ
ク又は金属板等で覆うこともできる。
Each W103, 104, 105 is substantially made of a thermally insulating material, the outer periphery of which can be covered with a plastic or metal plate or the like as required.

更に大口径ポーリングによる地中応力の減少を補うため
の鋼材等を用いて外周を覆うなどにより重くすることが
出来る。これらの各部103゜104.105は基本的
には同一であるが1.L部103の上面には凍結孔10
8に接続する排気孔接続管や、試料採取孔110の藍な
どがS [4されている。
Furthermore, the weight can be increased by covering the outer periphery with steel or the like to compensate for the reduction in underground stress caused by large-diameter poling. These parts 103, 104, and 105 are basically the same, but 1. A freezing hole 10 is provided on the upper surface of the L portion 103.
The exhaust port connection pipe connected to the 8, the indigo of the sample collection hole 110, etc. are S [4].

次に、断熱表2100を使用する作業手順をM2明する
Next, the working procedure for using the heat insulation table 2100 will be explained.

先づ、口元情102を地中に入れ−で大口径ボーリング
により不凍結部分の上部より孔径程度まで削孔し、断熱
装置100の下部105を降し、これに中部104を結
合して孔内に降ろし、aII!!に上部103を接続し
て孔内に降ろして作業ステージ101を!Q置する。
First, the hole 102 is placed underground and a hole is drilled from the upper part of the non-freezing part to the diameter of the hole by large-diameter boring.The lower part 105 of the heat insulating device 100 is lowered, and the middle part 104 is connected to it and the inside of the hole is drilled. Drop it off, aII! ! Connect the upper part 103 to the hole and lower the work stage 101! Place Q.

次にガイド孔109を利用して凍結孔108を凍結限定
深度下部まで削孔し、この中に凍結外管と内管とを挿入
してから低温流体配管を行う。
Next, using the guide hole 109, a freezing hole 108 is drilled to the bottom of the freezing limit depth, and after inserting the freezing outer tube and inner tube therein, the cryogenic fluid piping is performed.

次に、ガイド孔113を利用して計測孔112を削孔し
、その孔壁に接触するように地温検知器116および比
抵抗測定用電極120を埋設してから凍結孔108に低
温流体を注入して熱管理を行いながら所定の大きさの凍
土121を造成する。
Next, a measurement hole 112 is drilled using the guide hole 113, a soil temperature detector 116 and a resistivity measurement electrode 120 are buried so as to make contact with the hole wall, and then cryogenic fluid is injected into the freezing hole 108. Frozen soil 121 of a predetermined size is created while performing thermal management.

次に、初めの試料採取用のガイド孔111を介して試料
採取孔110から乱さない試料を採取し、この作業の終
了後に、次の試料採取時に貫孔しないように低温にした
砂、水と共に地温検知器を孔内に入れこれを再凍結して
から次の試料採取孔を削孔する。なお、凍結の初期段階
で第1図に示す温度検知器114の温度を測定し、断熱
装置100の下部から凍結が進行し、試料採取期日内に
不凍液による解凍が管体下部まで侵食しない範囲以上凍
結が進んだ時点で大口径ポーリング孔壁と管体との間に
ある泥水中に塩化力ルシュム溶液などの不凍液を孔口か
ら投入し、比重差によって未凍結部分を凍結させないよ
うにすることにより作業終了後管体の回収を容易にする
。なお、管体下部の周囲と底部は凍着防止のためにテフ
ロンシート等により保護されている。
Next, an undisturbed sample is collected from the sample collection hole 110 through the guide hole 111 for first sample collection, and after this work is completed, it is mixed with sand and water that have been kept at a low temperature so as not to penetrate the hole during the next sample collection. Place the soil temperature detector into the hole and refreeze it before drilling the next sampling hole. In addition, the temperature of the temperature sensor 114 shown in FIG. 1 is measured at the initial stage of freezing, and it is determined that the freezing progresses from the lower part of the heat insulating device 100 and that the thawing caused by the antifreeze does not invade the lower part of the pipe body within the sampling date. When freezing has progressed, an antifreeze solution such as chloride Rushum's solution is injected into the muddy water between the large-diameter poling hole wall and the pipe body through the hole to prevent unfrozen parts from freezing due to the difference in specific gravity. Facilitates recovery of pipe bodies after work is completed. The periphery and bottom of the lower part of the tube are protected by a Teflon sheet or the like to prevent freezing.

尚、温度検知器114は断熱装置1100と大口径ポー
リング孔壁との凍着を適正なものにするためのものであ
る。又、温度検知器115は凍土の水平方向の生長を測
定するためのものであり、温度検知i!!116は凍土
の深度方向の生長と温度を測定するためのものである。
The temperature sensor 114 is provided to ensure proper freezing between the heat insulating device 1100 and the wall of the large-diameter poling hole. Moreover, the temperature sensor 115 is for measuring the horizontal growth of frozen soil, and the temperature sensor i! ! Reference numeral 116 is for measuring the growth and temperature of frozen soil in the depth direction.

比抵抗検知器120は地盤の飽和度や塩分濃度などの情
報を嵜るためのもので、電極は所定の間隔で対になって
いる。
The resistivity detector 120 is used to obtain information such as soil saturation and salinity, and has electrodes arranged in pairs at predetermined intervals.

限定凍結深度上面までの地層が削孔し易い未固結砂ある
いは軟弱粘性土である場合は、第3図に示すような削孔
ビットを断熱1utiooの下面に装看して、削孔しな
がら所定の深度まで管体を入れ、前記の要領で地盤を凍
結し、乱さない試料を採取する。この断熱装m1ooは
第35fUにその下面を示すよう、凍結孔108のガイ
ド孔109、計測孔112のガイド孔113、試料採取
孔110のガイド孔111、水平方向地温測定用の検知
器115、同リード線の引出し孔117、大口径削孔用
ピット122と台座123を有する。
If the stratum up to the upper surface of the limited freezing depth is unconsolidated sand or soft cohesive soil that is easy to drill, attach a drilling bit like the one shown in Figure 3 to the bottom of the insulation 1utioo and drill while drilling. Insert the tube to a predetermined depth, freeze the ground as described above, and collect a sample without disturbing it. This insulation device m1oo has a guide hole 109 of the freezing hole 108, a guide hole 113 of the measurement hole 112, a guide hole 111 of the sample sampling hole 110, a detector 115 for horizontal soil temperature measurement, and It has a lead wire extraction hole 117, a large-diameter drilling pit 122, and a pedestal 123.

大型ポーリング機械を用いて外周を鋼板で補強された断
熱装f1100を芸者して所定の深度まで削孔してから
凍結、試料採取を行う。
Using a large poling machine, a hole is drilled to a predetermined depth through an F1100 insulation device whose outer periphery is reinforced with steel plates, and then frozen and sampled.

従来技術によると、地盤凍結に必要な日数が最も短期日
である一196℃の液体窒素を用いても最低1日、凍土
径が大さ゛くなると3〜7日は必要であり、その間に孔
壁が崩壊して作業終了後に管類を回収するため引き上げ
ようとしても困難な場合がある。
According to the conventional technology, the shortest number of days required to freeze the ground is at least one day even when liquid nitrogen at -196°C is used, and if the diameter of the frozen ground becomes large, it takes 3 to 7 days, during which time the hole wall If the pipes collapse, it may be difficult to pull them up to retrieve them after work is completed.

そこで大口径ケーシング内を断熱剤で埋め、かつ多機能
複合管体下部のガイド管シュ一部分の上部に管自体の熱
伝導を防ぐ断熱管を挿入すること、各管類と底板との接
続は溶接などの密着方法をとらず間をあけてボルト接続
することにより熱応力による変形防止と試料採取用ガイ
ド管の低温化を防止する構造とし、図−1に示すような
方法で地盤をill結させて試料採取を行った結果、地
盤条件や限定凍結深度によっても異なるが熱効率、即ち
液体窒素の消費昂は10〜b 作業トラブルがなくなったため工程特に試料拭取時間が
半分程度に短縮された。また試料採取の質の向上も計れ
た。
Therefore, the inside of the large-diameter casing was filled with heat insulating material, and an insulating pipe was inserted above the part of the guide pipe at the bottom of the multifunctional composite pipe body to prevent heat conduction from the pipe itself.The connections between each pipe and the bottom plate were welded. The structure is designed to prevent deformation due to thermal stress and to prevent the sample collection guide tube from becoming cold by connecting bolts with a gap between them, rather than using a tight contact method such as the method shown in Figure 1. As a result, the thermal efficiency, that is, the consumption of liquid nitrogen, was 10 to 10%, although it varied depending on the ground conditions and the limited freezing depth.Since there were no operational troubles, the process, especially the sample wiping time, was shortened by about half. It was also possible to improve the quality of sample collection.

第4図に示された実施例は、本発明による断熱装置10
0Aを利用して凍土柱を造成してこれを引き抜く方法で
ある。
The embodiment shown in FIG.
This is a method of creating frozen soil pillars using 0A and pulling them out.

この実施例における断熱¥Rffi100Aは第1図及
び第2図に示す断熱Vtn1ooとV本釣に同一であり
、その異る点は試料採取用のガイド孔111の代りに循
環流体の圧送管132が設【ノられていることである。
The heat insulation ¥Rffi100A in this embodiment is the same as the heat insulation Vtn1oo shown in FIGS. 1 and 2 and the V main fishing. It is something that has been established.

圧送管132の下部は断熱¥7Ilfiff100Aの
下端付近に位置し、拮出口133が設けられている。
The lower part of the pressure feed pipe 132 is located near the lower end of the heat insulating pipe 100A, and an outlet 133 is provided.

この実施例では先づ口元管102を設置し、オーガーポ
ーリング等により断熱装置100Aの下部まで削孔し、
下端にピット131を有する大口径ケーシング管130
を不凍結深度の上面まで挿入する。
In this embodiment, the base pipe 102 is first installed, and a hole is drilled to the bottom of the heat insulating device 100A by auger poling or the like.
Large diameter casing pipe 130 with pit 131 at the lower end
Insert to the top of the non-freezing depth.

断熱製f1100Aを大口径ポーリング孔の底に設置し
、ガイド孔109にガイド管134を挿入してこれに凍
結管135を挿入して凍土柱136を造成する。凍土柱
136の造成と熱管理のための計測孔や温度検知器等の
埋設は第1図及び第2図に示す場合と同様である。凍土
柱136が所定の大きさになった時点で、断熱処理され
たガイド1!134と凍結管135および循環流体の圧
送管132及び大口径ケーシング管130を継ぎ足して
凍結管理を行いながら圧送管132から低温流体を圧入
し、大口径ケーシング管130を回転しながら第4図に
点11137で示すように凍土柱の外周附近を切削する
。圧送循環流体138は大口径ケーシング137内の上
面附近になるように制御し、この圧力差によってビット
面からの切削屑を大口径ケーシング137外面と地盤お
よび口元管102の間を通って地上に排出する。そして
、凍土柱136の下端まで削孔後に大口径ケーシング1
37と凍土柱とを引き上げる。
A heat-insulating F1100A is installed at the bottom of a large-diameter poling hole, a guide tube 134 is inserted into the guide hole 109, and a freezing tube 135 is inserted into this to create a frozen soil column 136. The construction of frozen soil pillars 136 and the burying of measurement holes, temperature detectors, etc. for thermal management are the same as those shown in FIGS. 1 and 2. When the frozen soil column 136 reaches a predetermined size, a heat-insulated guide 1!134, a freezing pipe 135, a circulating fluid pressure feeding pipe 132, and a large-diameter casing pipe 130 are added, and the pressure feeding pipe 132 is connected while performing freezing management. A low-temperature fluid is injected through the pipe, and while the large-diameter casing pipe 130 is rotated, the vicinity of the outer periphery of the frozen soil column is cut as shown by point 11137 in FIG. The pressurized circulating fluid 138 is controlled to be near the upper surface of the large-diameter casing 137, and this pressure difference causes cutting waste from the bit surface to be discharged to the ground through between the outer surface of the large-diameter casing 137, the ground, and the mouth pipe 102. do. After drilling a hole to the lower end of the frozen soil column 136, the large-diameter casing 1
37 and the frozen soil pillar.

この実施例によると、第1図及び第2図に示した実施例
における前述の効果のうち試料採取部分を除く効果が得
られ、更に凍土柱周囲を削孔νる間も熱管理が行えるた
め、従来技術では凍土柱上方が融解して細くなり所定の
均等な径の凍土が採取できなかったものが均等な凍土柱
を引き上げることができた。なお削孔中に断熱@l11
00Aが削孔用ケーシング管と#廻りするのを防ぐため
、11@孔および計測孔用ガイド管の突出長ざを長くし
、かつ底板が直接凍土に接するようにしたことにより凍
看力を十分働かせることができた。
According to this embodiment, the above-mentioned effects of the embodiment shown in Figs. 1 and 2 can be obtained except for the sample collection part, and furthermore, heat management can be performed while drilling around the frozen soil column. In the prior art, the upper part of the frozen soil column had thawed and become thinner, and frozen soil of a predetermined uniform diameter could not be collected, but it was possible to pull up a uniform frozen soil column. Insulation during drilling @l11
In order to prevent 00A from turning around with the casing pipe for drilling, the protruding length of the guide pipe for the 11@ hole and measurement hole was made longer, and the bottom plate was made to come into direct contact with the frozen soil, thereby ensuring sufficient freezing power. I was able to make it work.

効果 以上の如く、本発明によると、断熱@r!Iのガイド孔
を利用することにより孔面りや傾斜を効果的に防止する
ことが可能であり、断熱材を利用することにより凍18
 W8の熱損失を最低とすることが出来且つ地中応力を
保持したままで乱さない地盤試料を採取することが出来
る効果が得られる。
As described above, according to the present invention, insulation @r! By using the guide hole I, it is possible to effectively prevent the hole surface from tilting and tilting, and by using a heat insulating material, it is possible to prevent frost 18
The heat loss of W8 can be minimized, and an effect can be obtained that an undisturbed ground sample can be collected while maintaining underground stress.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による断熱装置を使用して地盤試料採取
を行う方法を示す断面図、第2図は断熱VL置の拡大底
面図、第3図は他の実施例による断熱装置の拡大底面図
、第4図は本発明の更に弛の実施例による地盤試料採取
を行う方法を示す断面図、第5図は従来技術を示す図に
して、(2)は縦断面図、(ハ)は線v−■における断
面図、第6図は他の従来技術を示す図にして、(2)は
縦断面図、(ハ)は線Vl −Vlにおける断面図、第
7図は更に他の従来技術を示す図にして、(2)は縦断
面図、υは線Vl −■における断面図、第8図は更に
他の従来技術を示す図にして、(2)は縦断面図、(ハ
)は腺■−■における断面図、第9図は更に伯の従来技
術を示す断面図、第10図は更に他の従来技術を示1断
面図である。 100.100A・・・・・・断熱装置、102・・・
・・・口元管、103・・・・・・上部、104・・・
・・・中部、105・・・・・・下部、106・・・・
・・接続金具、108・・・・・・凍結孔、109・・
・・・・ガイド孔、110・・・・・・地盤試料採取孔
、111・・・・・・ガイド孔、112・・・・・・温
度計測孔、113・・・・・・カイト孔、 114.115.116・・・・・・温度検知器、11
7・・・・・・ケーブル引出し孔。
Fig. 1 is a cross-sectional view showing a method for collecting ground samples using the heat insulating device according to the present invention, Fig. 2 is an enlarged bottom view of a heat insulating VL installation, and Fig. 3 is an enlarged bottom view of a heat insulating device according to another embodiment. 4 is a cross-sectional view showing a method for collecting ground samples according to a more relaxed embodiment of the present invention, and FIG. 5 is a view showing the conventional technique. 6 is a diagram showing another conventional technique, (2) is a longitudinal sectional view, (c) is a sectional view taken along line Vl--Vl, and FIG. 7 is a diagram showing another conventional technique. In the drawings showing the technology, (2) is a longitudinal cross-sectional view, υ is a cross-sectional view along the line Vl-■, and FIG. ) is a sectional view taken along the line 1--2, FIG. 9 is a sectional view further showing a prior art technique, and FIG. 10 is a sectional view showing still another prior art technique. 100.100A...Insulation device, 102...
... Mouth canal, 103 ... Upper part, 104 ...
...Middle part, 105...Bottom part, 106...
... Connection fittings, 108 ... Freezing hole, 109 ...
...Guide hole, 110 ... Ground sample collection hole, 111 ... Guide hole, 112 ... Temperature measurement hole, 113 ... Kite hole, 114.115.116...Temperature detector, 11
7... Cable extraction hole.

Claims (1)

【特許請求の範囲】[Claims] 深層における砂や礫地盤等を凍結することにより、地中
応力を保持した状態で地盤を所定の径に切削して乱さな
い地盤試料を地中から取り出すための凍結地盤試料採取
用の断熱装置において、前記地盤の凍結すべき部分に適
合する横断寸法を有してほぼ全体が断熱材で形成されて
いる柱状の本体を有し、前記本体の中に凍結孔削孔のた
めのガイド孔等を、軸線方向に形成したことを特徴とす
る凍結地盤試料採取用の断熱装置。
In an insulating device for collecting frozen ground samples, which freezes sand, gravel, etc. in deep layers, cuts the ground to a predetermined diameter while maintaining underground stress, and extracts undisturbed ground samples from underground. , having a columnar body having a transverse dimension suitable for the portion of the ground to be frozen and made almost entirely of a heat insulating material, and having a guide hole etc. for drilling a freezing hole in the body. , a heat insulating device for collecting frozen ground samples characterized by being formed in the axial direction.
JP28242885A 1985-12-16 1985-12-16 Adiabatic apparatus sampling frozen ground specimen Granted JPS62140043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP28242885A JPS62140043A (en) 1985-12-16 1985-12-16 Adiabatic apparatus sampling frozen ground specimen

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP28242885A JPS62140043A (en) 1985-12-16 1985-12-16 Adiabatic apparatus sampling frozen ground specimen

Publications (2)

Publication Number Publication Date
JPS62140043A true JPS62140043A (en) 1987-06-23
JPH0516489B2 JPH0516489B2 (en) 1993-03-04

Family

ID=17652281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP28242885A Granted JPS62140043A (en) 1985-12-16 1985-12-16 Adiabatic apparatus sampling frozen ground specimen

Country Status (1)

Country Link
JP (1) JPS62140043A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769412A (en) * 1994-03-03 1998-06-23 Kabushiki Kaisha Ace Denken Paper slip storage unit
JP2008272985A (en) * 2007-04-26 2008-11-13 Sato Corp Gear unit in printer
CN112629914A (en) * 2020-12-03 2021-04-09 中铁建设集团基础设施建设有限公司 Static cutting table for frozen soil

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5769412A (en) * 1994-03-03 1998-06-23 Kabushiki Kaisha Ace Denken Paper slip storage unit
JP2008272985A (en) * 2007-04-26 2008-11-13 Sato Corp Gear unit in printer
US7942595B2 (en) 2007-04-26 2011-05-17 Kabushiki Kaisha Sato Gear unit apparatus for printer
CN112629914A (en) * 2020-12-03 2021-04-09 中铁建设集团基础设施建设有限公司 Static cutting table for frozen soil

Also Published As

Publication number Publication date
JPH0516489B2 (en) 1993-03-04

Similar Documents

Publication Publication Date Title
US3528252A (en) Arrangement for solidifications of earth formations
JP2870658B2 (en) Closed cryogenic barrier for hazardous material pollution on earth
US11142982B2 (en) Undisturbed sampler for granular soil
US3720065A (en) Making holes in the ground and freezing the surrounding soil
CN105863023B (en) A kind of sponge urban construction ground water recharging well and quick well formation method
US20030190194A1 (en) Advanced containment system
Sego et al. Ground freezing and sampling of foundation soils at Duncan Dam
Sakuma et al. Drilling and logging results of USDP-4—Penetration into the volcanic conduit of Unzen Volcano, Japan
JPS62140043A (en) Adiabatic apparatus sampling frozen ground specimen
RU2295608C2 (en) Method for pile driving in permafrost ground (variants)
Rupprecht Application of the ground-freezing method to penetrate a sequence of water-bearing and dry formations—three construction cases
JPH0452803B2 (en)
JP2663035B2 (en) Screw pipe type frozen ground sampling method and apparatus
CN108612546A (en) Horizontal grouting construction method under a kind of enclosed environment
JP2670990B2 (en) Ground frozen sampling method and device
JP7023258B2 (en) Ground sample collection device and ground sample collection method
JPH0317036B2 (en)
JPS61251743A (en) Method for freezing and sampling soil quality sample of deep layer
JP3648641B2 (en) In-situ freezing sampling method and guide tube
JPH0452804B2 (en)
Ueda et al. Fifty years of Soviet and Russian drilling activity in polar and non-polar ice: a chronological history
JPS60194326A (en) Method for sampling specimen of saturated sand
KR200179847Y1 (en) Very Large Diameter (VLD) Sampler
Korotkevich et al. Ice sheet drilling by Soviet Antarctic expeditions
JP3379057B2 (en) How to attach a mounting pipe to an existing pipe, etc.