JPH0452804B2 - - Google Patents

Info

Publication number
JPH0452804B2
JPH0452804B2 JP9317385A JP9317385A JPH0452804B2 JP H0452804 B2 JPH0452804 B2 JP H0452804B2 JP 9317385 A JP9317385 A JP 9317385A JP 9317385 A JP9317385 A JP 9317385A JP H0452804 B2 JPH0452804 B2 JP H0452804B2
Authority
JP
Japan
Prior art keywords
tube
freezing
hole
frozen
sampling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP9317385A
Other languages
Japanese (ja)
Other versions
JPS61251744A (en
Inventor
Yorio Makihara
Munenori Hatanaka
Yoshio Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP9317385A priority Critical patent/JPS61251744A/en
Publication of JPS61251744A publication Critical patent/JPS61251744A/en
Publication of JPH0452804B2 publication Critical patent/JPH0452804B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)
  • Sampling And Sample Adjustment (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、土木、建築の分野において、各種
構造物の設計に際して必要とされる、特に礫を含
む砂礫地盤の物理特性、力学特性を調べるため有
効的に実施される土質試料の凍結サンプリング方
法に関する。
[Detailed Description of the Invention] (Industrial Application Field) This invention investigates the physical properties and mechanical properties of sandy and gravel ground, especially those containing gravel, which are required in the design of various structures in the fields of civil engineering and architecture. This paper relates to an effective method of frozen sampling of soil samples.

(従来技術とその問題点など) 従来、凍結法を応用した砂質地盤のサンプリン
グ法としては、 複数の凍結管を地盤中に設置して周辺地盤を
大きく凍結させ、前記凍結管群に囲まれた領域
から凍結試料を採取する方法、 単一の凍結管を地盤中に設置して同管の外周
地盤を適切な厚さだけ凍結させ、しかる後に同
凍結管を中心として同管ごと凍結土をコアトン
プリングし、これを解体として乱されていない
と思われる領域から土質試料を採取する方法、 の2通りがある。
(Prior art and its problems, etc.) Conventionally, as a sampling method for sandy ground applying the freezing method, multiple freezing pipes are installed in the ground to greatly freeze the surrounding ground, and the surrounding ground is surrounded by a group of frozen pipes. A method for collecting frozen samples from a frozen area is to install a single freezing pipe in the ground, freeze the ground around the pipe to an appropriate thickness, and then freeze the soil along with the pipe around the frozen pipe. There are two methods: Core topping and soil samples taken from areas that are considered undisturbed as part of demolition.

しかし、上記の方法の場合、次のような欠点
があつた。
However, the above method had the following drawbacks.

(a) 複数の凍結管に囲まれた領域は、凍結の進行
に伴ない地下水が閉じ込められて最終的に排水
ができないか又は排水が非常にしにくい状態で
凍結することになる。このため凍結時の体積膨
張により試料が乱される可能性が極めて大き
い。
(a) In areas surrounded by multiple frozen pipes, as freezing progresses, groundwater becomes trapped and eventually freezes in a state where drainage is impossible or very difficult to drain. Therefore, there is an extremely high possibility that the sample will be disturbed by the volume expansion during freezing.

(b) 採取すべき土質試料の体積に比べて、凍結さ
れた地盤の体積が数倍も大きいため、非効率的
で経済性が悪い。
(b) The volume of frozen ground is several times larger than the volume of the soil sample to be collected, making it inefficient and uneconomical.

また、上記の方法の場合は、次のような欠
点があつた。
Furthermore, the above method had the following drawbacks.

(c) 凍結外管を中心として、同凍結外管の設置に
より乱された領域も含めて、凍結外管の外径の
略6〜8倍ぐらいの直径をもつ大口径のシング
ルコアチユーブで凍結土をコアサンプリングす
るため、コアチユーブはもとよりのこと、切削
用マシーンも大型化しコスト高になる。その
上、コア抜きする作業時間が長くなり、凍結試
料の融解の心配がある。
(c) Freeze in a large-diameter single-core tube with a diameter approximately 6 to 8 times the outer diameter of the cryo-outer tube, centering on the cryo-outer tube, including the area disturbed by the installation of the cryo-outer tube. In order to core sample the soil, not only the core tube but also the cutting machine becomes large and expensive. In addition, it takes a long time to extract the core, and there is a concern that the frozen sample may thaw.

(d) 試料として必要でない、乱された領域の凍結
土も合一に採取する点に無駄がある。
(d) There is waste in collecting frozen soil from the disturbed area, which is not necessary as a sample, at the same time.

(e) 地上に引きあげた凍結土を解体して必要な大
きさの試料を取り出す作業が面倒である。
(e) The work of dismantling the frozen soil that has been brought up to the ground and extracting samples of the required size is troublesome.

(発明の目的) そこで、この発明の目的は、特に礫を含む砂礫
地盤における土質試料の採取に有効的であつて、
しかも乱されていない領域について必要なだけの
大きさのものを直接採取することが可能であり、
従つて、コアチユーブや切削用マシーンを小型化
することができ、コアサンプリングに必要な時間
を短縮できると共に、凍結試料の解体が容易で、
経済性が高い構成に改良した、礫を含む土質試料
の凍結サンプリング方法を提供することにある。
(Objective of the Invention) Therefore, the object of the present invention is to provide a method that is effective for collecting soil samples particularly in sandy ground containing gravel;
Moreover, it is possible to directly collect as much as necessary from an undisturbed area.
Therefore, the core tube and cutting machine can be downsized, the time required for core sampling can be shortened, and frozen samples can be easily dismantled.
The object of the present invention is to provide a frozen sampling method for soil samples containing gravel, which has been improved to have a highly economical configuration.

(発明の構成) 上記目的を達成するために、この発明に係る礫
を含む土質試料の凍結サンプリング方法は、 (イ) まず凍結外管設置用の穴を、採取試料の直径
に応じた大口径で、かつ試料採取深さの上限位
置に達するまで掘り、穴壁崩壊防止用の鋼管を
設置すると共に、この穴の下底に、凍結外管の
設置位置及びコアチユーブの挿入位置に通孔を
有する位置決め底板を設置する工程と、 (ロ) 前記穴の下底の略中央部に、前記位置決め底
板の通孔を通じて凍結外管の外径と略等しい径
の穴を試料採取深さと略等しい深さ掘る工程
と、 (ハ) 前記第1の穴を通じて第2の穴の中に凍結外
管を設置すると共に同凍結外管の中に凍結内管
を挿入設置し、その外周には試料採取深さの上
限位置に達する断熱管を挿入し設置する工程
と、 (ニ) 前記凍結内管を通じて例えば液体窒素あるい
はエタノールとドライアイスの混合体の如き冷
媒を供給し、凍結外管の外周地盤を必要な厚さ
まで凍結させる工程と、 (ホ) 前記位置決め底板における所望位置の通孔を
通じてダブルコアチユーブを挿入し前記凍結土
を地上に引き上げる工程と、 よりなる構成とされている。
(Structure of the Invention) In order to achieve the above object, the frozen sampling method for soil samples containing gravel according to the present invention includes: (a) First, a hole for installing a frozen outer pipe is formed with a large diameter according to the diameter of the collected sample. The hole is dug until it reaches the upper limit of the sampling depth, and a steel pipe is installed to prevent the wall from collapsing, and a through hole is provided at the bottom of the hole at the location where the frozen outer tube will be installed and where the core tube will be inserted. a step of installing a positioning bottom plate; (b) a hole having a diameter substantially equal to the outer diameter of the freezing outer tube and having a depth substantially equal to the sample collection depth through the through hole of the positioning bottom plate at substantially the center of the lower bottom of the hole; (c) Installing an outer cryotube into the second hole through the first hole, and inserting and installing an inner cryotube into the outer cryotube, with a sample sampling depth formed on its outer periphery. (d) Supplying a refrigerant, such as liquid nitrogen or a mixture of ethanol and dry ice, through the inner freezing tube to the required level of the outer ground of the outer freezing tube. (e) inserting a double core tube through a hole at a desired position in the positioning bottom plate to raise the frozen soil to the ground;

(実施例) さらに、図示した実施例に基いて詳細を説明す
る。
(Example) Further, details will be explained based on the illustrated example.

第1図は、土質試料を採取すべき対象地盤Aに
ついて、凍結外管設置用の穴1を試料採取深さD
の上限1D1(第4図)まで略垂直に掘つた段階を
示している。この穴1の直径は、礫の径を考慮し
た採取試料の直径に応じた大きさ、即ち、通常
500〜1000位とされている。この穴1の掘削
は、通常の泥水工法により行なわれている。
Figure 1 shows how hole 1 for installing a frozen outer pipe is located at the sampling depth D for target ground A where soil samples are to be collected.
This shows the stage where the excavation is done almost vertically to the upper limit of 1D 1 (Figure 4). The diameter of this hole 1 is determined according to the diameter of the collected sample, taking into account the diameter of the gravel, that is, the diameter of the hole 1 is usually
It is said to be ranked 500 to 1000. This hole 1 is excavated by the usual muddy method.

第2図は、前記穴1に沿つて鋼管12を挿入し
設置した段階を示している。
FIG. 2 shows a stage in which the steel pipe 12 has been inserted and installed along the hole 1.

また、第3図Aは、前記穴1の下底に、第3図
Bのとおり中心部に凍結外管設置用の通孔15a
を有し、その周辺部にはコアチユーブを挿入設置
するための通孔15b…を有する位置決め底板1
5を設置した段階を示している。この位置決め底
板15は通常コンクリート製とされている。
In addition, FIG. 3A shows a through hole 15a at the bottom of the hole 1, and a through hole 15a for installing a frozen outer tube in the center as shown in FIG.
A positioning bottom plate 1 having a through hole 15b for inserting and installing a core tube in its periphery.
5 is installed. This positioning bottom plate 15 is usually made of concrete.

第4図は、前記位置決め底板15の中央の通孔
15aを通じて穴1の下底略中央部に凍結外管の
外径(通常50〜70位)よりも若干大きい口径
の第2の穴1′を、試料採取深さ(通常3m〜7m
位)だけ掘つた段階を示している。この穴1′の
掘削も通常の泥水工法により行なう。
FIG. 4 shows a second hole 1' having a diameter slightly larger than the outside diameter of the freezing outer tube (usually about 50 to 70 degrees), which is inserted through the central through hole 15a of the positioning bottom plate 15 and into the substantially central part of the bottom of the hole 1. , the sampling depth (typically 3m to 7m
It shows the stage where only 1000 yen) have been excavated. This hole 1' is also excavated by the usual muddy method.

第5図は、前記第1の穴1及びその下底の位置
決め底板15の通孔15aを通じて第2の穴1′
の下底に届くまで、凍結外管2を挿入し設置した
段階を示している。
FIG. 5 shows that the second hole 1' is inserted through the first hole 1 and the through hole 15a of the positioning bottom plate 15 at its lower bottom.
This shows the stage in which the cryotube 2 has been inserted and installed until it reaches the bottom of the tube.

この凍結外管2は、第2の穴1′より上方の浅
い部分、即ち試料採取深さDの上限位置D1より
以浅部分を断熱性のよい厚肉塩化ビニル管2aと
し、それより深い部分は熱伝導性の良い金属製
(例えば鉄製)の管2bとなし、両管2aと2c
はねじ継手により一連に接合されている。
This freezing outer tube 2 has a thick-walled vinyl chloride tube 2a with good insulation in the shallow part above the second hole 1', that is, the part shallower than the upper limit position D1 of the sampling depth D, and the deeper part. The pipe 2b is made of a metal (for example, iron) with good thermal conductivity, and both the pipes 2a and 2c are
are connected in series by threaded joints.

この凍結外管2の下端には、蓋体(栓体)とし
て断熱性の良い塩化ビニル丸棒8が固着されてい
る。この塩化ビニル丸棒8には、上下方向に例え
ば2cm位のピツチで3個(但し3個の限りではな
い)熱電対10…が地盤の凍結厚さ確認用として
設置されている。
A vinyl chloride round rod 8 with good heat insulation is fixed to the lower end of this outer freezing tube 2 as a lid (stopper). Three (but not limited to) thermocouples 10 are installed on the vinyl chloride round bar 8 at a pitch of, for example, 2 cm in the vertical direction for checking the frozen thickness of the ground.

即ち、地盤の凍結が進行すると、各熱電対10
…が深さ方向の順に零度を検出してゆくので、凍
結厚さを確認できるのである。
That is, as the ground freezes, each thermocouple 10
... detects zero degrees in order of depth, so the frozen thickness can be confirmed.

次に、第6図は、前記凍結外管2内の中心部軸
方向に、外径が16〜20位のステンレス鋼製又
は塩化ビニル製の凍結内管3を挿入して設置する
と共に、該凍結内管3の外周であつて凍結外管2
との間に、外径が40〜50、内径は35〜45位
デ厚肉塩化ビニル製の断熱管4を挿入し設置した
段階を示している。
Next, FIG. 6 shows that an inner freezing tube 3 made of stainless steel or vinyl chloride with an outer diameter of about 16 to 20 is inserted and installed in the central axial direction of the outer freezing tube 2. The outer periphery of the inner frozen tube 3 and the outer frozen tube 2
The figure shows the stage where a thick-walled vinyl chloride heat-insulating pipe 4 with an outer diameter of 40 to 50 mm and an inner diameter of 35 to 45 mm is inserted and installed between the two.

前記凍結内管3は、約2m位のモジユール長さ
の短管をねじ継手により一連に連結して所望長さ
のものとされており、その下端開口が上記凍結外
管2の蓋体8に対しおよそ20cm〜30cm位にまで接
近する状態に設置されている。
The inner cryotube 3 has a desired length by connecting a series of short tubes with a module length of approximately 2 m using threaded joints, and its lower end opening is connected to the lid 8 of the outer cryotube 2. On the other hand, they are installed so that they are close to each other, approximately 20cm to 30cm apart.

前記断熱管4は、およそ試料採取深さDの上限
位置D1に達する長さのものとして設置されてい
る。
The heat insulating pipe 4 is installed with a length that approximately reaches the upper limit position D1 of the sampling depth D.

また、この段階で凍結外管2の上端を密封する
とともに、同凍結外管2の地上部分に冷媒の出口
ノズル6が取り付けられる。
Further, at this stage, the upper end of the frozen outer tube 2 is sealed, and a refrigerant outlet nozzle 6 is attached to the above-ground portion of the frozen outer tube 2.

第7図は、凍結内管3を通じて液体窒素等の冷
媒を供給し、凍結外管2内を上昇した冷媒は出口
ノズル6から導出させて凍結外管2の外周地盤、
特に試料採取深さ部分Dの外周地盤を必要な厚さ
まで凍結させた段階を示す。
FIG. 7 shows that a refrigerant such as liquid nitrogen is supplied through the inner frozen tube 3, and the refrigerant that has risen inside the outer frozen tube 2 is led out from the outlet nozzle 6 to the outer peripheral ground of the outer frozen tube 2.
In particular, it shows the stage in which the outer ground at sampling depth portion D has been frozen to a required thickness.

即ち、凍結内管3の下端から噴出し凍結外管2
側へ流入した冷媒は、凍結外管2を構成する熱伝
導性の良い金属製の管2bの管壁を通じて同管2
bの外周地盤から効率良く熱を奪い、もつて試料
採取深さD部分の外周地盤の凍結を急速に進行さ
せる。それも水平方向の一次元凍結であるから、
排水条件は良く、凍結に伴なう悪影響(体積膨張
による乱れ)を防ぐことができる。また、凍結コ
ストが小さくて済むのである。
That is, the frozen outer tube 2 is ejected from the lower end of the frozen inner tube 3.
The refrigerant flowing to the side passes through the tube wall of the metal tube 2b with good thermal conductivity that constitutes the freezing outer tube 2.
Heat is efficiently removed from the outer ground at point b, thereby rapidly freezing the outer ground at the sampling depth D. Since it is also one-dimensional freezing in the horizontal direction,
Drainage conditions are good, and adverse effects associated with freezing (disturbance due to volumetric expansion) can be prevented. In addition, freezing costs can be reduced.

地盤の凍結厚さは、通常500〜1000であり、
その厚さは既述したように熱電対10により地上
においてほぼ正確に確認(検出)することができ
る。
The frozen thickness of the ground is usually 500 to 1000,
As described above, the thickness can be almost accurately confirmed (detected) on the ground using the thermocouple 10.

他方、前記試料採取深さDより以浅の部分は、
第1に凍結内管3を断熱管4で包囲せしめ、第2
に凍結外管2も断熱性の良い塩化ビニル管2aで
形成しているので、その周囲地盤を凍結させるロ
スは軽微である。
On the other hand, the portion shallower than the sampling depth D is
First, the inner freezing pipe 3 is surrounded by a heat insulating pipe 4, and the second
In addition, since the freezing outer pipe 2 is also formed of a vinyl chloride pipe 2a with good insulation properties, the loss caused by freezing the surrounding ground is slight.

かくして、試料採取深さDの部分にのみ限定し
て周囲地盤を凍結させる結果、凍結コストを大き
く低減できることは勿論のこと、後々の凍結試料
のコアサンプリングが全深度凍結の場合に比して
著るしく容易なのである。
In this way, as a result of freezing the surrounding ground only at the sampling depth D, not only can freezing costs be greatly reduced, but later core sampling of frozen samples is significantly easier than when freezing the whole depth. It's easy and simple.

第8図は、上記の如くして形成した凍結土aに
向つて、地表面から穴1下底に設置した位置決め
底板15におけるいずれかの通孔15bを通じて
ダブルコアチユーブ11を挿入し、当該凍結土a
をその下端の非凍結部に貫通するまでコア抜き切
削をしたコアサンプリングの段階を示している。
FIG. 8 shows that the double core tube 11 is inserted from the ground surface through one of the through holes 15b in the positioning bottom plate 15 installed at the bottom of the hole 1 toward the frozen soil a formed as described above. a
This figure shows the core sampling stage in which the core was cut until it penetrated the unfrozen part of the lower end.

従つて、ダブルコアチユーブ11は、試料採取
深さDの深度の大小の如何にかかわらず、必らず
乱されていない領域を確実にコア抜き切削するこ
とになる。何故なら、ダブルコアチユーブ11の
挿入位置(通孔15bの位置)は、凍結外管2の
外表面から同外管2の外径の倍以上離れた外周位
置に確定されているからである。
Therefore, the double core tube 11 will reliably core out an undisturbed area, regardless of the depth of the sampling depth D. This is because the insertion position of the double core tube 11 (the position of the through hole 15b) is determined at an outer circumferential position that is more than twice the outer diameter of the outer cryotube 2 from the outer surface of the outer cryotube 2.

ダブルコアチユーブ11は、既に知られている
とうり、インナーチユーブ11aとアウターチユ
ーブ11bとを相互に回転自在の関係で組合せた
構成のものであり、アウターチユーブ11bの閉
じられた上端面には、地上の図示省略した切削用
マシンにて駆動される中空シヤフト9が固着され
ている。このダブルコアチユーブ11の外径は、
採取試料の外径に応じて、通常70〜400位とさ
れる。
As is already known, the double core tube 11 has a structure in which an inner tube 11a and an outer tube 11b are combined in a mutually rotatable relationship. A hollow shaft 9 driven by a cutting machine (not shown) is fixed thereto. The outer diameter of this double core tube 11 is
Depending on the outer diameter of the collected sample, it is usually about 70 to 400.

ダブルコアチユーブ11によるコアサンプリン
グに際しては、コア抜き切削を容易になさしめる
ため前記中空シヤフト9を通じて適温の循環水
(低温不凍の循環泥水)を供給する。
During core sampling using the double core tube 11, circulating water at an appropriate temperature (low-temperature non-freezing circulating mud) is supplied through the hollow shaft 9 to facilitate core extraction cutting.

かくして、ダブルコアチユーブ11によりコア
サンプリングする結果、 第1に凍結試料に直接前記コア抜き切削を容易に
なさしめるための冷却循環泥水が当たらない(凍
結試料はインナーチユーブ11aにより包みこま
れた状態にある)から、凍結試料は融けにくく乱
されないものを採取できる。
Thus, as a result of core sampling using the double core tube 11, firstly, the frozen sample is not directly exposed to the cooling circulation muddy water that facilitates the core extraction cutting (the frozen sample is wrapped in the inner tube 11a). ), frozen samples can be collected that do not easily melt and are not disturbed.

第2に、凍結試料の脱落は、インナーチユーブ1
1aのキヤツチヤーで防ぐことができる。
Second, the dropout of the frozen sample is caused by the inner tube 1
This can be prevented with catcher 1a.

かくして、ダブルコアチユーブ11によるコア
抜き切削を、凍結土aを貫通してその下の非凍結
部まで行なつたならば、コアチユーブ11を地上
に引き上げる。そして、コアチユーブを解体し、
中の凍結土を土質試料として採取するのである。
即ち、採取した土質試料は、上述の如く全く乱さ
れていない領域のものであるから、そのままそつ
くり試料として提供できるのである。
In this way, once the core tube 11 has penetrated the frozen soil a and reached the unfrozen portion below, the core tube 11 is lifted above the ground. Then, disassemble the core tube,
The frozen soil inside is collected as a soil sample.
That is, since the collected soil sample is from an area that has not been disturbed at all as mentioned above, it can be provided as a sample as it is.

(作用効果) 以上に実施例と併せて詳細に説明したとうりで
あつて、この発明に係る礫を含む土質試料の凍結
サンプリング方法によれば、コアサンプリングの
際の抜き切削の掘削精度が位置決め底板15の通
孔15bによりきちんと確保されるので、地下数
m〜数10mの深い地層について、しかも礫を含む
砂礫地盤について、全く乱されていない高品質の
土質試料を、必要なだけ採取することができる。
(Function and Effect) As described above in detail in conjunction with the embodiments, according to the frozen sampling method for soil samples containing gravel according to the present invention, the excavation accuracy of punch cutting during core sampling is determined by positioning. Since it is properly secured by the through hole 15b of the bottom plate 15, it is possible to collect as many undisturbed high-quality soil samples as necessary from deep strata from several meters to several tens of meters underground, and from sandy and gravelly ground containing gravel. Can be done.

従つて、凍結試料のコアサンプリングに必要な
コアチユーブ11の直径は試料直径とほぼ等しく
てよく小さいので、ひいては切削用マシーンが小
形で済み、コストダウンが図れる。
Therefore, the diameter of the core tube 11 required for core sampling of a frozen sample is approximately equal to and smaller than the sample diameter, so that the cutting machine can be small and costs can be reduced.

そして、引き上げた土質試料は供試体として必
要な大きさに切断するだけでよく、即ち解体が極
めて容易である。また、解体に必要なスペースの
縮小化と時間の短縮、器具の小形化を図ることが
可能であり、コストダウンが図れる。
The pulled soil sample only needs to be cut into the size required as a specimen, that is, dismantling is extremely easy. Furthermore, it is possible to reduce the space and time required for disassembly, and to downsize the equipment, thereby reducing costs.

しかも、確実に、かつ、実験にとつて形のよい
試料を採取でき、試料の整形を容易にすることが
できる。
In addition, it is possible to reliably collect a sample with a good shape for the experiment, and it is possible to easily shape the sample.

また、単一の凍結管による水平方向の一次元凍
結によるから、複数管による場合に比して地盤凍
結に必要な冷媒量を低減させられ、凍結時間の短
縮とコストダウンを図ることが可能である。
In addition, because one-dimensional horizontal freezing is performed using a single freezing tube, the amount of refrigerant required for ground freezing is reduced compared to when multiple tubes are used, making it possible to shorten freezing time and reduce costs. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図Aはこの発明の凍結サンプリン
グ方法を実施する枢要な工程を順に示した工程説
明図、第3図Bは位置決め底板の平面図、第4図
〜第8図は同じくこの発明の凍結サンプリング方
法を実施する枢要な工程を順に示した工程説明図
である。
Figures 1 to 3A are process explanatory diagrams sequentially showing the important steps of carrying out the frozen sampling method of the present invention, Figure 3B is a plan view of the positioning bottom plate, and Figures 4 to 8 are similar to this. FIG. 2 is a process explanatory diagram sequentially showing important steps for carrying out the frozen sampling method of the invention.

Claims (1)

【特許請求の範囲】 1 (イ) 凍結外管2設置用の穴1を採取試料の直
径に応じた大口径で、かつ試料採取深さDの上
限位置D1に達するまで掘り、穴壁崩壊防止用
の鋼管12を設置すると共に、この穴1の下底
に、凍結外管2の設置位置及びコアチユーブ1
1の挿入位置にそれぞれ通孔15a,15bを
有する位置決め底板15を設置する工程と、 (ロ) 前記穴1の下底の略中央部に、前記位置決め
底板15の通孔15aを通じて凍結外管2の外
径と略等しい径の第2の穴1′を試料採取深さ
Dと略等しい深さ掘る工程と、 (ハ) 前記第1の穴1を通じて第2の穴1′の中に
凍結外管2を設置すると共に同凍結外管2の中
に凍結内管3を挿入して設置し、その外周には
試料採取深さDの上限位置D1に達する断熱管
4を挿入し設置する工程と、 (ニ) 前記凍結内管3を通じて冷媒を供給し、凍結
外管2の外周地盤を必要な厚さまで凍結させる
工程と、 (ホ) 前記位置決め底板15における所望位置の通
孔15bを通じてダブルコアチユーブ11を挿
入し、前記凍結土aを非凍結部までコア抜き切
削をしてコアサンプリングを行ない、しかる後
に同コアチユーブ11を地上に引き上げる工程
と、 から成ることを特徴とする礫を含む土質試料の凍
結サンプリング方法。 2 特許請求の範囲第1項に記載した凍結外管2
は、試料採取深さDの上限位置D1より浅い部分
を断熱性の管2aとし、それより深い部分は熱伝
導性のよい管2bで構成されている、礫を含む土
質試料の凍結テンプリング方法。 3 特許請求の範囲第1項に記載した凍結外管2
は、その下端部に断熱性の蓋体8を備え、この蓋
体8に地盤の凍結厚さを確認する熱電対10を具
備している、礫を含む土質試料の凍結サンプリン
グ方法。 4 特許請求の範囲第1項に記載したダブルコア
チユーブ7によりコアサンプリングを行なう工程
は、同ダブルコアチユーブ7に適温の循環泥水を
供給しつつ行なう、礫を含む土質試料の凍結サン
プリング方法。
[Claims] 1 (a) A hole 1 for installing the outer cryotube 2 is dug to have a large diameter corresponding to the diameter of the sample to be collected, and until it reaches the upper limit position D1 of the sample collection depth D, and the hole wall collapses. In addition to installing the steel pipe 12 for prevention, the installation position of the freezing outer pipe 2 and the core tube 1 are located at the bottom of this hole 1.
(b) inserting the freezing outer tube 2 through the through hole 15a of the positioning bottom plate 15 into the approximate center of the lower bottom of the hole 1; (c) digging a second hole 1' having a diameter substantially equal to the outer diameter of the sample sampling depth D; Step of installing the tube 2, inserting the inner freezing tube 3 into the outer freezing tube 2, and inserting and installing the insulated tube 4 that reaches the upper limit position D1 of the sampling depth D around the outer circumference of the tube 2. (d) A step of supplying a refrigerant through the freezing inner tube 3 to freeze the outer peripheral ground of the freezing outer tube 2 to a required thickness; and (e) freezing the double core tube through the through hole 15b at a desired position in the positioning bottom plate 15. 11, core sampling is performed by cutting the frozen soil a to the non-frozen part, and then lifting the core tube 11 above the ground. Freezing sampling method. 2 Freezing outer tube 2 described in claim 1
is a freezing template for a soil sample containing gravel, in which the part shallower than the upper limit position D 1 of the sampling depth D is made up of an insulating tube 2a, and the deeper part is made up of a tube 2b with good thermal conductivity. Method. 3 Freezing outer tube 2 described in claim 1
This is a freezing sampling method for a soil sample containing gravel, which comprises a heat insulating lid 8 at the lower end, and a thermocouple 10 on the lid 8 for checking the frozen thickness of the ground. 4. A freezing sampling method for soil samples containing gravel, in which the step of core sampling using the double core tube 7 described in claim 1 is performed while supplying circulating mud water at an appropriate temperature to the double core tube 7.
JP9317385A 1985-04-30 1985-04-30 Freezing and sampling method for soil quality sample including pebble Granted JPS61251744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9317385A JPS61251744A (en) 1985-04-30 1985-04-30 Freezing and sampling method for soil quality sample including pebble

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9317385A JPS61251744A (en) 1985-04-30 1985-04-30 Freezing and sampling method for soil quality sample including pebble

Publications (2)

Publication Number Publication Date
JPS61251744A JPS61251744A (en) 1986-11-08
JPH0452804B2 true JPH0452804B2 (en) 1992-08-24

Family

ID=14075176

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9317385A Granted JPS61251744A (en) 1985-04-30 1985-04-30 Freezing and sampling method for soil quality sample including pebble

Country Status (1)

Country Link
JP (1) JPS61251744A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007132058A (en) * 2005-11-09 2007-05-31 Kansai Electric Power Co Inc:The Sampling method and sampling equipment
JP5036653B2 (en) * 2008-07-22 2012-09-26 旭化成建材株式会社 Sampling apparatus and waste sampling method using the same

Also Published As

Publication number Publication date
JPS61251744A (en) 1986-11-08

Similar Documents

Publication Publication Date Title
CN102587365B (en) Method for embedding precession-type backfill grouting ground source thermal energy conversion precast pile device into stratum
WO2021109144A1 (en) Modular intelligent dado cast-in-place pile and construction process therefor
CN201460904U (en) Ultra-long horizontal freezing consolidation structure for shield entry
US3720065A (en) Making holes in the ground and freezing the surrounding soil
CN104806253A (en) Construction method for opening hole between rectangular pipe jacking channels
Zhan et al. In situ monitoring of temperature and deformation fields of a tunnel cross passage in Changzhou Metro constructed by AGF
JPH0452803B2 (en)
JP2001115458A (en) Deep well construction method using earth retaining wall
RU2295608C2 (en) Method for pile driving in permafrost ground (variants)
JPH0452804B2 (en)
JPH0380237B2 (en)
JPH03257298A (en) Construction method of large-depth large-scale underground space by ground freezing method and ground freezing pipe therefor
JPH07190871A (en) Installation method of water-pressure gage for measurement of pore water pressure at inside of ground
CN115653499A (en) Non-excavation horizontal directional drilling construction method for drainage pipeline at bottom of tunnel inverted arch
US4176716A (en) Method and apparatus for tapping groundwater
CN108612546A (en) Horizontal grouting construction method under a kind of enclosed environment
JP2663035B2 (en) Screw pipe type frozen ground sampling method and apparatus
JPH0516489B2 (en)
JP3648641B2 (en) In-situ freezing sampling method and guide tube
JPS60100737A (en) Partial freeze sampling
JPS61254716A (en) Setting of in-place concrete pile
Liao et al. Construction of a Piperoofed Underpass Below Groundwater Table.
RU2707228C1 (en) Method to immerse piles in seasonal-frozen ground
CN105041203A (en) Radiation well drilling process
CN219886801U (en) Deep water hard rock stratum steel casing grouting auxiliary device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term