JPS61251082A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61251082A
JPS61251082A JP9167485A JP9167485A JPS61251082A JP S61251082 A JPS61251082 A JP S61251082A JP 9167485 A JP9167485 A JP 9167485A JP 9167485 A JP9167485 A JP 9167485A JP S61251082 A JPS61251082 A JP S61251082A
Authority
JP
Japan
Prior art keywords
guard ring
layer
conductor
ring layer
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9167485A
Other languages
Japanese (ja)
Inventor
Yasuyuki Higuchi
樋口 泰之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP9167485A priority Critical patent/JPS61251082A/en
Publication of JPS61251082A publication Critical patent/JPS61251082A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To weeken an electric field in the vicinity of the surface and to enlarge the width of a depletion layer by forming the conductor of such width that it projects from the both sides of the width of the guard ring layer surrounding an impurity layer almost equivalently above the guard ring layer through an insulating film. CONSTITUTION:A guard ring layer 40 is formed in the both end positions of a depletion layer formed under the condition that the guard ring layer 40 does not exist. A conductor 50 is made of aluminum or polysilicon and etc. and its width is preset so that is projects from the both sides of the guard ring layer 40 almost equivalently. When a voltage is applied to the conductor 50, a P-type electrode 60, and an N-type electrode 70, a depletion layer 11 expands along the P-N junction part (a) and the electrons included in an insulating film 20 are attracted by the conductor 50, so that the electrons in a semiconductor substrate 10 concentrate in the vicinity of the surface. Because a voltage is excited between the conductor 50 and the semiconductor substrate 10 without bringing the conductor 50 in contact with the guard ring layer 40, the depletion layer 11 has a stable width as shown by the two-dots and dash line.

Description

【発明の詳細な説明】 、産1ユff1分! この発明は、プレーナ形高耐圧のダイオードおよびトラ
ンジスタ等の半導体装置に係り、特に空乏層の幅を安定
させるような構造を有すると共に集積度を高める場合に
有利となる半導体装置に関する。
[Detailed description of the invention] , 1 minute production! The present invention relates to semiconductor devices such as planar high-voltage diodes and transistors, and particularly to a semiconductor device having a structure that stabilizes the width of a depletion layer and is advantageous when increasing the degree of integration.

従未皇肢血 従来、プレーナ形高耐圧のダイオードやトランジスタ等
の半導体装置において、不純物層の廻りを取り囲んだガ
ードリング層の外側方向へ張り出すようないわゆるフィ
ールドプレート電極を前記ガードリング層にコンタクト
させ、前記フィールドプレート電極の張出部によって半
導体基板と絶縁膜との界面の電界を弱めさせて、空乏層
を前記張出部まで広げるようにさせるものがある。
Conventionally, in semiconductor devices such as planar high-voltage diodes and transistors, a so-called field plate electrode that protrudes outward from a guard ring layer surrounding an impurity layer is contacted to the guard ring layer. In some devices, the electric field at the interface between the semiconductor substrate and the insulating film is weakened by the overhang of the field plate electrode, and the depletion layer is expanded to the overhang.

(゛ ゝ 、占 この従来の方式では、前記ガードリング層にフィールド
プレート電極をコンタクトさせるため、半導体基板の表
面にある絶縁膜の窓開は工程が必要となる。しかもこの
工程ではマスク合わせによるマージンを設計時に見込む
必要があると共に、ガードリング層を拡散する際の横波
がり分をも設計時に見込んでお(必要がある。これらの
ことに基づいて、この種フィールドプレート電極を備え
た半導体装置は、集積度を高めていく場合において不利
である。
(゛ ゝ, In this conventional method, in order to bring the field plate electrode into contact with the guard ring layer, a process is required to open a window in the insulating film on the surface of the semiconductor substrate.Moreover, this process requires a margin due to mask alignment. It is necessary to take this into account at the time of design, and it is also necessary to take into account the amount of transverse waves when diffusing the guard ring layer.Based on these factors, semiconductor devices equipped with this type of field plate electrode , which is disadvantageous when increasing the degree of integration.

この発明は上記事情に鑑みて創案されたもので、空乏層
の幅を安定して得ることは勿論、しかも集積度を高める
場合に有利となる半導体装置を提供することを目的とし
ている。
The present invention has been devised in view of the above circumstances, and aims to provide a semiconductor device in which the width of the depletion layer can be stably obtained, and which is advantageous in increasing the degree of integration.

ロ 占  ゛ るための このためこの発明は、不純物層の廻りを取り囲むガード
リング層の幅よりも、その両側から略均等に張り出すよ
うな幅の導電体を、前記ガードリング層の上部に絶縁膜
を介して形成した。
For this reason, the present invention provides an insulating conductor on top of the guard ring layer with a width that extends approximately evenly from both sides of the guard ring layer surrounding the impurity layer. Formed through a membrane.

皿 即ち、前記導電体と半導体基板との間で電圧を誘起させ
て前記半導体基板の表面付近の電界を弱め、ガードリン
グ層から張り出した導電体まで空乏層を広げるようにし
ている。
A voltage is induced between the plate, that is, the conductor and the semiconductor substrate, thereby weakening the electric field near the surface of the semiconductor substrate, and expanding the depletion layer from the guard ring layer to the conductor overhanging the semiconductor substrate.

災胤皿 以下、図面を参照してこの発明の一実施例を詳細に説明
する。本実施例では第1図に示すプレーナ形高耐圧ダイ
オード1を例として説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will now be described in detail with reference to the drawings. In this embodiment, a planar type high voltage diode 1 shown in FIG. 1 will be explained as an example.

即ち、プレーナ形高耐圧ダイオード1は、N型のシリコ
ンからなる半導体基板10の表面を覆うシリコン酸化膜
からなる絶縁膜20と、前記半導体基板10の所定位置
に拡散形成されたP型の不純物層30と、この不純物層
30の廻りを取り囲むP型のガードリング層40と、そ
の上部の絶縁膜20の表面に形成された導電体50と、
前記不純物層40にコンタクトさせたP型電極60と、
半導体基板10の裏面にコンタクトさせたN型電極70
とを具備している。
That is, the planar type high voltage diode 1 includes an insulating film 20 made of a silicon oxide film covering the surface of a semiconductor substrate 10 made of N-type silicon, and a P-type impurity layer diffused and formed in a predetermined position of the semiconductor substrate 10. 30, a P-type guard ring layer 40 surrounding the impurity layer 30, and a conductor 50 formed on the surface of the insulating film 20 above the guard ring layer 40.
a P-type electrode 60 in contact with the impurity layer 40;
N-type electrode 70 in contact with the back surface of semiconductor substrate 10
It is equipped with.

具体的には、前記ガードリング層40は、ガードリング
140のない状態にて形成される空乏層の両端位置に形
成されている。前記導電体50はアルミニウム又はポリ
シリコン等からなり、ガードリング層40の幅よりも、
その両側から略均等に張り出すような幅に設定されてい
る。
Specifically, the guard ring layer 40 is formed at both ends of a depletion layer formed without the guard ring 140. The conductor 50 is made of aluminum, polysilicon, etc., and has a width smaller than that of the guard ring layer 40.
The width is set so that it extends almost equally from both sides.

ここで、導電体50とP型電極60とN型電極70とに
電圧を印加すると、P−N接合部aに沿って空乏層11
が広がると共に、導電体50によって絶縁膜20内に含
む電子が引き寄せられ、絶縁膜20内に含む正孔は半導
体基板10の表面側に押しやられるので、半導体基板1
0内の電子が表面付近に集中する。
Here, when a voltage is applied to the conductor 50, the P-type electrode 60, and the N-type electrode 70, the depletion layer 11 along the P-N junction a
spreads, electrons contained in the insulating film 20 are attracted by the conductor 50, and holes contained in the insulating film 20 are pushed toward the surface side of the semiconductor substrate 10.
Electrons within 0 concentrate near the surface.

その結果、絶縁膜20と半導体基板10との界面の電界
が弱まり、導電体50のある位置まで空乏層11が広が
ることとなる。つまり、ガードリングN40に導電体5
0をコンタクトさせなくても、導電体50と半導体基板
10との間で電圧が誘起するから、上記構成のプレーナ
形高耐圧ダイオード1の空乏層11は、二点鎖線で示す
ような安定した幅になる。なお、前記絶縁膜2゛0の膜
厚は、1μm程度に設定するのが望ましい。
As a result, the electric field at the interface between the insulating film 20 and the semiconductor substrate 10 is weakened, and the depletion layer 11 spreads to a certain position of the conductor 50. In other words, the conductor 5 is attached to the guard ring N40.
Since a voltage is induced between the conductor 50 and the semiconductor substrate 10 even if the conductor 50 and the semiconductor substrate 10 are not in contact with each other, the depletion layer 11 of the planar high voltage diode 1 having the above structure has a stable width as shown by the two-dot chain line. become. Note that the thickness of the insulating film 2'0 is desirably set to about 1 μm.

次に、上記構成のプレーナ形高耐圧ダイオード1を製造
する方法を第2図に従って説明する。
Next, a method for manufacturing the planar type high voltage diode 1 having the above structure will be explained with reference to FIG.

■ 半導体基板10の表面に絶縁膜20を成長させた後
、不純物層30およびガードリングFi40を形成すべ
き部分以外の絶縁膜20の表面上をホトレジスト80で
覆う(第2図(a)参照)。このホトレジスト80をマ
スクとしてP型の不純物をイオン打ち込みする(第2図
(b)参照)。
(1) After growing the insulating film 20 on the surface of the semiconductor substrate 10, cover the surface of the insulating film 20 other than the portion where the impurity layer 30 and the guard ring Fi 40 are to be formed with a photoresist 80 (see FIG. 2(a)). . Using this photoresist 80 as a mask, P-type impurity ions are implanted (see FIG. 2(b)).

■ 前記ホトレジスト80を剥離した後、前記イオン打
ち込みした半導体基板10を熱処理することにより、前
記不純物を拡散させて不純物層30およびガードリング
層40を形成する(第2図(C)参照)。
(2) After peeling off the photoresist 80, the ion-implanted semiconductor substrate 10 is heat-treated to diffuse the impurity and form an impurity layer 30 and a guard ring layer 40 (see FIG. 2(C)).

■ 前記不純物層30の上部にある絶縁膜2oをエツチ
ングし、この部分にP型電極60を形成すると共に、ガ
ードリング層40の両側に略均等に張り出す導電体50
を、前記ガードリング層40に沿うようにその上部の絶
縁膜20の表面に被着する。その後、半導体基板10の
裏面をラッピングしてN型電極70を被着する(第2図
(d)参照)。なお、不純物層30およびガードリング
層40はイオン注入によらず固相拡散または気相拡散等
によって形成してもよい。
(2) The insulating film 2o on the top of the impurity layer 30 is etched to form a P-type electrode 60 in this part, and a conductor 50 is formed on both sides of the guard ring layer 40 approximately evenly.
is deposited on the surface of the insulating film 20 above the guard ring layer 40 along the guard ring layer 40. Thereafter, the back surface of the semiconductor substrate 10 is lapped to deposit an N-type electrode 70 (see FIG. 2(d)). Note that the impurity layer 30 and the guard ring layer 40 may be formed by solid phase diffusion, vapor phase diffusion, or the like instead of ion implantation.

また、この発明は上記実施例に限定されることはなく、
例えばパワートランジスタ等に適用できることは勿論で
ある。
Furthermore, the present invention is not limited to the above embodiments,
Of course, it can be applied to power transistors, etc., for example.

1皿辺盈且 以上詳説したようにこの発明によれば、導電体と半導体
基板との間で電圧が誘起するので、半導体基板の表面付
近の電界を弱め、空乏層の幅を安定して広げることがで
きる。即ち、ガードリング層に導電体をコンタクトさせ
ていなくとも、コンタクトさせたと同様の効果を得るこ
とができるから、ガードリング層と導電体とをコンタク
トさせるために従来行っていた絶縁膜の窓開は工程を削
減することができる。従って、この発明は、ガードリン
グ層を形成する際に、その拡散による横波がり分のみを
設計時に設定しておけばよいから、集積度を高める場合
に有利となる。
As detailed above, according to the present invention, a voltage is induced between the conductor and the semiconductor substrate, which weakens the electric field near the surface of the semiconductor substrate and stably widens the width of the depletion layer. be able to. In other words, even if the conductor is not in contact with the guard ring layer, it is possible to obtain the same effect as if the conductor were in contact with the guard ring layer, so the opening of the insulating film, which was conventionally done to bring the guard ring layer and the conductor into contact, can be avoided. The number of processes can be reduced. Therefore, the present invention is advantageous when increasing the degree of integration because it is only necessary to set the transverse wave intensity due to diffusion when forming the guard ring layer at the time of design.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明に係る半導体装置の一実施例を示す断
面説明図、第2図は第1図に示すプレーナ形高耐圧ダイ
オード1の製造方法を説明するための断面説明図である
。 1・・・プレーナ形高耐圧ダイオード、10・・・半導
体基板、20・・・絶縁膜、30・・・不純物層、40
・・・ガードリング層、50・・・導電体。
FIG. 1 is an explanatory cross-sectional view showing one embodiment of a semiconductor device according to the present invention, and FIG. 2 is an explanatory cross-sectional view for explaining a method of manufacturing the planar high voltage diode 1 shown in FIG. DESCRIPTION OF SYMBOLS 1... Planar type high voltage diode, 10... Semiconductor substrate, 20... Insulating film, 30... Impurity layer, 40
... Guard ring layer, 50... Conductor.

Claims (1)

【特許請求の範囲】[Claims] (1)一方導電型の不純物層の廻りを前記不純物層と同
一導電型のガードリング層で取り囲んだ半導体装置にお
いて、前記ガードリング層の幅よりも、その両側から略
均等に張り出すような幅の導電体を、前記ガードリング
層の上部に絶縁膜を介して形成したことを特徴とする半
導体装置。
(1) In a semiconductor device in which an impurity layer of one conductivity type is surrounded by a guard ring layer of the same conductivity type as the impurity layer, the width of the guard ring layer is larger than the width of the guard ring layer and extends almost equally from both sides thereof. A semiconductor device characterized in that a conductor is formed on the guard ring layer with an insulating film interposed therebetween.
JP9167485A 1985-04-26 1985-04-26 Semiconductor device Pending JPS61251082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9167485A JPS61251082A (en) 1985-04-26 1985-04-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9167485A JPS61251082A (en) 1985-04-26 1985-04-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61251082A true JPS61251082A (en) 1986-11-08

Family

ID=14033031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9167485A Pending JPS61251082A (en) 1985-04-26 1985-04-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61251082A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156936A (en) * 2004-10-25 2006-06-15 Matsushita Electric Ind Co Ltd Voltage regulating diode and its manufacturing method
JP2006303369A (en) * 2005-04-25 2006-11-02 Matsushita Electric Ind Co Ltd Constant voltage diode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142878A (en) * 1977-05-19 1978-12-12 Nec Corp Semiconductor device
JPS5886766A (en) * 1981-11-19 1983-05-24 Toshiba Corp High withstand voltage semiconductor device
JPS59194466A (en) * 1983-04-19 1984-11-05 Nec Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53142878A (en) * 1977-05-19 1978-12-12 Nec Corp Semiconductor device
JPS5886766A (en) * 1981-11-19 1983-05-24 Toshiba Corp High withstand voltage semiconductor device
JPS59194466A (en) * 1983-04-19 1984-11-05 Nec Corp Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006156936A (en) * 2004-10-25 2006-06-15 Matsushita Electric Ind Co Ltd Voltage regulating diode and its manufacturing method
JP2006303369A (en) * 2005-04-25 2006-11-02 Matsushita Electric Ind Co Ltd Constant voltage diode

Similar Documents

Publication Publication Date Title
KR100592401B1 (en) Self-aligned Power Field Effect Transistors in Silicon Carbide
US5795792A (en) Method of manufacturing a semiconductor device having a trench structure
EP0083088B1 (en) Method of producing field effect transistors having very short channel length
US4149307A (en) Process for fabricating insulated-gate field-effect transistors with self-aligned contacts
US3847687A (en) Methods of forming self aligned transistor structure having polycrystalline contacts
EP0635888A1 (en) Structure and fabrication of power MOSFETs, including termination structure
US3560278A (en) Alignment process for fabricating semiconductor devices
US6821858B2 (en) Semiconductor devices and methods for manufacturing the same
US4502069A (en) Contact for an MIS-semiconductor component and method for manufacturing the same
US4375717A (en) Process for producing a field-effect transistor
US3873372A (en) Method for producing improved transistor devices
KR970060534A (en) Power semiconductor device and manufacturing method thereof
JPH0532911B2 (en)
US4729967A (en) Method of fabricating a junction field effect transistor
US4445270A (en) Low resistance contact for high density integrated circuit
JPS61251082A (en) Semiconductor device
US6215167B1 (en) Power semiconductor device employing field plate and manufacturing method thereof
JPH05198796A (en) Semiconductor device and manufacture thereof
JPH04343479A (en) Variable capacitance diode
KR940010540B1 (en) Isolating area forming method having gettering function and their structure
JPH0369137A (en) Manufacture of semiconductor integrated circuit
KR0155580B1 (en) Capacitor fabrication method
JPS61251083A (en) Semiconductor device
JPH03101251A (en) Manufacture of semiconductor device
KR100261173B1 (en) Method for fabricating semiconductor device