JPS61251020A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61251020A
JPS61251020A JP60091736A JP9173685A JPS61251020A JP S61251020 A JPS61251020 A JP S61251020A JP 60091736 A JP60091736 A JP 60091736A JP 9173685 A JP9173685 A JP 9173685A JP S61251020 A JPS61251020 A JP S61251020A
Authority
JP
Japan
Prior art keywords
layer
doped layer
deposited
intrinsic
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60091736A
Other languages
Japanese (ja)
Other versions
JPH071752B2 (en
Inventor
Masataka Kondo
正隆 近藤
Kazunaga Tsushimo
津下 和永
Yoshihisa Owada
善久 太和田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP60091736A priority Critical patent/JPH071752B2/en
Publication of JPS61251020A publication Critical patent/JPS61251020A/en
Publication of JPH071752B2 publication Critical patent/JPH071752B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE:To intensity the built-in electric field located between the first impurity-doped layer and an intrinsic layer as well as to reduce the effect of the recombination center by a method wherein the film-forming temperature of the semiconductor layer, to be deposited as a part of an intrinsic layer, from the part contacting to the first doped layer to the specific thickness is brought down. CONSTITUTION:When the first impurity-doped layer, an intrinsic layer, and the second impurity layer of the conductive type reverse to that of the first doped layer are going to be deposited in the above-mentioned order as amorphous semiconductors on a transparent conductive film, if the highest film-forming temperature when the semiconductor layer, to be deposited as a part of the intrinsic layer is deposited on the region ranging from the part contacting to the first doped layer to the part of 80Angstrom in thickness, is reduced by 20-250 deg.C from the highest film forming temperature of the intrinsic layer which will be formed subsequently, the transparent conductive film is hardly reduced even when it comes in contact with the reducing plasma containing hydrogen atoms. As the diffusion of dopant in the metal, generated by reducing when the first doped layer is deposited, and in the first doped layer can also be prevented, the generation of recrystallization center formed by the contamination of a semiconductor layer by metal and the lowering of doping efficiency and the like can be remarkably improved.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は半導体装置の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a semiconductor device.

[従来の技術] 非晶質半導体層を含む太陽電池などの半導体装置の材料
として、a−3t:H,a−3IC:H。
[Prior Art] A-3t:H and a-3IC:H are used as materials for semiconductor devices such as solar cells containing an amorphous semiconductor layer.

a−SiGe:Hla−SiN:H、a−Si:F:H
la−Ge:11などや、これらの微結晶半導体などが
用いられてい、る。
a-SiGe:Hla-SiN:H, a-Si:F:H
la-Ge:11, and these microcrystalline semiconductors are used.

これらの成膜はRFまたはDCのプラズマCVD装置を
用いて行なうのが通常である。
These films are usually formed using an RF or DC plasma CVD apparatus.

従来法では、この種の装置を用いて220℃前後以上の
成IIm度ですべての非晶質半導体装置堆積させている
In the conventional method, all amorphous semiconductor devices are deposited using this type of apparatus at a temperature of about 220° C. or higher.

[発明が解決しようとする問題点] 透明導電膜上にこのような方法で半導体層を成膜すると
、プラズマ中の電子や、半導体形成ガスの分解生成物で
あるイオンやラジカルなどが基板面に直接衝突するため
、ITO、In103、ITO/5nOe、Cdz  
Sn  Oy  (X=0.5〜2、Y=2〜4) 、
Irz  01−z (Z−0,33〜0.5)などか
ら形成された透明導電膜が、一部または全体にわたって
還元され金属化する。この現象は第1不純物ドープ層堆
積後の真性層の堆積プロセスにおいても、成膜温度が2
20℃前後あるいはこれ以上のばあいには第1不純物ド
ープ層のすき間(第1ドープ層はうすいのが一般的で島
状に形成されやすく島間にすきまがある)を通して、電
子やイオンやラジカルなどが基板面に衝突するため生ず
る。
[Problems to be solved by the invention] When a semiconductor layer is formed on a transparent conductive film by this method, electrons in plasma and ions and radicals that are decomposition products of semiconductor forming gas are exposed to the substrate surface. Due to direct collision, ITO, In103, ITO/5nOe, Cdz
SnOy (X=0.5-2, Y=2-4),
A transparent conductive film formed from Irz 01-z (Z-0,33 to 0.5) or the like is partially or entirely reduced and metallized. This phenomenon also occurs in the deposition process of the intrinsic layer after the deposition of the first impurity doped layer, when the deposition temperature is
When the temperature is around 20°C or higher, electrons, ions, radicals, etc. This occurs due to collision of the surface of the substrate with the surface of the substrate.

このようにして生成した金属は、堆積された第1不純物
ドープ層のみならず真性層にまで拡散して、一種のドー
パントとして作用したり、真性層で発生した電子やホー
ルを打消してしまう再結合中心になったりするため、半
導体/透明導電膜の界面や第1不純物ドープ層/真性層
の界面が著しく劣化する。
The metal produced in this way diffuses not only into the deposited first impurity doped layer but also into the intrinsic layer, acting as a kind of dopant, or by canceling the electrons and holes generated in the intrinsic layer. Since it becomes a bonding center, the semiconductor/transparent conductive film interface and the first impurity doped layer/intrinsic layer interface are significantly deteriorated.

この拡散は、第1不純物ドープ層の堆積中のみならず真
性層堆積中にも進行するが、真性層堆積中にはさらに第
1不純物ドープ層のドーパント原子の拡散も進行する。
This diffusion proceeds not only during the deposition of the first impurity-doped layer but also during the deposition of the intrinsic layer, and the diffusion of the dopant atoms of the first impurity-doped layer also proceeds during the deposition of the intrinsic layer.

さらに前記金属化が生じると、透明導N膜そのものの導
電性や透明性も低下するため、半導体装置の特性、とく
に光電変換特性が大幅に低下する。
Further, when the metallization occurs, the conductivity and transparency of the transparent conductive N film itself are reduced, and the characteristics of the semiconductor device, particularly the photoelectric conversion characteristics, are significantly reduced.

本発明は前記のごとき透明11!躾上に非晶質半導体を
堆積する際におこる透明導電膜の変質により生ずる問題
を少なくしようとするものであり、さらに第1不純物ド
ープ膚と真性層との間の内蔵電界を強めることにより前
記再結合中心の影響を低減せんとするものである。
The present invention is transparent as described above! This method aims to reduce problems caused by deterioration of the transparent conductive film that occurs when depositing an amorphous semiconductor on the substrate, and further strengthens the built-in electric field between the first impurity doped layer and the intrinsic layer. This aims to reduce the influence of recombination centers.

[問題点を解決するための手段] 本発明は、透明導N膜上に非晶質半導体を第1不純物ド
ープ層(以下、第1ドープ層という)、真性層、第1ド
ープ層と反対の導電タイプの第2不純物ドープ層(以下
、第2ドープ層という)の順に堆積する際に、第1ドー
プ層に接する部分から80人の厚さの部分まで、真性層
の一部として堆積せしめられる半導体層の堆積時の最高
成m温度が、そののち成膜される真性層の最^成m温度
より20〜250℃低いことを特徴とする半導体装置の
製造方法に関する。
[Means for Solving the Problems] The present invention provides a first impurity doped layer (hereinafter referred to as the first doped layer), an intrinsic layer, and an amorphous semiconductor layer opposite to the first doped layer on a transparent conductive N film. When a conductive type second impurity doped layer (hereinafter referred to as the second doped layer) is deposited in order, the part in contact with the first doped layer to the 80mm thick part is deposited as part of the intrinsic layer. The present invention relates to a method for manufacturing a semiconductor device, characterized in that the maximum formation temperature during deposition of a semiconductor layer is 20 to 250° C. lower than the maximum formation temperature of an intrinsic layer formed thereafter.

[実施例〕 本発明に用いる透明導電膜とは、半導体装置の製造に一
般に使用される厚さ0,01〜1.0虜程度の透明導電
膜のことであり、このような透明導電膜である限り、と
くに限定はない。
[Example] The transparent conductive film used in the present invention refers to a transparent conductive film with a thickness of about 0.01 to 1.0 mm that is generally used in the manufacture of semiconductor devices. There are no particular limitations as long as there are.

該透明導電膜の具体例としては、ITO1ITO/5n
Oe 、 Ingot 、5nOt、Cdx  Sn 
 Gy  (X−0,5〜2、Y−2〜4) 、Irz
  O,−2(z−0,33〜0.5) 、CdOなど
があげられるが、これらに限定されるものではない。
Specific examples of the transparent conductive film include ITO1ITO/5n
Oe, Ingot, 5nOt, Cdx Sn
Gy (X-0,5~2, Y-2~4), Irz
Examples include, but are not limited to, O,-2(z-0,33-0.5), CdO, and the like.

これらの*m躾はいずれも、水素原子を含んだような還
元性のプラズマにより還元されやすく、とくに温度が高
くなると一般的な化学反応のばあいと同様、その還元が
顕著におこる。
All of these *m-disciplines are easily reduced by reducing plasma containing hydrogen atoms, and when the temperature is particularly high, the reduction occurs markedly, as in general chemical reactions.

本発明において透明導1flIII上に堆積される第1
ドープ層としては、たとえばa−Si:H。
In the present invention, the first layer deposited on the transparent conductor 1flIII
The doped layer is, for example, a-Si:H.

a−SiC:H、a−Ge:H,a−Si:F:If、
μC−5i:Hなどのp型あるいはn型のものが一般に
用いられるが、これらに限定されるもめではない。
a-SiC:H, a-Ge:H, a-Si:F:If,
P-type or n-type materials such as μC-5i:H are generally used, but the problem is not limited thereto.

第1ドープ層が堆積されたのちに形成される真性層およ
び第2ドープ層は、通常用いられる真性層および第1ド
ープ層と反対の導電タイプの第2ドープ層であれば、と
くに限定されるものではない。
The intrinsic layer and the second doped layer formed after the first doped layer are deposited are particularly limited if the second doped layer is of the opposite conductivity type as the normally used intrinsic layer and the first doped layer. It's not a thing.

この°ような真性層の具体例としては、a−Si:)l
、a−3i:F、 a−3i:F:Hla−SiGe:
Hla−3iSn:Hla−SiN:Hなどのドープし
ていないもの、あるいはBやPなどを微少量ドープした
ものなど、第2ドープ層の具体例としては、第1ドープ
層がp型のばあいにはn型のμc−8t:H,a−3i
C:H。
A specific example of such an intrinsic layer is a-Si:)l
, a-3i:F, a-3i:F:Hla-SiGe:
Specific examples of the second doped layer include undoped layers such as Hla-3iSn:Hla-SiN:H, or those doped with a small amount of B or P, etc., if the first doped layer is p-type. is n-type μc-8t:H,a-3i
C:H.

a−Si:H,a−SiN:Hなど、第1ドープ層がn
型のばあいにはp型のa−3i:H,μc−Si:Hl
a−SiC:Hなどがあげられる。
The first doped layer is n, such as a-Si:H, a-SiN:H, etc.
In the case of p-type a-3i:H, μc-Si:Hl
Examples include a-SiC:H.

本発明においては第1ドープ層に接する部分から80人
の厚さの部分まで、真性層の一部として堆積せしめられ
る半導体調の堆積時の最高成膜温度が、そののち成膜さ
れる真性層の最高成膜温度より20〜250℃低い温度
で成膜される。
In the present invention, the highest film forming temperature during semiconductor-like deposition, which is deposited as a part of the intrinsic layer from the part in contact with the first doped layer to the part with a thickness of 80 nm, is the intrinsic layer to be deposited afterwards. The film is formed at a temperature 20 to 250°C lower than the maximum film forming temperature.

本明細書にいう最高成m温度とは、第1ドープ層に接す
る部分から80人の厚さの部分まで、真性層の一部とし
て堆積せしめられる半導体層の部分においては、該部分
の半導体層を堆積する間での最も高い半導体層が堆積さ
れる表面の温度をいい、そののち成膜される真性層の部
分においては、該部分の成膜時の最も高い半導体層が堆
積される表面の温度をいう。
In this specification, the maximum deposition temperature refers to the portion of the semiconductor layer that is deposited as part of the intrinsic layer, from the portion in contact with the first doped layer to the portion with a thickness of 80 nm. It refers to the temperature of the surface on which the highest semiconductor layer is deposited during the deposition of the semiconductor layer, and for the part of the intrinsic layer that is subsequently deposited, the temperature on the surface where the highest semiconductor layer is deposited during the deposition of that part. Refers to temperature.

通常、透明導電膜の還元は第1ドープ層を形成するばあ
いに、とくに成膜温度が220℃程喰あるいはこれ以上
の高温のばあいに顕著に生ずるが、第1ドープ層の厚さ
は80〜300八程度と薄いのが一般的であり、ばあい
によっては該層が島状に形成され島間にすきまが生じる
ため、前記のごとき条件で真性層を形成する際にも、第
1ドープ層を介して水素原子を含んだ還元性のプラズマ
により還元される。真性MHIWA中には、さらに第1
ドープ層のドーパント原子の拡散も進行する。
Normally, reduction of the transparent conductive film occurs significantly when forming the first doped layer, especially when the film formation temperature is about 220°C or higher, but the thickness of the first doped layer Generally, it is as thin as 80 to 300 mm, and in some cases the layer is formed in the form of islands, creating gaps between the islands. Therefore, when forming the intrinsic layer under the above conditions, the first dope It is reduced by a reducing plasma containing hydrogen atoms through the layer. In true MHIWA, there is also a first
Diffusion of dopant atoms in the doped layer also progresses.

しかし、第1ドープ層に接する部分から80人の厚さの
部分まで、要すれば80〜2000人の厚さの部分まで
、真性層の一部として堆積せしめられる半導体層の堆積
時の最高成膜温度が、そののち成膜される真性層の最高
成#11温度より20〜250℃低い温度、好ましくは
10〜210℃の最高成膜温度で成膜されると、成Il
l温度が低いため透明導電膜が水素原子を含んだ還元性
のプラズマと接触しても還元されにくくなるとともに、
第1ドープ層堆積時に還元して発生した金属や第1ドー
プ層中のドーパントの拡散も防げる。
However, from the part in contact with the first doped layer to the part 80 nm thick, or even 80 to 2000 people thick, the highest growth rate during the deposition of the semiconductor layer deposited as part of the intrinsic layer. When the film is formed at a temperature that is 20 to 250°C lower than the maximum formation temperature of the intrinsic layer that is subsequently formed, preferably a maximum film formation temperature of 10 to 210°C, the formation Il
The low temperature makes it difficult for the transparent conductive film to be reduced even if it comes into contact with reducing plasma containing hydrogen atoms, and
It is also possible to prevent diffusion of metal generated by reduction during deposition of the first doped layer and dopants in the first doped layer.

したがって、生成する金属の量も少なくなるとともに拡
散も減少し、該金属による半導体層の汚染から生ずる再
結合中心の発生、ドーピング効率の低下などの半導体特
性の低下が著しく改善される。
Therefore, the amount of metal produced is reduced and diffusion is also reduced, and deterioration in semiconductor properties such as generation of recombination centers and deterioration of doping efficiency resulting from contamination of the semiconductor layer by the metal is significantly improved.

さらに第1ドープ層の最高成膜温度が10〜210℃で
、第1ドープ層に接する部分から80人の厚さの部分ま
で、要すれば80〜2000人の厚さの部分までの半導
体層の堆積時の最高成膜温度と同じか、それより低くす
ることにより、上記透明導IIIが還元されにくくなる
という効果がより顕著にえられる。また、このような方
法で成膜すると、第1ドープ層、第1ドープ層に接する
部分から80人の厚さの部分まで、要すれば80〜20
00人の厚さの部分までの半導体層、そののち成膜され
る真性層の部分を低い成aai度から高い成am度へ階
段的に成膜温度を上げて成膜することができるので、内
部応力の小さいp層、内部応力の大きい真性層の間が円
滑につながり、酸化物透明導電1/第1ド一プ層/第1
ドープ層に接する部分から80への厚さの部分まで、要
すれば80〜2000^の厚°さの部分までの半導体層
/そののち成膜される真性層の各1界面における力学的
なストレスに起因するダングリングボンドなどの欠陥の
発生を減少させることができる。さらには、第1ドープ
H/第1ドープ層に接する部分から80人の厚さの部分
まで、要すれば80〜20GOAの厚さの部分までの半
導体層/そののち成膜される半導体層の各層の禁止帯幅
が、広いものから狭いものへスムーズに変化するため、
該界面の内部電界を従来のm1ド一プ層/真性層の界面
に較べて均一に大きくすることができる。また該第1ド
ープ層をa−SiC:Hなどの禁止帯幅の広い材料にす
ることにより、内部電界をさらに大きくすることができ
る。さらに第1ドープ層がμc−3i:8層のばあいに
は、μc−Si:Hと真性との間の界面の円滑なものが
えられるという効果がえられる。
Further, the maximum film formation temperature of the first doped layer is 10 to 210 degrees Celsius, and the semiconductor layer is formed from the part in contact with the first doped layer to the thickness of 80 people, or if necessary, to the thickness of 80 to 2000 people. By setting the temperature to be the same as or lower than the maximum film forming temperature during deposition, the effect that the transparent conductor III is less likely to be reduced can be more prominently obtained. In addition, when a film is formed by such a method, the thickness of the first doped layer from the part in contact with the first doped layer to the part with a thickness of 80 mm, if necessary, is 80 to 20 mm thick.
The semiconductor layer up to a thickness of 0.00 mm and the subsequent intrinsic layer can be formed by increasing the film formation temperature stepwise from a low AAI degree to a high AM degree. The p layer with small internal stress and the intrinsic layer with large internal stress are smoothly connected, and the oxide transparent conductive layer 1/first doped layer/first
Mechanical stress at each interface between the semiconductor layer and the subsequently deposited intrinsic layer from the part in contact with the doped layer to the part with a thickness of 80°, if necessary, up to a part with a thickness of 80 to 2000°. It is possible to reduce the occurrence of defects such as dangling bonds caused by. Furthermore, the semiconductor layer from the part in contact with the first doped H/first doped layer to a part with a thickness of 80 GOA, if necessary, a part with a thickness of 80 to 20 GOA/semiconductor layer to be formed thereafter. Because the forbidden width of each layer changes smoothly from wide to narrow,
The internal electric field at the interface can be uniformly increased compared to the conventional m1 doped layer/intrinsic layer interface. Moreover, by using a material with a wide forbidden band width, such as a-SiC:H, for the first doped layer, the internal electric field can be further increased. Furthermore, when the first doped layer is a .mu.c-3i:8 layer, it is possible to obtain a smooth interface between .mu.c-Si:H and the intrinsic layer.

前記第1ドープ閑に接する部分から80人の厚さの部分
まで、要すれば80〜200Gへの厚さの部分までの半
導体II(低い最高成膜温度で成膜される真性層)を成
膜するばあいのプラズマ条件は、たとえば圧力を0.2
〜2.5Torrの範囲で、グロー放電を維持可能な最
大またはその近傍の圧力にすることが好ましく、RFパ
ワーはグロー放電を維持可能な範囲(5〜201N/ 
d )で最小になるようにするのが好ましく、このよう
にすることにより、そののち成膜される真性層の最高成
m温度より20〜250℃低い最高成膜温度でも光導電
率σphを10−5 (ΩC1)−1以上にすることが
でき、光学的禁止帯幅E  を1.8eV程度にpt することができる。また、透明導電膜に対するプラズマ
の影響も小さくできる。
Semiconductor II (intrinsic layer formed at a low maximum film formation temperature) is formed from the part in contact with the first dope to a part with a thickness of 80 G, if necessary, a part with a thickness of 80 to 200 G. The plasma conditions for forming a film are, for example, a pressure of 0.2
It is preferable to set the pressure at or near the maximum pressure that can maintain glow discharge in the range of ~2.5 Torr, and set the RF power within the range that can maintain glow discharge (5~201N/2.5 Torr).
It is preferable to minimize the photoconductivity σph by d), and by doing so, the photoconductivity σph can be maintained at 10°C even at a maximum film formation temperature that is 20 to 250°C lower than the maximum film formation temperature of the intrinsic layer that will be formed afterwards. −5 (ΩC1)−1 or more, and the optical forbidden band width E can be reduced to about 1.8 eV. Furthermore, the influence of plasma on the transparent conductive film can also be reduced.

しかしながら、この低い最高成膜温度で成膜した真性層
の電気的特性は、高い最高成m温度で作製される真性層
の特性に較べて劣るばあいもあるので、真性層全体を低
い最高成膜温度で作製するのは好ましくなく、実用上は
通常の真性層を作る際にプラズマの影響を少なくでき、
透明導電膜の変質および第1ドープ層中のドーパントの
拡散を防ぐことができる厚さだけ、低いi高成膜温度で
真性層を堆積させればよい。
However, the electrical properties of the intrinsic layer formed at this low maximum deposition temperature may be inferior to those of the intrinsic layer formed at a high maximum deposition temperature, so the entire intrinsic layer may be formed at a low maximum deposition temperature. It is not preferable to fabricate at film temperature, but in practice it is possible to reduce the influence of plasma when forming a normal intrinsic layer.
The intrinsic layer may be deposited at a low i-high deposition temperature to a thickness that can prevent deterioration of the transparent conductive film and diffusion of the dopant in the first doped layer.

すなわら、低い最高成膜温度の真性層の成膜条件によっ
て第1ドープ層に接する部分から80人の厚さの部分ま
で、要すれば80〜2000人の厚さの部分まで、真性
層の一部を堆積させることで本発明の効果がえられる。
In other words, depending on the intrinsic layer deposition condition of a low maximum deposition temperature, the intrinsic layer can be formed from the part in contact with the first doped layer to a part with a thickness of 80 nm, or if necessary, up to a part with a thickness of 80 to 2000 nm. The effects of the present invention can be obtained by depositing a portion of the .

もちろん低い最高成膜温度で堆積する真性層の厚さが、
たとえば500人、1000人さらには2000人と大
きくなると透明導1!膜の還元あるいは金属の拡散を防
止するという効果は大ぎくなるが、上記のような理由で
あまり大きい値は好ましくない。低い最高成膜fA度で
堆積する真性層の好ましい厚さは150〜400人であ
り、最も好ましい厚さは200〜300人である。
Of course, the thickness of the intrinsic layer deposited at a low maximum deposition temperature is
For example, when the number of people grows to 500, 1000, or even 2000, Transparent Guide 1! Although the effect of preventing reduction of the film or diffusion of metal becomes greater, a value that is too large is not preferable for the reasons mentioned above. The preferred thickness of the intrinsic layer deposited at a low maximum deposition fA degree is 150 to 400, with the most preferred thickness being 200 to 300.

低い最高成膜温度で成膜される真性層の成膜温度は一定
である必要はなく、徐々に変化させてもよい。要はその
のち成膜される半導体層の最高成膜温度より少なくとも
第1ドープ唐に接する部分から80への厚さの部分まで
、要すれば80〜2000人の厚さの部分までの成膜が
20〜250℃、好ましくは50〜200℃低い最高成
膜温度で行なわれればよいのである。
The film-forming temperature of the intrinsic layer formed at a low maximum film-forming temperature does not need to be constant, and may be gradually changed. The point is to form a film from the part that contacts the first dope layer to the part with a thickness of 80mm, or if necessary, to the part with a thickness of 80 to 2000mm below the highest film-forming temperature of the semiconductor layer to be deposited afterwards. It is sufficient if the maximum film forming temperature is 20 to 250°C, preferably 50 to 200°C lower.

なお低い最高成膜温度で成膜される真性層の堆積時にお
ける透明II′11膜へのプラズマの影響をさけるには
、最高成膜温度10〜210℃で堆積するのが好ましく
、10〜180℃で堆積するのがさらに好ましい。
Furthermore, in order to avoid the influence of plasma on the transparent II'11 film during deposition of the intrinsic layer formed at a low maximum film formation temperature, it is preferable to deposit at a maximum film formation temperature of 10 to 210°C, and More preferably, it is deposited at °C.

本発明の方法を実施するための装蹟としては、通常の容
量結合型RF平行平板型CVD装置、誘導′結合型RF
CVD装置、DC平行平板型CvD装置などがあげられ
るが、これらに限定されるものではない。とくに平行平
板型CvO装置において顕著な効果がみられる。
Equipment for carrying out the method of the present invention includes a conventional capacitively coupled RF parallel plate CVD device, an inductively coupled RF
Examples include, but are not limited to, a CVD device, a DC parallel plate type CvD device, and the like. Particularly remarkable effects are seen in parallel plate type CvO devices.

つぎに本発明の方法を実施例に基づき説明する。Next, the method of the present invention will be explained based on examples.

実施例1および比較例1 ガラス板上に、スプレー法にて厚さ4000人のsno
、電極を形成し、これを基板として用いた。
Example 1 and Comparative Example 1 On a glass plate, a 4,000-thick layer of sno
, an electrode was formed and this was used as a substrate.

該基板上に、基板温度30℃、CVD圧力1.5TOr
r、 5i)t*/ CH4の流量比が2/3.5iH
a + CH4の合計流量に対してBzHsの正味流量
が1%になるようにして、RFパワー密度10mW/a
iでp型a−SiC:HWJを100人堆積させたのち
、成膜温度100℃(一定)、CvD圧力I Torr
テ5iHaガスを用&NTRFパワー密度10!lW/
Cdでi型a−3i:HM(低い最高成Ill温度で成
膜した真性層)を200人堆積させた。ついで成111
ffi度190’C(一定)、CV[1圧力1.0To
rrでSiH,ガスを用い、10+14/cdでi型a
−3i:H層を6000人堆積させた。さらに成am度
180℃(一定)°、cvo圧力2TorrでSiH4
に対しPH3が1流塁%、H層が30流量倍になるよう
に導入し、RFパワー密度701W/ dでn型μC−
Si:H層を300人堆積させ、電極としてMを真空蒸
着法により1000人堆積させて、1cdの面積を有す
る太陽電池を作製した。
A substrate temperature of 30°C and a CVD pressure of 1.5 Torr were placed on the substrate.
r, 5i) t*/CH4 flow rate ratio is 2/3.5iH
RF power density 10 mW/a with the net flow rate of BzHs being 1% of the total flow rate of a + CH4
After 100 deposits of p-type a-SiC:HWJ at i, the deposition temperature was 100°C (constant) and the CvD pressure was I Torr.
Uses Te5iHa gas & NTRF power density 10! lW/
200 deposits of type i a-3i:HM (intrinsic layer deposited at low maximum deposition temperature) were made with Cd. Then Sei 111
ffi degree 190'C (constant), CV [1 pressure 1.0To
rr using SiH, gas, 10+14/cd i type a
-3i: H layer was deposited by 6000 people. Furthermore, the SiH4
PH3 was introduced so that the flow rate was 1% and the H layer was introduced so that the flow rate was 30 times higher than that of the RF power density of 701 W/d.
A solar cell having an area of 1 cd was fabricated by depositing 300 Si:H layers and 1000 M layers as electrodes by vacuum evaporation.

えられた太陽電池の特性をAM−1,100mW/dの
ソーラーシミュレーターを用いて測定すると、J、c1
5.21^、Voco、9V、 FF 61.0%、η
 864%であった。またえられた太陽電池の電流電圧
特性を測定した結果を第1図に示す。
When the characteristics of the obtained solar cell were measured using an AM-1, 100 mW/d solar simulator, J, c1
5.21^, Voco, 9V, FF 61.0%, η
It was 864%. Figure 1 shows the results of measuring the current-voltage characteristics of the obtained solar cell.

また比較用試料として、成膜温度100℃(一定)で成
膜したi型a−Si :Hllを堆積しない以外は実施
例1と同様にして太陽電池を作製し、太陽電池の特性を
測定すると、J、。15.OIA、VocO,78V 
、 FF 59.5%、η 6496%であった。
In addition, as a comparative sample, a solar cell was prepared in the same manner as in Example 1 except that no I-type a-Si:Hll was deposited at a constant film-forming temperature of 100°C, and the characteristics of the solar cell were measured. ,J. 15. OIA, VocO, 78V
, FF 59.5%, η 6496%.

またえられた太@電池の電流電圧特性を測定した結果を
第1図に示す。
The results of measuring the current-voltage characteristics of the obtained thick battery are shown in FIG.

なお成膜温度の測定は、半導体層が堆積される基板表面
にプラズマ電解の影響を受けないことを確認した極細の
クーOメル・70メル熱電対をとりつけて行なった。
The film-forming temperature was measured by attaching an ultra-fine CoO Mel 70 Mel thermocouple, which was confirmed not to be affected by plasma electrolysis, to the surface of the substrate on which the semiconductor layer was deposited.

[発明の効果] 本発明の方法により半導体装置を製造すると、voC,
FF、ηが著しく改善された半導体装置がえられる。
[Effect of the invention] When a semiconductor device is manufactured by the method of the invention, voC,
A semiconductor device with significantly improved FF and η can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の方法および従来法により製造された半
導体装It(太陽電池)の電流電圧特性を示すグラフで
ある。 21 図 電    圧  (■ン
FIG. 1 is a graph showing current-voltage characteristics of semiconductor devices It (solar cells) manufactured by the method of the present invention and the conventional method. 21 Figure Voltage (■n

Claims (1)

【特許請求の範囲】 1 透明導電膜上に非晶質半導体を第1不純物ドープ層
、真性層、第1不純物ドープ層と反対の導電タイプの第
2不純物ドープ層の順に堆積する際に、第1不純物ドー
プ層に接する部分から80Åの厚さの部分まで、真性層
の一部として堆積せしめられる半導体層の堆積時の最高
成膜温度が、そののち成膜される真性層の最高成膜温度
より20〜250℃低いことを特徴とする半導体装置の
製造方法。 2 前記第1不純物ドープ層に接する部分から80Åの
厚さまでの半導体層の最高成膜温度が10〜210℃で
ある特許請求の範囲第1項記載の製造方法。 3 第1不純物ドープ層の最高成膜温度が10〜210
℃で、前記第1不純物ドープ層に接する部分から80Å
の厚さまでの半導体層の最高成膜温度と同等以下である
特許請求の範囲第1項記載の製造方法。 4 第1不純物ドープ層がa−SiC:H層またはμc
−Si:H層である特許請求の範囲第2項記載の製造方
法。
[Claims] 1. When depositing an amorphous semiconductor on a transparent conductive film in the order of a first impurity doped layer, an intrinsic layer, and a second impurity doped layer of a conductivity type opposite to the first impurity doped layer, 1 The maximum deposition temperature during the deposition of the semiconductor layer deposited as part of the intrinsic layer from the part in contact with the impurity doped layer to the 80 Å thick part is the maximum deposition temperature of the intrinsic layer deposited afterwards. A method for manufacturing a semiconductor device, characterized in that the temperature is 20 to 250°C lower. 2. The manufacturing method according to claim 1, wherein the maximum deposition temperature of the semiconductor layer from the portion in contact with the first impurity doped layer to a thickness of 80 Å is 10 to 210°C. 3 The maximum film formation temperature of the first impurity doped layer is 10 to 210℃
℃, 80 Å from the part in contact with the first impurity doped layer
2. The manufacturing method according to claim 1, wherein the temperature is equal to or lower than the maximum deposition temperature of a semiconductor layer up to a thickness of . 4 The first impurity doped layer is a-SiC:H layer or μc
-Si:H layer, the manufacturing method according to claim 2.
JP60091736A 1985-04-26 1985-04-26 Method for manufacturing semiconductor device Expired - Lifetime JPH071752B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60091736A JPH071752B2 (en) 1985-04-26 1985-04-26 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60091736A JPH071752B2 (en) 1985-04-26 1985-04-26 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS61251020A true JPS61251020A (en) 1986-11-08
JPH071752B2 JPH071752B2 (en) 1995-01-11

Family

ID=14034801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60091736A Expired - Lifetime JPH071752B2 (en) 1985-04-26 1985-04-26 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH071752B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566594B2 (en) 2000-04-05 2003-05-20 Tdk Corporation Photovoltaic element

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157577A (en) * 1981-03-23 1982-09-29 Sumitomo Electric Ind Ltd Manufacture of thin film photovoltaic element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57157577A (en) * 1981-03-23 1982-09-29 Sumitomo Electric Ind Ltd Manufacture of thin film photovoltaic element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6566594B2 (en) 2000-04-05 2003-05-20 Tdk Corporation Photovoltaic element
US6960718B2 (en) 2000-04-05 2005-11-01 Tdk Corporation Method for manufacturing a photovoltaic element

Also Published As

Publication number Publication date
JPH071752B2 (en) 1995-01-11

Similar Documents

Publication Publication Date Title
JP4208281B2 (en) Multilayer photovoltaic device
US6383898B1 (en) Method for manufacturing photoelectric conversion device
US20030168578A1 (en) Photovoltaic device and manufacturing method thereof
JPH05243596A (en) Manufacture of laminated type solar cell
US6979589B2 (en) Silicon-based thin-film photoelectric conversion device and method of manufacturing thereof
JPH0878659A (en) Semiconductor device and its manufacture
CN114649425B (en) TopCon crystalline silicon solar cell and preparation method thereof
JP3684041B2 (en) Photovoltaic element
JP4358343B2 (en) Manufacturing method of silicon-based thin film photoelectric conversion device
JPS6132416A (en) Manufacture of semiconductor device
JPH11103082A (en) Photosensor and manufacture thereof
JPS61251020A (en) Manufacture of semiconductor device
JPH0282655A (en) Manufacture of photovolatic device
JPH0562830B2 (en)
JPH0612835B2 (en) Manufacturing method of photoelectric conversion element
JP3358164B2 (en) Method for manufacturing photovoltaic device
JP2004253417A (en) Method of manufacturing thin film solar cell
JP2644901B2 (en) Method for manufacturing pin type amorphous silicon solar cell
JP5123444B2 (en) Manufacturing method of solar cell
JP3046644B2 (en) Method for manufacturing photovoltaic element
JPH04212473A (en) Polycrystal semiconductor film and photovoltaic device using the same
JPH03280476A (en) Manufacture of photoelectric conversion device
JPH02177375A (en) Manufacture of photoelectric conversion device
JPH0927628A (en) Photovoltaic element and manufacture thereof
JP2001168364A (en) Method of manufacturing amorphous silicon thin film photoelectric transfer device

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term