JPS61250163A - Method and apparatus for production of multi-layered thin film - Google Patents

Method and apparatus for production of multi-layered thin film

Info

Publication number
JPS61250163A
JPS61250163A JP8886985A JP8886985A JPS61250163A JP S61250163 A JPS61250163 A JP S61250163A JP 8886985 A JP8886985 A JP 8886985A JP 8886985 A JP8886985 A JP 8886985A JP S61250163 A JPS61250163 A JP S61250163A
Authority
JP
Japan
Prior art keywords
substrate holder
holder electrode
target material
substrate
sputtering
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8886985A
Other languages
Japanese (ja)
Other versions
JPH0156141B2 (en
Inventor
Yoshiichi Ishii
芳一 石井
Tomoaki Kawamura
朋晃 川村
Satoshi Maeyama
智 前山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP8886985A priority Critical patent/JPS61250163A/en
Publication of JPS61250163A publication Critical patent/JPS61250163A/en
Publication of JPH0156141B2 publication Critical patent/JPH0156141B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To form multi-layered thin films having a uniform film thickness in a manner as to have periodicity of high accuracy by passing successively prescribed times the substrates attached to a substrate holder electrode rotating at a specified rotating speed on the sputtering paths of plural different targets. CONSTITUTION:The substrates 1 are attached to the substrate holder electrode 2 rotated at the specified rotating speed by a motor 9 and a voltage is impressed to cathodes electrodes 3, 4 carrying the plural targets A, B consisting of materials different from each other to generate a sputter discharge, by which the sputter films of the materials of the above-mentioned targets A, B are successively and alternately laminated respectively at specified periods on the substrates 1 and the multi-layered thin films are formed thereon. The thin films are successively formed to the prescribed film thickness in the above-mentioned method by detecting the rotation of the above-mentioned substrate holder electrode 2 with a sensor 8 and a counter 10, speed detecting part 11, etc., controlling shutters 6, 7 by a control part 12 to open the sputtering paths for the desired targets A, B, etc. and passing prescribed times the substrates 1 through said paths.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は異なる物質からなる薄膜層を順次交互に積層
した多層薄膜の製造方法および装置に関し、更に詳しく
は均一な膜厚をもっ薄膜を高精度で順次交互に積層する
多層薄膜の製造方法および装置に関する。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method and apparatus for producing a multilayer thin film in which thin film layers made of different materials are sequentially and alternately laminated, and more specifically, to a method and apparatus for producing a thin film having a uniform thickness. The present invention relates to a method and apparatus for manufacturing multilayer thin films that are sequentially and alternately laminated with precision.

〈従来の技術〉 この種多層薄膜の製造方法として従来から、次の二つの
方法がある。
<Prior Art> Conventionally, there are the following two methods for manufacturing this type of multilayer thin film.

第1の方法はアグネス社発行の学術雑誌「固体物理」第
18巻No、 5 (1983年)p、p271〜27
7において、新庄輝也氏著になる報告「人口格子合金膜
」において、第4図に示すように、真空槽13内におい
て薄膜形成用基板を取り付けた基板ホルダ電極2と互い
に異なる物質A、Bを電子ビーム14.15で照射して
薄膜形成用基板1に物質A、Bの薄膜を交互に積層する
多層膜製造方法を開示している。
The first method is described in the academic journal "Solid State Physics" published by Agnes Publishing, Vol. 18, No. 5 (1983), p. 271-27.
7, in the report "Popular lattice alloy film" written by Teruya Shinjo, as shown in FIG. A multilayer film manufacturing method is disclosed in which thin films of substances A and B are alternately laminated on a thin film forming substrate 1 by irradiation with an electron beam 14.15.

第2の方法は、米国物学会発行の学術雑誌「フィジカル
レビx  (Physical Review) B 
J第26巻、& 9 、p、p4894〜4908にお
いて、S、 T。
The second method is described in the academic journal “Physical Review B” published by the American Society of Physics.
J Vol. 26, & 9, p. 4894-4908, S. T.

Ruggiero他2名著の論文r Supercon
cluetingProperty of Nb−Ge
 metal Semiconductormulti
layersJにおいて、被膜形成用基板1を取り付け
た基板ホルダ電極2の下方に、それぞれ異なる物質から
なる複数のターゲットを有するカソード電極3,4を配
置しておき、カソード電極にスパッタ電圧を加えてでタ
ーゲットをスパッタさせると共に基板ホルダ電ff11
2をその中心軸の周りに回転させると共にターゲットと
基板ホルダ電極との間に、膜厚修正a=+板5を用い、
被膜の径方向の膜厚分布を均一化するため開口形状をた
とえば基板ホルダ電極2の回転軸方向に小径、円周方向
に大径の扇状形に開口した膜厚修正板5を通して相異な
る複数の物質から成るターゲット物質A、Bを交互に積
層するようにスパッタさせることを開示している。すな
わち装置を第5図(aL(b)に示すように回転機構付
・基板ホルダ電極2、基板1、シャッタ6.7、カソー
ド電極3,4、ターゲットA、B、膜厚修正板5で構成
すると共に、基板ホルダ電極2に2〜6枚の基板1を取
り付け、基板ホルダ電極を回転させながらターゲットA
、Bを交互にスパッタさせることにより積層膜を形成す
るものである。回転させる機構により回転する基板円周
方向の膜厚分布を均一化すると共に、径方向の膜厚分布
を均一化するため、前記ターゲットA、Bからのスパッ
タ物質を円周方向に大円、中心軸方向に小円の扇形の開
口を通して基板上に積層させるものである。
Ruggiero and 2 other authors' papers r Supercon
CluetingProperty of Nb-Ge
metal semiconductor multi
In layersJ, cathode electrodes 3 and 4 each having a plurality of targets made of different substances are arranged below a substrate holder electrode 2 to which a film forming substrate 1 is attached, and a sputtering voltage is applied to the cathode electrodes to remove the targets. While sputtering, the substrate holder electrode ff11
2 around its central axis, and using a film thickness correction plate 5 between the target and the substrate holder electrode,
In order to make the film thickness distribution in the radial direction of the film uniform, a plurality of different openings are inserted through the film thickness correction plate 5, which has a fan-shaped opening with a small diameter in the direction of the rotation axis of the substrate holder electrode 2 and a large diameter in the circumferential direction. It is disclosed that target materials A and B made of materials are sputtered so as to be alternately stacked. That is, as shown in FIG. 5(aL(b)), the apparatus is composed of a rotating mechanism/substrate holder electrode 2, a substrate 1, a shutter 6.7, cathode electrodes 3 and 4, targets A and B, and a film thickness correction plate 5. At the same time, 2 to 6 substrates 1 are attached to the substrate holder electrode 2, and the target A is attached while rotating the substrate holder electrode.
, B are alternately sputtered to form a laminated film. In order to make the film thickness distribution uniform in the circumferential direction of the substrate being rotated by the rotating mechanism, and also to make the film thickness distribution in the radial direction uniform, the sputtered material from the targets A and B is spread in a large circle in the circumferential direction. It is laminated onto a substrate through a small circular fan-shaped opening in the axial direction.

このスパッタ蒸着の積層形成工程は、第6図に示すフロ
ーチャートにしたがって行われる。
This sputter deposition layer forming step is performed according to the flowchart shown in FIG.

基板上にスパッタ物質A→B−hA→B→・・・の多層
薄膜を形成する場合、各層の膜厚を虫。
When forming a multilayer thin film of sputtered material A→B−hA→B→... on a substrate, the thickness of each layer must be carefully controlled.

九とすると、まず同じ回転速度で1回転当りに形成する
膜が”A−dBとなるようにスパッタ放電A、Bの電力
(スパッタ速度)と基板ホルダ電極の回転速度を設定す
る。次にシャッタ6と7を同時に開き、スパッタを行う
。これにより1回転する毎に(dA十dB)の積層膜が
形成し、あらかじめ設定した回転数N までスパッタを
行った後、シャッタ6.7を閉じて膜形成を終えると、
(dA+ dB) X N、、、層が形成される。この
方法によれば、150胴φのターゲットを用いた場合、
径方向に対して10cmの領域に対して膜厚分布±1%
以下が可能となる。一方、回転の円周方向に対しては膜
厚分布、は回転精度によって決まり、通常のスパッタ装
置では回転精度が±5%であるので膜厚分布は±5゛%
が得られる。
9, first set the power (sputtering speed) of sputtering discharges A and B and the rotational speed of the substrate holder electrode so that the film formed per rotation at the same rotational speed is "A-dB".Next, the shutter 6 and 7 are opened at the same time to perform sputtering.This forms a laminated film of (dA and 10 dB) each time it rotates, and after performing sputtering up to the preset number of revolutions N, shutters 6 and 7 are closed. After completing the film formation,
(dA+dB) X N, , a layer is formed. According to this method, when using a target with a diameter of 150 cylinders,
Film thickness distribution ±1% for a 10cm area in the radial direction
The following is possible. On the other hand, in the circumferential direction of rotation, the film thickness distribution is determined by the rotational accuracy, and since the rotational accuracy of normal sputtering equipment is ±5%, the film thickness distribution is ±5%.
is obtained.

したがって、膜厚分布±5%のものであれば、10cm
X20cm角の大面積に均一の厚さで被膜させることは
容易である。
Therefore, if the film thickness distribution is ±5%, 10 cm
It is easy to coat a large area of 20 cm square with a uniform thickness.

〈発明が解決しようとする問題点〉 しかし第1の方法では(dA+dl、)の第1周期を構
成するペアの膜厚は基板上の積層全面にわたって均一化
することが可能であっても、dえ、aaの各層ごとの膜
厚は、装置の構成上、第4図の基板の左右方向に分布を
持ってしまう。このため広い面積にわたって虫、九を均
一化することは困難である。また、(dA+d、)のペ
アをn層積む際のばらつきをΔdA、Δ尤存し、シャツ
タ開状態の時間の管理の方法では開閉シャッタ時間のば
らつきが問題となる。
<Problems to be Solved by the Invention> However, in the first method, even though it is possible to make the film thickness of the pair forming the first period of (dA+dl,) uniform over the entire surface of the laminated layer on the substrate, d However, the thickness of each layer of aa has a distribution in the left-right direction of the substrate in FIG. 4 due to the structure of the device. For this reason, it is difficult to make the particles uniform over a wide area. In addition, variations in stacking n layers of (dA+d,) pairs exist, ΔdA, Δ, and variations in opening/closing shutter time become a problem in the method of managing the time when the shutter is open.

特に、膜厚測定モニター法の場合はdA、dBが5〜1
0人のオーダの極薄層になると実質的にかなりの誤差が
生じ、ΔdA/dA、ΔdA/dB0.1〜0.05程
度に達する。以上の2つの欠点があるが、特に前者の大
面積にわたって均一化することは極めて困難である。
In particular, in the case of the film thickness measurement monitoring method, dA and dB are 5 to 1
When the layer becomes extremely thin, on the order of 0 people, a substantial error occurs, reaching approximately ΔdA/dA and ΔdA/dB of 0.1 to 0.05. Although there are the above two drawbacks, it is particularly difficult to make the former uniform over a large area.

また、第2の方法は上述したように150nmφのター
ゲットを用いた場合、径方向に対して10cmの区域に
対して膜厚分布が±1%以下にすることができる。また
、基ホルダ電極の回転方向に対して膜厚分布は回転精度
によって決まり、通常のスパッタ装置では回転精度が±
5%であるので、膜厚分布は±5%となる。したがって
、膜厚分布±5%のものであ、れば、10cmX20c
m角の大面積の領域に均一の厚さで被膜できる。しかし
ながら、多層薄膜構造を精度良く作成するためには膜厚
分布を±1%以内、また各層のdA、dl、のばらつき
ΔdA/dA、△de/’aを±1%以内が要求される
が、上述の装置では回転円周方向に対する分布を±1%
以内とすることは極めて困難である。なお、高回転精度
の駆動モータと高精度の歯車とを組合わせて、実験を行
ったが、得られた回転精度は±2%が限度であった。
Further, in the second method, when a target of 150 nmφ is used as described above, the film thickness distribution can be made to be ±1% or less in an area of 10 cm in the radial direction. In addition, the film thickness distribution in the direction of rotation of the base holder electrode is determined by the rotational accuracy, and in normal sputtering equipment, the rotational accuracy is ±
5%, the film thickness distribution is ±5%. Therefore, if the film thickness distribution is ±5%, 10 cm x 20 cm
A large area of m square area can be coated with a uniform thickness. However, in order to create a multilayer thin film structure with high precision, the film thickness distribution must be within ±1%, and the variations in dA and dl of each layer, ΔdA/dA and Δde/'a, must be within ±1%. , in the above device, the distribution in the rotational circumferential direction is ±1%.
It is extremely difficult to keep it within this range. An experiment was conducted using a combination of a high-precision drive motor and a high-precision gear, but the rotational precision obtained was limited to ±2%.

この発明は従来の多層薄膜の製造方法における以上の欠
点を解消するためになされたものであって、基板ホルダ
電極と、異なる材料で構成された複数のターゲットを有
するカソード電極間に電圧を加えてスパッタ放電させる
と共に基板ホルダ電極を一定の速度で回転させながら基
板をカソード電極上を通過させ。
This invention was made to eliminate the above-mentioned drawbacks in conventional multilayer thin film manufacturing methods, and involves applying a voltage between a substrate holder electrode and a cathode electrode having a plurality of targets made of different materials. The substrate is passed over the cathode electrode while causing sputter discharge and rotating the substrate holder electrode at a constant speed.

て、基板上にそれぞれの異なるターゲット物質を交互に
積層させる多層薄膜の製造方法において、各ターゲット
物質の膜厚のバラつきの少ない薄膜を順次交互に高精度
の周期性をもって積層した多層薄膜の製造方法を提供し
ようとするものである。
A method for manufacturing a multilayer thin film in which different target materials are alternately laminated on a substrate, in which thin films of each target material with little variation in film thickness are sequentially and alternately laminated with high precision periodicity. This is what we are trying to provide.

また、この発明は乙のような多層薄膜の製造方法に適す
る多層薄膜製造装置を提供しようとするものである。
Further, the present invention aims to provide a multilayer thin film manufacturing apparatus suitable for the method for manufacturing multilayer thin films such as B.

く問題点を解決するための手段〉 前記目的を達成するためのこの発明の多層薄膜の製造方
法は、基板ホルダ電極と、異なる物質で構成された複数
のターゲットを有する電極に電圧を加えてスパッタ放電
させると共に、基板を取り付けた基板ホルダ電極を一定
回転速度で回転させ、基板上に前記各ターゲット物質の
スパッタ被膜をそれぞれ一定の周期で順次交互に積層さ
せる多層薄膜の製造方法において、各ターゲット物質の
スパッタ層をそれぞれ被膜する際に、基板ホルダ電極を
一定回転速度で回転させた状態において当該ターゲット
物質のスパッタ路を開いて、基板を前記スパッタ路上を
所定回数通過させることにより当該ターゲット物質のス
パッタ層を所定膜厚に形成させてから、そのターゲット
物質のスパッタ路を閉じる工程と、この工程につづき他
のターゲット物質のスパッタ路を開いてから前記工程と
同様基板ホルダ電極を当該ターゲット物質のスパッタ路
上を通過させて当該ターゲット物質のスパッタ膜厚を所
定膜厚に被着させてからスパッタ路を閉じる工程とを繰
り返すことにより各ターゲット物質のスパッタ層を交互
に積層させることを特徴とするものである。
Means for Solving the Problems> A method for producing a multilayer thin film according to the present invention to achieve the above object uses sputtering by applying voltage to a substrate holder electrode and an electrode having a plurality of targets made of different materials. In a method for manufacturing a multilayer thin film, in which a substrate holder electrode to which a substrate is attached is rotated at a constant rotational speed while discharging, sputtered films of each of the target materials are sequentially and alternately laminated on the substrate at a constant period. When coating each sputter layer, the sputtering path for the target material is opened while the substrate holder electrode is rotated at a constant rotation speed, and the substrate is passed over the sputtering path a predetermined number of times, thereby sputtering the target material. After forming the layer to a predetermined thickness, there is a step of closing the sputtering path for that target material, and following this step, opening a sputtering path for another target material, and then connecting the substrate holder electrode to the sputtering path of the target material in the same way as in the previous step. The method is characterized in that the sputtered layers of each target material are alternately stacked by repeating the process of passing the target material through a road to deposit a sputtered film of the target material to a predetermined thickness and then closing the sputtering path. be.

また、上述の多層薄膜の製造方法において、ターゲット
と基板ホルダ電極間に配置した径方向のスパッタ膜厚均
一化膜厚修正板を通して、各ターゲット物質を一定周期
で、順次交互に積層させてもよい。
In addition, in the above-mentioned method for manufacturing a multilayer thin film, each target material may be sequentially and alternately laminated at a constant period through a radial sputtered film thickness equalization film thickness correction plate placed between the target and the substrate holder electrode. .

また、前記膜厚修正板として、基板ホルダ電極の回転軸
方向に小径で、円周方向に大径の扇形開口を有するもの
を使用してもよい。
Further, as the film thickness correction plate, one having a fan-shaped opening having a small diameter in the direction of the rotation axis of the substrate holder electrode and a large diameter in the circumferential direction may be used.

また、この発明の多層薄膜の製造装置を、基板ホルダ電
極板と、基板ホルダ電極板の基板ホルダ側に基板と対向
して配置した異なる物質から成る複数のターゲットを有
するカソード電極に、スパッタ放電電力を供給する電力
源と、基板ホルダ電極板をその中心軸の周しに回転させ
ろ駆動源と、基板ホルダ電極板の回転数と回転速度を検
出する回転検出センサと、基板ホルダ電極板と前記ター
ゲットを有する複数のカソード電極間にそれぞれ配設さ
れ、ターゲット物質のスパッタ蒸発路を開閉するシャッ
タ手段と、前記回転検出センサにより検出した前記基板
ホルダ電極の回転数および回転速度に応じ、前記シャッ
タ手段の開閉、カソード電極への放電電力および駆動源
への駆動電力を調整する制御語とから構成したことを特
徴とするものである。
In addition, the multilayer thin film manufacturing apparatus of the present invention is used to apply sputter discharge power to a cathode electrode having a substrate holder electrode plate and a plurality of targets made of different materials disposed on the substrate holder side of the substrate holder electrode plate facing the substrate. a drive source that rotates the substrate holder electrode plate around its central axis; a rotation detection sensor that detects the number of rotations and rotational speed of the substrate holder electrode plate; shutter means each disposed between a plurality of cathode electrodes and opening and closing a sputter evaporation path for the target material; It is characterized by comprising control words for adjusting opening/closing, discharge power to the cathode electrode, and drive power to the drive source.

く作   用〉 以上のように、この発明の多層薄膜の製造方法は、各タ
ーゲット物質のスパッタ層をそれぞれ被膜する際に、基
板ホルダ電極を一定回転速度で回転させた状態で当該タ
ーゲット物質のスパッタ路を用いてそのスパッタ路上を
基板ホルダ電極に取りつけた被膜形成用基板を所定n回
数通過させて当該ターゲット物質のスパッタ層を所定膜
厚に形成してからそのターゲット物質のスパッタ路を閉
じると共に、他のターゲット物質のスパッタ路を開いて
基板−ホルダ電極を当該ターゲット物質のスパッタ路上
を通過させて、当該ターゲットを所定のスパッタ膜厚に
被膜させてスパッタ路わ閉じる操作をN、@8回繰り返
して、各ターゲット物質のスパッタ層を交互に積層させ
るからたとえばAおよびBのターゲット物質をそれぞれ
スパッタ路を開いて基板ホルダ電極をRAIIImMお
よびRBmsx回回転させて膜厚dA、dl!lに形成
した1ペアのN、、、qけ積層させると、膜厚−+ R11111111倍になる。したがって、RAmsx
’ RBIIIIINを4回転、16回転と大にすると
ΔdA/dA、Δd、/dBは±1%、±0.5%と小
さくすることができる。
As described above, in the method for producing a multilayer thin film of the present invention, when coating a sputter layer of each target material, the sputtering layer of the target material is sputtered while the substrate holder electrode is rotated at a constant rotation speed. A film forming substrate attached to a substrate holder electrode is passed through the sputtering path a predetermined number of times using a sputtering path to form a sputtered layer of the target material to a predetermined thickness, and then the sputtering path of the target material is closed, Opening the sputtering path for another target material, passing the substrate-holder electrode over the sputtering path of the target material, coating the target with a predetermined sputtering film thickness, and closing the sputtering path is repeated N, @8 times. Then, the sputtered layers of each target material are alternately laminated, so for example, the sputtering paths are opened for each target material A and B, and the substrate holder electrode is rotated RAIIImM and RBmsx times to obtain film thicknesses dA, dl! When one pair formed in 1 is laminated by N,...q, the film thickness becomes -+R11111111 times. Therefore, RAMsx
' If RBIIIIN is increased to 4 rotations or 16 rotations, ΔdA/dA, Δd, /dB can be reduced to ±1% or ±0.5%.

く実 施 例〉 以下、実施例を挙げてこの発明の内容を具体的に説明す
る。
EXAMPLES> The content of the present invention will be specifically explained below with reference to Examples.

第1図ないし第3図はこの発明の多層薄膜の製造方法に
使用する装置の概略構成を示し、第2図は第1図の装置
20の構成図、第2図は第1図の装置の制御部の構成図
、第3図は第1図の装置の作業順序フローチャート図で
ある。
1 to 3 show the schematic configuration of an apparatus used in the method of manufacturing a multilayer thin film of the present invention, FIG. 2 is a configuration diagram of the apparatus 20 shown in FIG. 1, and FIG. FIG. 3 is a block diagram of the control section, and is a flowchart of the work order of the apparatus shown in FIG. 1.

第1図の装置20は、薄膜形成用基板1を取外付けた基
板ホルダ電極2の下方に配置された互いに異なる物質A
、Bからなるターゲットを有するカソード電極3,4と
、ターゲットAおよび8間のスパッタ路を図示外の電源
から供給される電力により突出後退により開および閉に
するシャッタ6.7と、基板ホルダ電極2にはその回転
速度および回転数を検出する回転検出センサと、基板ホ
ルダ電極2を中心軸の回りに回転させるモータ9とを有
する。
The apparatus 20 shown in FIG. 1 is composed of mutually different materials A disposed below a substrate holder electrode 2 to which a thin film forming substrate 1 is attached.
, B, a shutter 6.7 that opens and closes the sputtering path between the targets A and 8 by protruding and retracting using electric power supplied from a power supply not shown, and a substrate holder electrode. 2 has a rotation detection sensor that detects the rotation speed and number of rotations, and a motor 9 that rotates the substrate holder electrode 2 around a central axis.

さらに、回転検出センサ可に得られた基板ホルダ電極2
の回転数および回転速度に比例した電気出力10,11
を制御部12に送るとともに、制御部12を介してシャ
ッタ6゜7に供給される図示外の電源からのシャッタ駆
動電力をコントロールすると共に、モータ9およびカソ
ード電S3,4への電力をフィードバック制御し、基板
回転速度およびスパッタ放電を一定に制御する。
Furthermore, the substrate holder electrode 2 obtained with a rotation detection sensor
Electrical output proportional to the rotational speed and rotational speed 10,11
is sent to the control unit 12, and controls the shutter driving power from a power source (not shown) supplied to the shutter 6°7 via the control unit 12, as well as feedback control of the power to the motor 9 and cathode power S3, 4. Then, the substrate rotation speed and sputter discharge are controlled to be constant.

第1図においてシャッタ6.7の開閉駆動はたとえばボ
イスコイルモータなどを用い、シャッタを往復動させな
がら、回転させる機構にしてもよい。
In FIG. 1, the shutters 6 and 7 may be driven to open and close by using a voice coil motor, for example, and a mechanism that rotates the shutters while reciprocating them.

第1図のスパッタ装置を用い、ターゲット物質A、 B
f)i@薄膜をスパッタ形成させるにはたとえば第3図
のフローチャートにしたがって作業する。
Using the sputtering apparatus shown in Fig. 1, target materials A and B are
f) To form the i@ thin film by sputtering, the process is carried out, for example, according to the flowchart shown in FIG.

すなわち、ターゲット物質Aのスパッタ膜C以下「A膜
」、またターゲット物質Bのスパッタ膜を「B膜」とい
う。)の一層の厚さ虫を基板回転数−回で形成し、B膜
の一層の厚さ〜を基板回転数へ回で形成し、これを交互
に行って(dA+dB)のペア層をN、、8層だけ形成
する場合には、第2図の示す制御部12により所定のス
パッタ放電A、Bおよび所定の基板回転速度を設定し、
予備のスパッタを行っておく。次にシャッタ6を開いて
RA□回の回転数に達するまでA膜の形成を行い、次に
シャッタ7を開いてRIIIIIIIX回の回転数に達
するまでB膜の形成を行う。これにより、(dA+d、
)の1ペアの膜が形成され、これをN1.8だけくり返
して行う。これにより、ΔdA/dA、Δd8/dl。
That is, the sputtered film C of target material A will be referred to as "A film", and the sputtered film of target material B will be referred to as "B film". ) is formed by the number of substrate rotations, one layer of B film is formed by the number of substrate rotations, and this is done alternately to form a pair layer of (dA+dB) N , when forming only eight layers, predetermined sputter discharges A and B and a predetermined substrate rotation speed are set by the control unit 12 shown in FIG.
Perform preliminary sputtering. Next, the shutter 6 is opened and the film A is formed until the number of revolutions reaches RA□ times, and then the shutter 7 is opened and the film B is formed until the number of revolutions reaches RIIIIIIX times. As a result, (dA+d,
) is formed, and this process is repeated for N1.8. As a result, ΔdA/dA, Δd8/dl.

は、基板回転速度のばらつき±2%に対して、−+−+ それぞれRAffi、8倍’ R111111111倍
となる。したがってRア@X’RB□、Kを4回転、1
6回転とすると、Δd、/虫。
are -+-+ RAffi and 8 times' R111111111 times, respectively, for a variation of substrate rotation speed of ±2%. Therefore, R@X'RB□, K rotates 4 times, 1
Assuming 6 rotations, Δd,/bug.

Δda/’aは±1%、±0.5%と小さくすることが
できる。
Δda/'a can be made as small as ±1% or ±0.5%.

実施例として、150mφのターゲットA。As an example, target A is 150 mφ.

Bとしぞそれぞれカーボン(C)、タングステン(ロ)
を用いて、Cのスパッタ放電800w、Wのスパッタ放
電240w、Arガス圧5X10 Torr1基板回転
速度、1 rP m’ RAmmy+= 1、RBI?
1lI11 = 1、N=50の条件で鏡面仕上げの4
インチS i (111)ウニへ基板上に(C膜16人
十W膜24人)×50層となるC/W多層膜を作成した
。径方向の膜厚分布、xNs回折から求めた人口格子面
間隔の分布は、いずれも上0゜8%と良好であるが、円
周方向に対する分布は膜厚分布で±1.5%、人口格子
面間隔で上1゜4%であった。また、1ケ所の位置での
Δd/d (50層のばらつき)は上2゜1%であった
。これに対して、実施例2として、基板回転速度18 
rpmSRAffi、=9、R,7,っ=9、N、、、
= 50の条件で、他の条件は実施例1と同じで、4イ
ンチSiウェハ基板上に(C膜16人+W膜24人)X
50@となるC/W多層膜を作成した。径方向の膜厚分
布、人口格子面間隔の分布は実施例1と同様に上0゜8
%であるが、円周方向に対する膜厚分布は膜厚測定精度
以下(1%以下)、人口格子面間隔で上0゜5%、Δd
/dは上0゜7%と極めて良好であった。このようにC
膜あるいはW膜を一層形成する場合に、基板を複数回回
転させて回転むらによる統計的誤差を減らすことにより
、各層ごとの周期的積み重ねのばらつきを小さくするこ
とができる。
B and groove are carbon (C) and tungsten (B) respectively.
Using C sputter discharge 800W, W sputter discharge 240W, Ar gas pressure 5X10 Torr1 substrate rotation speed, 1 rP m'RAmmy+=1, RBI?
4 with mirror finish under the conditions of 1lI11 = 1, N = 50
A C/W multilayer film with 50 layers (16 C films and 24 W films) was created on an inch S i (111) substrate. The film thickness distribution in the radial direction and the distribution of the population lattice spacing determined from xNs diffraction are both good at 0°8% above, but the distribution in the circumferential direction is ±1.5% in film thickness distribution, and the population The lattice spacing was 1°4% above. Further, Δd/d (dispersion among 50 layers) at one position was 2°1%. On the other hand, as Example 2, the substrate rotation speed is 18
rpmSRAffi,=9,R,7,=9,N,...
= 50, the other conditions were the same as in Example 1, and (16 C films + 24 W films) X
A C/W multilayer film with a thickness of 50@ was created. The film thickness distribution in the radial direction and the distribution of the artificial lattice plane spacing are the same as in Example 1, with the upper 0°8.
%, but the film thickness distribution in the circumferential direction is below the film thickness measurement accuracy (1% or less), and the artificial lattice spacing is above 0°5%, Δd
/d was extremely good at 0.7%. In this way C
When forming a single layer of a film or a W film, by rotating the substrate multiple times to reduce statistical errors due to uneven rotation, it is possible to reduce variations in the periodic stacking of each layer.

なお、上述の実施例は複数のターゲット物質をスパッタ
法によって基板上に交互に被膜させる多層薄膜製造方法
について例示したが、スパッタ法によらず電子ビーム加
熱、高周波加熱あるいは抵抗加熱溶融法によりこれら複
数の物質を蒸着させ、基板上に交互に被膜させてもよい
In addition, although the above-mentioned example illustrated a multilayer thin film manufacturing method in which a plurality of target materials are alternately coated on a substrate by sputtering, these multiple target materials can be produced by electron beam heating, high frequency heating, or resistance heating melting method without using sputtering. The materials may be deposited and alternately coated on the substrate.

〈発明の効果〉 以上説明したように、基板を回転させながら2つ以上の
ターゲットからスパッタされた粒子を基板上に交互に積
層して形成する方法において、シャッタの開閉動作を基
板の設定回数と同期させるので、回転むらによる各層の
厚みむらを小さくする利点がある。なお、本発明の装置
を用い、シャッタと基板回転数との連動方式で多層薄膜
を作製するばかりでなく、ターゲットの物質をNbとS
i、NbとAI、NbとSn、NbとGeという組合せ
により、超伝導を示すA15構造の周期長に合わせて人
口格子状に交互に形成が可能である。
<Effects of the Invention> As explained above, in a method of alternately stacking particles sputtered from two or more targets on a substrate while rotating the substrate, the opening/closing operation of the shutter is adjusted to the set number of times of the substrate. Since they are synchronized, there is an advantage that the thickness unevenness of each layer due to uneven rotation can be reduced. In addition, using the apparatus of the present invention, not only can a multilayer thin film be fabricated by interlocking the shutter and the substrate rotation speed, but also the target materials can be
By the combinations of i, Nb and AI, Nb and Sn, and Nb and Ge, it is possible to form them alternately in an artificial lattice shape according to the periodic length of the A15 structure exhibiting superconductivity.

例えばNbとSiについて基板温度600℃〜300℃
の範囲でNbとSiを2〜3人づつの積層を行ったとこ
ろ、A15相の生成がXIj1回折から確認できた。し
たがって、本発明は極めて高精度の周期性を有する人口
格子膜や熱的非平衡の構造膜を作製する上での利点があ
る。
For example, for Nb and Si, the substrate temperature is 600°C to 300°C.
When Nb and Si were laminated by 2 to 3 people each in the range of , the formation of A15 phase was confirmed from XIj1 diffraction. Therefore, the present invention is advantageous in producing artificial lattice films having extremely high precision periodicity and thermally non-equilibrium structural films.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明にかかる多層薄膜製造装置の全体構成
図、第2図は第1図の制御部の概略構成図、第3図は第
1図の多層薄膜製造装置の作業順序フローチャート図、
第4図は従来の多層薄膜の製造方法に使用する装置の概
略構成図、第5図(a) (b)はそれぞれ従来の多層
薄膜の他の製造方法に使用する装置の断面図および上面
図、第6図は第5図の装置の作業順序のフローチャート
図である。 図     中、 1・・・薄膜形成用基板、 2・・・基板ホルダ電極、 3.4・・・カソード電極、 A、B・・・ターゲット(互いに異なる物質からなって
いる)、 6.7・・・シャッタ、 8・・・回転検出センサ、 9・・・モータ、 10・・・回転検出カウンタ、 11・・・回転速度検出計、 12・・・制御部、 20・・・多層薄膜形成装置
FIG. 1 is an overall configuration diagram of the multilayer thin film manufacturing apparatus according to the present invention, FIG. 2 is a schematic configuration diagram of the control section of FIG.
Fig. 4 is a schematic configuration diagram of an apparatus used in a conventional method for producing a multilayer thin film, and Figs. 5(a) and 5(b) are a cross-sectional view and a top view, respectively, of the apparatus used in another conventional method for producing a multilayer thin film. , FIG. 6 is a flowchart of the operating sequence of the apparatus of FIG. 5. In the figure, 1...Substrate for thin film formation, 2...Substrate holder electrode, 3.4...Cathode electrode, A, B...Targets (made of different substances), 6.7. ...Shutter, 8...Rotation detection sensor, 9...Motor, 10...Rotation detection counter, 11...Rotation speed detector, 12...Control unit, 20...Multilayer thin film forming device

Claims (4)

【特許請求の範囲】[Claims] (1)基板ホルダ電極と、異なる物質で構成された複数
のターゲットを有する電極に電圧を加えてスパッタ放電
させると共に、基板を取り付けた基板ホルダ電極を一定
回転速度で回転させ、基板上に前記各ターゲット物質の
スパッタ被膜をそれぞれ一定の周期で順次交互に積層さ
せる多層薄膜の製造方法において、各ターゲット物質の
スパッタ層をそれぞれ被膜する際に、基板ホルダ電極を
一定回転速度で回転させた状態において当該ターゲット
物質のスパッタ路を開いて、基板を前記スパッタ路上を
所定回数通過させることにより当該ターゲット物質のス
パッタ層を所定膜厚に形成させてから、そのターゲット
物質のスパッタ路を閉じる工程と、この工程につづき他
のターゲット物質のスパッタ路を開いてから前記工程と
同様基板ホルダ電極を当該ターゲット物質のスパッタ路
上を通過させて当該ターゲット物質のスパッタ膜厚を所
定膜厚に被着させてからスパッタ路を閉じる工程とを繰
り返すことにより各ターゲット物質のスパッタ層を交互
に積層させることを特徴とする多層薄膜の製造方法。
(1) A voltage is applied to the substrate holder electrode and an electrode having multiple targets made of different materials to cause sputter discharge, and the substrate holder electrode with the substrate attached is rotated at a constant rotational speed, and each of the above targets is placed on the substrate. In a method for manufacturing a multilayer thin film in which sputtered films of target materials are sequentially and alternately deposited at a constant period, when each sputtered layer of each target material is deposited, the substrate holder electrode is rotated at a constant rotational speed. a step of opening a sputtering path for a target material, forming a sputtered layer of the target material to a predetermined thickness by passing the substrate over the sputtering path a predetermined number of times, and then closing the sputtering path for the target material; Subsequently, after opening the sputtering path for another target material, the substrate holder electrode is passed over the sputtering path of the target material to deposit the target material to a predetermined thickness, and then the sputtering path is opened. 1. A method for producing a multilayer thin film, characterized in that sputtered layers of each target material are alternately stacked by repeating the step of closing.
(2)前記ターゲットと基板ホルダ電極間に配置した径
方向のスパッタ膜厚均一化膜厚修正板を通して、各ター
ゲット物質を一定周期で、順次交互に積層させることを
特徴とする特許請求の範囲第(1)項記載の多層薄膜の
製造方法。
(2) Each target material is sequentially and alternately laminated at a constant period through a radial sputtered film thickness uniformity film thickness correction plate disposed between the target and the substrate holder electrode. The method for producing a multilayer thin film according to item (1).
(3)前記膜厚修正板として、基板ホルダ電極の回転軸
方向に小径で、円周方向に大径の扇形開口を有するもの
を使用することを特徴とする特許請求の範囲第(2)項
記載の多層薄膜の製造方法。
(3) Claim (2) characterized in that the film thickness correcting plate is a plate having a fan-shaped opening having a small diameter in the direction of the rotation axis of the substrate holder electrode and a large diameter in the circumferential direction. A method for manufacturing the multilayer thin film described.
(4)基板ホルダ電極板と、基板ホルダ電極板の基板ホ
ルダ側に基板と対向する側に配置した互いに異なる物質
から成る複数のターゲットを有するカソード電極に、ス
パッタ放電電力を供給する電力源と、基板ホルダ電極板
をその中心軸の周りに回転させる駆動源と、基板ホルダ
電極板の回転数と回転速度を検出する回転検出センサと
、基板ホルダ電極板と前記ターゲットを有する複数のカ
ソード電極間にそれぞれ配設され、ターゲット物質のス
パッタ蒸発路を開閉するシャッタ手段と、前記回転検出
センサにより検出した前記基板ホルダ電極の回転数およ
び回転速度に応じ、前記シャッタ手段の開閉、カソード
電極への放電電力および駆動源への駆動電力を調整する
制御器とからなることを特徴とする多層薄膜製造装置。
(4) a power source that supplies sputter discharge power to a substrate holder electrode plate and a cathode electrode having a plurality of targets made of mutually different materials arranged on the substrate holder side of the substrate holder electrode plate facing the substrate; A drive source that rotates the substrate holder electrode plate around its central axis, a rotation detection sensor that detects the number of rotations and rotation speed of the substrate holder electrode plate, and a plurality of cathode electrodes having the target between the substrate holder electrode plate and the target. A shutter means is provided, and opens and closes a sputter evaporation path for the target material, and opens and closes the shutter means and discharges power to the cathode electrode in accordance with the rotation number and rotation speed of the substrate holder electrode detected by the rotation detection sensor. and a controller for adjusting drive power to the drive source.
JP8886985A 1985-04-26 1985-04-26 Method and apparatus for production of multi-layered thin film Granted JPS61250163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8886985A JPS61250163A (en) 1985-04-26 1985-04-26 Method and apparatus for production of multi-layered thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8886985A JPS61250163A (en) 1985-04-26 1985-04-26 Method and apparatus for production of multi-layered thin film

Publications (2)

Publication Number Publication Date
JPS61250163A true JPS61250163A (en) 1986-11-07
JPH0156141B2 JPH0156141B2 (en) 1989-11-29

Family

ID=13955015

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8886985A Granted JPS61250163A (en) 1985-04-26 1985-04-26 Method and apparatus for production of multi-layered thin film

Country Status (1)

Country Link
JP (1) JPS61250163A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274756A (en) * 1987-04-28 1988-11-11 Toda Kogyo Corp Vapor deposited multi-layered thin film forming device
JPS63274761A (en) * 1987-04-28 1988-11-11 Toda Kogyo Corp Vacuum deposited multi-layered thin film forming device
JPH01123065A (en) * 1987-11-05 1989-05-16 Fuji Electric Co Ltd Thin film-forming apparatus
JPH01301851A (en) * 1988-05-30 1989-12-06 Sanyo Shinku Kogyo Kk Method and apparatus for manufacturing transparent conductive film by sputtering
JPH02107757A (en) * 1988-10-15 1990-04-19 Koji Hashimoto Production of amorphous superlattice alloy
JP2006150160A (en) * 2004-11-25 2006-06-15 Hosokawa Funtai Gijutsu Kenkyusho:Kk Powder film forming apparatus
JP2006219753A (en) * 2005-02-14 2006-08-24 Shincron:Kk Thin film deposition system
JP2008257239A (en) * 2008-03-31 2008-10-23 Hoya Corp Method for manufacturing phase shift mask blank and device for manufacturing phase shift mask blank
WO2010073711A1 (en) * 2008-12-26 2010-07-01 キヤノンアネルバ株式会社 Sputtering equipment, sputtering method and method for manufacturing an electronic device
US8012314B2 (en) 2000-09-12 2011-09-06 Hoya Corporation Manufacturing method and apparatus of phase shift mask blank
WO2017110464A1 (en) * 2015-12-24 2017-06-29 コニカミノルタ株式会社 Film formation apparatus and film formation method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0737667B2 (en) * 1990-01-25 1995-04-26 工業技術院長 Thin film deposition method
JP4521606B2 (en) * 2000-02-29 2010-08-11 株式会社昭和真空 Method and apparatus for controlling film thickness distribution in thin film manufacturing apparatus
JP7076437B2 (en) 2017-05-17 2022-05-27 旭化成メディカル株式会社 Phosphorus adsorbent for blood treatment, blood treatment system and blood treatment method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912838A (en) * 1972-05-15 1974-02-04

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4912838A (en) * 1972-05-15 1974-02-04

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274756A (en) * 1987-04-28 1988-11-11 Toda Kogyo Corp Vapor deposited multi-layered thin film forming device
JPS63274761A (en) * 1987-04-28 1988-11-11 Toda Kogyo Corp Vacuum deposited multi-layered thin film forming device
JPH01123065A (en) * 1987-11-05 1989-05-16 Fuji Electric Co Ltd Thin film-forming apparatus
JPH01301851A (en) * 1988-05-30 1989-12-06 Sanyo Shinku Kogyo Kk Method and apparatus for manufacturing transparent conductive film by sputtering
JPH02107757A (en) * 1988-10-15 1990-04-19 Koji Hashimoto Production of amorphous superlattice alloy
US8012314B2 (en) 2000-09-12 2011-09-06 Hoya Corporation Manufacturing method and apparatus of phase shift mask blank
JP2006150160A (en) * 2004-11-25 2006-06-15 Hosokawa Funtai Gijutsu Kenkyusho:Kk Powder film forming apparatus
JP2006219753A (en) * 2005-02-14 2006-08-24 Shincron:Kk Thin film deposition system
JP2008257239A (en) * 2008-03-31 2008-10-23 Hoya Corp Method for manufacturing phase shift mask blank and device for manufacturing phase shift mask blank
JP4489820B2 (en) * 2008-03-31 2010-06-23 Hoya株式会社 Phase shift mask blank manufacturing method and phase shift mask blank manufacturing apparatus
WO2010073711A1 (en) * 2008-12-26 2010-07-01 キヤノンアネルバ株式会社 Sputtering equipment, sputtering method and method for manufacturing an electronic device
JP4739464B2 (en) * 2008-12-26 2011-08-03 キヤノンアネルバ株式会社 Sputtering apparatus, sputtering method, and electronic device manufacturing method
JP2011149104A (en) * 2008-12-26 2011-08-04 Canon Anelva Corp Sputtering equipment, sputtering method and method for manufacturing electronic device
CN102227514A (en) * 2008-12-26 2011-10-26 佳能安内华股份有限公司 Sputtering equipment, sputtering method and method for manufacturing electronic device
US8906208B2 (en) 2008-12-26 2014-12-09 Canon Anelva Corporation Sputtering apparatus, sputtering method, and electronic device manufacturing method
WO2017110464A1 (en) * 2015-12-24 2017-06-29 コニカミノルタ株式会社 Film formation apparatus and film formation method

Also Published As

Publication number Publication date
JPH0156141B2 (en) 1989-11-29

Similar Documents

Publication Publication Date Title
JPS61250163A (en) Method and apparatus for production of multi-layered thin film
WO2007066511A1 (en) Film forming apparatus and method of forming film
CA2214546A1 (en) Method and apparatus for the high rate automated manufacture of thin films
US20060188660A1 (en) Method for depositing multilayer coatings
US6475557B1 (en) Method for manufacturing optical filter
US5501911A (en) Copper crystal film coated organic substrate
US4591417A (en) Tandem deposition of cermets
US8133361B2 (en) Thin film coating system and method
JPH04323362A (en) Formation of multilayer film and its forming device
JP2001240965A (en) Method and apparatus for controlling film thickness distribution in thin film manufacturing apparatus
EP2220263A1 (en) Thin film coating system and method
JPS6082663A (en) Method and apparatus for manufacturing mixture thin film
JP3439993B2 (en) Magnetron sputtering equipment
JPH06293958A (en) Formation of film using laser ablation
JP3660698B2 (en) Fabrication method of artificial lattice
JPS63266062A (en) Production of multielemental sputtering thin film and sputtering device
JP2003147521A (en) Apparatus and method for thin film deposition
JPS61186472A (en) Apparatus for producing non-crystalline film deposited by evaporation
JP2003247811A5 (en)
JPH03166357A (en) Production of metallic foil and metallic foil
JPH02160609A (en) Target for forming oxide superconductor
JP3299769B2 (en) Superconductor manufacturing method
JP2001049431A (en) Sputtering equipment and thin film formation
JPS63274756A (en) Vapor deposited multi-layered thin film forming device
JPH0372071A (en) Production of multilayered thin film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term