JP4521606B2 - Method and apparatus for controlling film thickness distribution in thin film manufacturing apparatus - Google Patents
Method and apparatus for controlling film thickness distribution in thin film manufacturing apparatus Download PDFInfo
- Publication number
- JP4521606B2 JP4521606B2 JP2000052667A JP2000052667A JP4521606B2 JP 4521606 B2 JP4521606 B2 JP 4521606B2 JP 2000052667 A JP2000052667 A JP 2000052667A JP 2000052667 A JP2000052667 A JP 2000052667A JP 4521606 B2 JP4521606 B2 JP 4521606B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- target
- thin film
- film thickness
- manufacturing apparatus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
- Chemical Vapour Deposition (AREA)
- Electrodes Of Semiconductors (AREA)
Description
【0001】
【発明の属する技術分野】
本発明は、薄膜製造装置により基板に成膜される薄膜の膜厚分布を制御する方法及びその装置に関し、特に、所望する薄膜を均一な膜厚分布で得る為の方法及び装置に関するものである。
【0002】
【従来の技術】
薄膜製造方法として用いられるスパッタリング法や蒸着法等では、蒸発物は一般的に蒸発角度分布を持ち、対向する基板面では膜厚分布を持つ。又、スパッタリング法ではターゲット面内の成膜レート不均一性が、蒸着法では蒸発源からの蒸発方向偏り等が発生し、基板上の膜厚分布を再現良く均一にすることが困難であった。
【0003】
そこで、これまでの薄膜製造装置では、特開平2−11757号に示される如く、ターゲットと対向して基板を配置する際に、それらを偏芯して配置し、この偏芯量を最適化した上で基板を高速回転することにより、基板上の薄膜分布を改善することが一般的に行われてきた。
【0004】
この時基板は一定速度で回転し、成膜時間内に基板を高速に、なるべく多数回回転することにより基板内面分布の向上を行っていた。
【0005】
又、本件発明者は、特願平10−238338号に於いて、ターゲットの消耗状態、すなわちマグネトロンスパッタリングによるターゲットの侵食部分(エロージョン)をモニターする形状測定機構を設け、該ターゲットの消耗状態に応じて、TS距離を可変する制御装置により、基板ステージを駆動して、基板とターゲット間を最適距離に設定し、成膜速度を算出して、決められた時間スパッタすることにより、所望する膜厚と均一な膜厚分布を得ようとする、スパッタ装置に於ける膜厚分布制御方法とその装置を提案した。
【0006】
【発明が解決しようとする課題】
しかしながら、近年の電子デバイスで要求される堆積膜厚は数十nm以下と薄く、タクトタイムの短縮要求から成膜時間は短く、更に基板面内分布の要求精度はますます厳しくなってきている。この為、基板高速回転による膜厚分布の改善には回転速度の観点から限界が生じてきている。
【0007】
又、高速回転化に伴い、真空中に導入するシャフトシールの耐久性や信頼性が大きく低下すると共に、近年実用化されつつあるφ300mm径の基板サイズに対応する基板チャッキング等の付加機構が複雑且つ重量化し、回転の高速化を困難にしている。
【0008】
更に、前述のように、特願平10−238338号「スパッタ装置に於ける膜厚分布制御方法とその装置」として本件発明者が提案した方法を実施した場合でも、ますます厳しくなってきた基板面内分布の要求精度を、生産性良く安定してクリヤーする為に、更なる改良が要求されてきている。
【0009】
本発明は上記のような従来持つ問題を解決するものであり、成膜レートのターゲット面内不均一性及び、蒸発方向の偏りに起因する基板膜厚分布を最小限にする方法及びその装置を提供すると共に、薄膜製造装置の信頼性を向上することを目的としている。
【0010】
【課題を解決する為の手段】
本発明では、成膜装置内部に取付けてある膜厚モニターや、外部にて測定可能なパラメータの測定などにより、成膜レートの実測値もしくは予測値を求め、これら値及び、目標とする膜厚値から、予測成膜時間を演算し、この予測成膜時間にあらかじめ設定した整数回基板を回転するようモーターの回転速度をコントロールする。又、基板回転開始時刻と停止時刻は、それぞれ成膜開始時刻と成膜終了時刻に連動している。
【0011】
整数回の基板回転により成膜レートのターゲット面内蒸発速度の不均一性及び、蒸発方向の偏りを相殺し、基板上の膜厚分布を改善することが出来る。
【0012】
【発明の実施の形態】
(1)実施例の構成の説明
以下この発明の実施例の一つとして、スパッタリング成膜に於ける実施例を図面に基づいて説明する。
図1のスパッタ装置は、真空槽(1)を1x10-3Pa程度の高真空領域までガス排気弁(11)によって排気後、ガス導入弁(7)からボンベ(9)内のAr等の放電用ガスを圧力で、0.08〜3Pa程度導入し、基板(12)の上部でターゲット(4)にスパッタ電力を印可して放電を開始させ、磁石(2)で発生するマグネトロン放電によってターゲット材をスパッタして、基板(12)上でターゲット材の膜を堆積させるように構成されている。
【0013】
又、レーザー変位計(15)を形状センサー用モーター(16)にギヤー等で連動するようにした駆動装置により、ターゲット(4)の消耗状態をモニターする形状測定装置(17)が設けられている。該測定装置(17)による該ターゲット(4)の形状測定結果から、制御装置(19)により、該基板ステージ駆動装置(18)の基板ステージ用モーター(14)にギヤー等で連動された基板ステージ(13)を駆動して最適TS間距離に設定するよう構成されている。
【0014】
更に、制御装置(19)により、基板ステージ回転駆動装置(21)の基板ステージ回転駆動用モーター(20)にギヤー等で連動された基板ステージ(13)を、成膜時間に合わせて整数回回転駆動するよう構成されている。
【0015】
(2)実施例の作用・動作の説明
以下、図1の構成装置に於いて、(4)ターゲットに、直径250mm、厚さ6mmのアルミニウム製ターゲットを用いて、直径100mmの丸形基板(12)上にアルミニウム膜を堆積させた実施例を示す。
ガス導入口(7)から放電用ガスとしてアルゴンガスを0.4Paなる分圧まで導入し、スパッタリング用電源(6)により3.3kWの電力をターゲット(4)に印可し、成膜を行った。
【0016】
尚、成膜直前にエロージョン深さ(d)を測定、膜厚分布が最も良くなるようにターゲットと基板間の距離(T/S距離)を微調整し、直前の成膜時に測定された放電電圧(Vd)、放電電流(Id)、等から予め推測される成膜速度(R)を、制御用コンピュータを用いて経験式(1)から算出し、更に式(2)から目的とする膜厚(D)を得る成膜時間(T)を求め、基板ステージがT時間で1回転するように基板ステージ回転速度(r)を式(3)から導出し、回転速度可変モーター(20)により基板(12)及び、基板ステージ(13)を回転させ、同時に成膜を開始した。
【数1】
R={2.64×10-5×d−8.95×10-6×d2+2.43×10-3−1.09×10-5×TS}
×Id×Vd 1.4 …… 式(1)
【数2】
T = D/R …… 式(2)
【数3】
r = n/T …… 式(3)
但し、n:1,2,3,……(自然数)であり、成膜T時間内にn回回転することを示す。
【0017】
又、高い精度で膜厚を測定できるように、直径100mmの基板内に、直径12.6mmの水晶振動子を、縦横直交するように9個配置し、成膜前後の周波数変化の膜厚換算により求めた。
【0018】
基板上に厚さ約420nmのアルミニウム膜を堆積させた場合の、基板内の膜厚分布測定結果を図2及び、図3に示す。尚、図中の横軸は、基板中心からX、Y各方向の位置を示し、縦軸は膜厚を示している。
【0019】
図2は、基板ステージ(13)を回転せずに成膜を行った結果であり、この場合の基板面内分布は±1.25%であった。
【0020】
又、図3は、式(3)のn=1にて、成膜時間に合わせて基板ステージ(13)を1回転し、回転無しの場合と同様のアルミニウム膜を堆積させた場合の、基板内の膜厚分布測定結果である。この時の基板面内分布は、±0.48%であった。
【0021】
この結果から、基板を回転させない場合にみられたターゲット不均質から生じるとみられる分布の傾きは、基板回転数整数制御を行うことによりほとんど見られなくなった。
【0022】
(3)他の実施例の説明、他の用途への転用例の説明
尚、上記実施例では、薄膜製造装置としてスパッタリング装置を用いたが、エレクトロンビームや抵抗加熱による蒸着装置に用いても良い。蒸着装置に転用した例を図4に示す。
真空槽(1)を1×10-3Pa程度の高真空領域まで、ガス排気弁(11)によって排気後、蒸発源(25)に蒸発原電源(26)から電力を供給し、シャッター(27)を開いて蒸着を開始する。
【0023】
蒸着源(25)から蒸発した粒子は、対向して配置された基板ドーム(22)に取付けられた基板(12)に蒸着して薄膜を形成する。
【0024】
薄膜モニター(24)で、該基板(12)に蒸着した薄膜を監視し、制御装置(19)によって所望する膜厚が得られたところで該シャッター(27)を閉じ、成膜を終了する。
【0025】
この時、基板ドーム回転用モーター(23)にギヤー等で連動された該基板ドーム(22)を、成膜時間に合わせて、整数回回転駆動するよう構成したことによって、良好な基板面内膜厚分布を得ることが出来る。
【0026】
又、蒸着開始時刻及び、終了時刻を、該基板ドーム(22)に取付けられた該基板(12)の回転開始時刻及び、回転終了時刻に同期を取って回転駆動することは言うまでも無い。
【0027】
【発明の効果】
以上の様に本発明は、基板に飛来する粒子が面内で均一でない場合でも、基板を成膜時間内に正確に整数回の回転をすることにより、不均質性を相殺できるため、基板面内の膜厚分布を改善することが可能になる。
【0028】
特に成膜中に成膜時間と同期を取りながら基板を1回転から数回転制御するのみで、良好な基板面内の膜厚分布を得る事が出来る為、従来の様に基板を多数回転する必要が無く従って、基板ステージ回転軸、モーター及び、ギアなどの負荷を最小限にすることが可能であり、構造の簡素化、装置の軽量化、メンテナンス性の向上、更に耐久性の向上につながる。
【図面の簡単な説明】
【図1】本発明を、スパッタリング装置に適用した場合の実施例の説明図である。
【図2】本発明を、適用する前の基板上の位置と膜厚分布の関係を示す説明図である。
【図3】本発明を、適用した場合の基板上の位置と膜厚分布の関係を示す説明図である。
【図4】本発明を、蒸着装置に適用した場合の実施例の説明図である。
【符号の説明】
1 真空槽
2 磁石
3 バッキングプレート
4 ターゲット
5 エロージョン
6 スパッタリング用電源
7 ガス導入弁
8 メモリー
9 ガスボンベ
10 キーパネル
11 排気弁
12 基板
13 基板ステージ
14 基板ステージ用モーター
15 形状測定センサー
16 形状センサー用モーター
17 形状測定装置
18 基板ステージ駆動装置
19 制御装置
20 基板ステージ回転モーター
21 基板ステージ回転駆動装置
22 基板ドーム
23 基板ドーム回転モーター
24 膜厚モニター
25 蒸発源
26 蒸発源電源
27 シャッター[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method and apparatus for controlling the film thickness distribution of a thin film formed on a substrate by a thin film manufacturing apparatus, and more particularly to a method and apparatus for obtaining a desired thin film with a uniform film thickness distribution. .
[0002]
[Prior art]
In a sputtering method or a vapor deposition method used as a thin film manufacturing method, the evaporated substance generally has an evaporation angle distribution, and a film thickness distribution on the opposing substrate surface. In addition, the sputtering method has a non-uniform film formation rate in the target surface, and the evaporation method has a deviation in the evaporation direction from the evaporation source, making it difficult to make the film thickness distribution on the substrate uniform and reproducible. .
[0003]
Therefore, in the conventional thin film manufacturing apparatus, as shown in JP-A-2-11757, when the substrates are arranged facing the target, they are arranged eccentrically, and the eccentricity is optimized. It has been common practice to improve the thin film distribution on the substrate by rotating the substrate at a high speed.
[0004]
At this time, the substrate was rotated at a constant speed, and the inner surface distribution of the substrate was improved by rotating the substrate at high speed as many times as possible within the film formation time.
[0005]
In addition, in the Japanese Patent Application No. 10-238338, the present inventor is provided with a shape measuring mechanism for monitoring the target consumption state, that is, the erosion portion of the target by magnetron sputtering, and according to the target consumption state. Then, the substrate stage is driven by the control device that varies the TS distance, the optimum distance between the substrate and the target is set, the film formation rate is calculated, and sputtering is performed for a predetermined time, thereby obtaining a desired film thickness. A method and apparatus for controlling the film thickness distribution in a sputtering apparatus have been proposed to obtain a uniform film thickness distribution.
[0006]
[Problems to be solved by the invention]
However, the deposited film thickness required for electronic devices in recent years is as thin as several tens of nanometers, the film formation time is short due to the demand for shortening the tact time, and the required accuracy of the in-plane distribution is becoming increasingly strict. For this reason, the improvement of the film thickness distribution by the high-speed rotation of the substrate has a limit from the viewpoint of the rotation speed.
[0007]
In addition, as the rotation speed increases, the durability and reliability of the shaft seal introduced into the vacuum is greatly reduced, and the additional mechanism such as substrate chucking corresponding to the φ300 mm diameter substrate size that has been put into practical use in recent years is complicated. In addition, the weight is increased, making it difficult to increase the rotation speed.
[0008]
Further, as described above, even when the method proposed by the present inventor is implemented as Japanese Patent Application No. 10-238338 "Method and apparatus for controlling film thickness distribution in sputtering apparatus", the substrate has become increasingly strict. In order to clear the required accuracy of in-plane distribution stably with high productivity, further improvements have been required.
[0009]
The present invention solves the conventional problems as described above, and provides a method and apparatus for minimizing the substrate film thickness distribution resulting from the non-uniformity of the deposition rate in the target surface and the deviation of the evaporation direction. It aims at improving and the reliability of a thin film manufacturing apparatus while providing.
[0010]
[Means for solving the problems]
In the present invention, an actual value or a predicted value of the film forming rate is obtained by a film thickness monitor attached inside the film forming apparatus or measurement of a parameter that can be measured externally, and these values and a target film thickness are obtained. The predicted film formation time is calculated from the value, and the rotation speed of the motor is controlled so that the substrate is rotated an integer number of times set in advance for this predicted film formation time. The substrate rotation start time and stop time are linked to the film formation start time and film formation end time, respectively.
[0011]
An integer number of substrate rotations can offset the non-uniformity of the deposition rate within the target surface and the deviation of the evaporation direction, thereby improving the film thickness distribution on the substrate.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
(1) Description of Configuration of Embodiment As an embodiment of the present invention, an embodiment in sputtering film formation will be described with reference to the drawings.
The sputtering apparatus shown in FIG. 1 discharges the vacuum chamber (1) to a high vacuum region of about 1 × 10 −3 Pa by a gas exhaust valve (11) and then discharges Ar or the like in the cylinder (9) from the gas introduction valve (7). The working gas is introduced at a pressure of about 0.08 to 3 Pa, a sputtering power is applied to the target (4) above the substrate (12) to start the discharge, and the target material is generated by the magnetron discharge generated by the magnet (2). The film of the target material is deposited on the substrate (12).
[0013]
Further, a shape measuring device (17) for monitoring the consumption state of the target (4) is provided by a driving device in which the laser displacement meter (15) is interlocked with the shape sensor motor (16) by a gear or the like. . From the shape measurement result of the target (4) by the measuring device (17), the substrate stage linked to the substrate stage motor (14) of the substrate stage driving device (18) by a gear or the like by the control device (19). (13) is driven to set the optimum distance between TSs.
[0014]
Further, the control unit (19) rotates the substrate stage (13) linked to the substrate stage rotation drive motor (20) of the substrate stage rotation drive device (21) by gears or the like an integer number of times according to the film formation time. It is configured to drive.
[0015]
(2) Description of operation and operation of the embodiment Hereinafter, in the configuration apparatus of FIG. 1, (4) a round substrate (12 mm in diameter) using an aluminum target having a diameter of 250 mm and a thickness of 6 mm as a target. An example in which an aluminum film is deposited thereon is shown.
Argon gas was introduced as a discharge gas from the gas inlet (7) to a partial pressure of 0.4 Pa, and 3.3 kW of power was applied to the target (4) by the sputtering power source (6) to form a film. .
[0016]
Note that the erosion depth (d) is measured immediately before the film formation, and the distance between the target and the substrate (T / S distance) is finely adjusted so that the film thickness distribution is the best, and the discharge measured at the time immediately before the film formation. The film formation speed (R) estimated in advance from the voltage (Vd), the discharge current (Id), etc. is calculated from the empirical formula (1) using a control computer, and the target film is further calculated from the formula (2). The film formation time (T) for obtaining the thickness (D) is obtained, the substrate stage rotation speed (r) is derived from the equation (3) so that the substrate stage rotates once in T time, and the rotation speed variable motor (20) is used. The substrate (12) and the substrate stage (13) were rotated to start film formation at the same time.
[Expression 1]
R = {2.64 × 10 −5 × d−8.95 × 10 −6 × d 2 + 2.43 × 10 −3 −1.09 × 10 −5 × TS}
× I d × V d 1.4 ...... Formula (1)
[Expression 2]
T = D / R ... Formula (2)
[Equation 3]
r = n / T (3)
However, n is 1, 2, 3,... (Natural number), and indicates that the film rotates n times within the film formation T time.
[0017]
In addition, in order to measure the film thickness with high accuracy, nine crystal oscillators with a diameter of 12.6 mm are arranged vertically and horizontally in a 100 mm diameter substrate, and the film thickness is converted to the frequency change before and after film formation. Determined by
[0018]
FIG. 2 and FIG. 3 show the film thickness distribution measurement results in the substrate when an aluminum film having a thickness of about 420 nm is deposited on the substrate. In the figure, the horizontal axis indicates the positions in the X and Y directions from the center of the substrate, and the vertical axis indicates the film thickness.
[0019]
FIG. 2 shows the result of film formation without rotating the substrate stage (13). In this case, the in-plane distribution of the substrate was ± 1.25%.
[0020]
Further, FIG. 3 shows the substrate when n = 1 in the equation (3) and the substrate stage (13) is rotated once in accordance with the film formation time and the same aluminum film is deposited as in the case without rotation. It is a film thickness distribution measurement result. At this time, the in-plane distribution of the substrate was ± 0.48%.
[0021]
From this result, the gradient of the distribution that appears to be caused by the target inhomogeneity observed when the substrate is not rotated is hardly seen by performing the substrate rotation number integer control.
[0022]
(3) Description of other examples, description of examples of diversion to other applications In the above examples, a sputtering apparatus was used as the thin film manufacturing apparatus, but it may also be used for a vapor deposition apparatus using an electron beam or resistance heating. . An example diverted to a vapor deposition apparatus is shown in FIG.
After evacuating the vacuum chamber (1) to a high vacuum region of about 1 × 10 −3 Pa by the gas exhaust valve (11), electric power is supplied to the evaporation source (25) from the evaporation source (26) and the shutter (27 ) To start deposition.
[0023]
The particles evaporated from the vapor deposition source (25) are vapor-deposited on the substrate (12) attached to the substrate dome (22) arranged opposite to form a thin film.
[0024]
The thin film monitor (24) monitors the thin film deposited on the substrate (12), and when the desired film thickness is obtained by the control device (19), the shutter (27) is closed to complete the film formation.
[0025]
At this time, the substrate dome (22) linked to the substrate dome rotation motor (23) by a gear or the like is configured to be driven to rotate an integral number of times in accordance with the film formation time. A thickness distribution can be obtained.
[0026]
Needless to say, the vapor deposition start time and end time are rotated in synchronization with the rotation start time and rotation end time of the substrate (12) attached to the substrate dome (22).
[0027]
【The invention's effect】
As described above, the present invention can compensate for inhomogeneities by accurately rotating the substrate an integer number of times within the film formation time even when particles flying to the substrate are not uniform in the plane. It is possible to improve the film thickness distribution.
[0028]
In particular, since a good film thickness distribution within the substrate surface can be obtained only by controlling the substrate from one to several rotations while synchronizing with the film formation time during film formation, the substrate is rotated many times as in the prior art. Therefore, it is possible to minimize the load on the substrate stage rotating shaft, motor, gear, etc., leading to simplified structure, lighter equipment, improved maintainability, and improved durability. .
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of an embodiment when the present invention is applied to a sputtering apparatus.
FIG. 2 is an explanatory diagram showing a relationship between a position on a substrate and a film thickness distribution before the present invention is applied.
FIG. 3 is an explanatory diagram showing a relationship between a position on a substrate and a film thickness distribution when the present invention is applied.
FIG. 4 is an explanatory diagram of an embodiment when the present invention is applied to a vapor deposition apparatus.
[Explanation of symbols]
DESCRIPTION OF
Claims (2)
ターゲットの消耗状態であるエロージョン深さを測定する形状測定装置と、
目的とする膜厚を得る為の成膜時間に合わせて、予め基板ステージに取付けられた該基板を制御しながら回転させるための基板ステージ回転駆動装置と、
該エロージョン深さ、該ターゲットと基板間の距離、放電電流及び放電電圧から算出された予測成膜速度と、該目的とする膜厚と、から予測成膜時間を算出し、該予測成膜時間内に基板が整数回転するように回転速度を調整する制御装置と、
該ターゲットと基板間の距離を設定するための可変機構とを備えることを特徴とする薄膜製造装置。In a thin film manufacturing apparatus that deposits particles on the surface of a substrate provided in a vacuum chamber and performs film formation by sputtering,
A shape measuring device for measuring the erosion depth, which is the consumption state of the target, and
A substrate stage rotation driving device for rotating the substrate mounted on the substrate stage in advance in accordance with a film formation time for obtaining a target film thickness ;
The erosion depth, the target and the distance between the substrates, the discharge current and the predicted deposition rate calculated from the discharge voltage, to calculate a predicted deposition time from the thickness of the said object, the predicted deposition time A control device that adjusts the rotation speed so that the substrate rotates an integer number in ;
A thin film manufacturing apparatus comprising: a variable mechanism for setting a distance between the target and the substrate .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000052667A JP4521606B2 (en) | 2000-02-29 | 2000-02-29 | Method and apparatus for controlling film thickness distribution in thin film manufacturing apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000052667A JP4521606B2 (en) | 2000-02-29 | 2000-02-29 | Method and apparatus for controlling film thickness distribution in thin film manufacturing apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2001240965A JP2001240965A (en) | 2001-09-04 |
JP4521606B2 true JP4521606B2 (en) | 2010-08-11 |
Family
ID=18574148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000052667A Expired - Lifetime JP4521606B2 (en) | 2000-02-29 | 2000-02-29 | Method and apparatus for controlling film thickness distribution in thin film manufacturing apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4521606B2 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009157341A1 (en) * | 2008-06-25 | 2009-12-30 | キヤノンアネルバ株式会社 | Sputtering device and recording medium whereon a control program thereof is recorded |
JP6042196B2 (en) * | 2011-12-22 | 2016-12-14 | キヤノンアネルバ株式会社 | Sputtering apparatus, sputtering apparatus control apparatus, and film forming method |
KR101439096B1 (en) | 2013-10-18 | 2014-09-12 | 주식회사 테스 | Substrate processing method |
JP6485070B2 (en) * | 2015-01-27 | 2019-03-20 | Agc株式会社 | Method for manufacturing a reflective mask blank for EUV lithography, and method for manufacturing a substrate with a reflective layer for the mask blank |
EP3749796B1 (en) * | 2018-02-05 | 2022-06-08 | Applied Materials, Inc. | Deposition apparatus for depositing evaporated material and methods therefor |
US11557473B2 (en) | 2019-04-19 | 2023-01-17 | Applied Materials, Inc. | System and method to control PVD deposition uniformity |
TW202104628A (en) * | 2019-04-19 | 2021-02-01 | 美商應用材料股份有限公司 | System and method to control pvd deposition uniformity |
CN110442930B (en) * | 2019-07-19 | 2023-12-15 | Tcl华星光电技术有限公司 | Virtual measurement method and virtual measurement device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61161708A (en) * | 1985-01-11 | 1986-07-22 | Nec Corp | Formation of thin film |
JPH0156141B2 (en) * | 1985-04-26 | 1989-11-29 | Nippon Telegraph & Telephone | |
JPH04329876A (en) * | 1991-04-30 | 1992-11-18 | Anelva Corp | Apparatus for sputtering and method therefor |
JPH07224377A (en) * | 1994-02-14 | 1995-08-22 | Nec Corp | Sputtering device and method for measuring sputtering face of target |
-
2000
- 2000-02-29 JP JP2000052667A patent/JP4521606B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS61161708A (en) * | 1985-01-11 | 1986-07-22 | Nec Corp | Formation of thin film |
JPH0156141B2 (en) * | 1985-04-26 | 1989-11-29 | Nippon Telegraph & Telephone | |
JPH04329876A (en) * | 1991-04-30 | 1992-11-18 | Anelva Corp | Apparatus for sputtering and method therefor |
JPH07224377A (en) * | 1994-02-14 | 1995-08-22 | Nec Corp | Sputtering device and method for measuring sputtering face of target |
Also Published As
Publication number | Publication date |
---|---|
JP2001240965A (en) | 2001-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5461426B2 (en) | Prediction and correction of erosion characteristics of magnetron sputtering targets | |
KR101251209B1 (en) | A method of magnetron sputtering and a method for determining a power modulation compensation function for a power supply applied to a magnetron sputtering source | |
EP3211119B1 (en) | Methof of sputtering and sputter system | |
KR101300656B1 (en) | Film forming apparatus and film forming method | |
JP4728143B2 (en) | Thin film forming equipment | |
JP4066044B2 (en) | Film forming method and sputtering apparatus | |
JP4521606B2 (en) | Method and apparatus for controlling film thickness distribution in thin film manufacturing apparatus | |
JP5801302B2 (en) | Film forming apparatus and film forming method | |
JP7461427B2 (en) | Film forming apparatus and method for manufacturing electronic device | |
JP7515664B2 (en) | Film forming apparatus and film forming method | |
WO2012067183A1 (en) | Film forming apparatus and film forming method | |
KR20050070047A (en) | Method for the production of a substrate with a magnetron sputter coating and unit for the same | |
JP2008095158A (en) | Sputtering film deposition device and sputtering film deposition method | |
JP2004027264A (en) | Sputtering method and apparatus | |
JP4573450B2 (en) | Sputtering equipment | |
KR102611646B1 (en) | Sputtering device and film forming method | |
JP3038287B2 (en) | Thin film production equipment | |
JP2883400B2 (en) | X-ray mask manufacturing method | |
KR102672094B1 (en) | Magnet units for magnetron sputtering devices | |
JPH08165569A (en) | Film forming device by reactive magnetron sputtering | |
JPH08239763A (en) | Sputtering device and method for regulating the same | |
JP2022172614A (en) | Semiconductor production device and semiconductor production method | |
JP2010285647A (en) | Film deposition apparatus and film deposition method | |
JP2002004033A (en) | Apparatus and method for film deposition | |
JPH11200039A (en) | Magnetron sputtering device and method therefor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060809 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060822 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20060925 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20090413 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090415 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090603 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20090713 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20090904 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20091118 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100115 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20100426 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20100511 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4521606 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130604 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130604 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140604 Year of fee payment: 4 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
EXPY | Cancellation because of completion of term |