JPS61250156A - Manufacture of heat resistant member - Google Patents

Manufacture of heat resistant member

Info

Publication number
JPS61250156A
JPS61250156A JP9008785A JP9008785A JPS61250156A JP S61250156 A JPS61250156 A JP S61250156A JP 9008785 A JP9008785 A JP 9008785A JP 9008785 A JP9008785 A JP 9008785A JP S61250156 A JPS61250156 A JP S61250156A
Authority
JP
Japan
Prior art keywords
stress corrosion
corrosion cracking
resistant member
heat
soln
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9008785A
Other languages
Japanese (ja)
Inventor
Noriyuki Nakashiro
中城 憲行
Takatsugu Okada
岡田 孝継
Kazuya Tsujimoto
和也 辻本
Akira Sudo
亮 須藤
Hiroshi Sakamoto
博司 坂本
Motoji Tsubota
基司 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP9008785A priority Critical patent/JPS61250156A/en
Publication of JPS61250156A publication Critical patent/JPS61250156A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To manufacture a heat resistant member capable of withstanding high temp. and pressure and having improved resistance to stress corrosion cracking by subjecting an Ni alloy material contg. specified amounts of Cr, Fe and Zr to soln. heat treatment at a proper temp. CONSTITUTION:An Ni alloy material contg. 10-20wt% Cr, 4-10wt% Fe and <=0.01wt% Zr or one or more among Mg, Ca and Y is subjected to soln. heat treatment at 1,000-1,100 deg.C. Since sulfide is precipitated in the grains by the addition of Zr or one or more among Mg, Ca and Y, the sulfide is uniformly dispersed to inhibit the segregation of S on the grain boundaries, and a heat resistant member usable well at high temp. and pressure without causing stress corrosion cracking is obtd. The soln. heat treatment is carried out for 10-60min per 1in. thickness of the material. A heat resistant material having much superior resistance to stress corrosion cracking can be obtd. by carrying out age hardening at 690-720 deg.C after the soln. heat treatment.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は耐応力腐食割れ性を改善するために行なうニッ
ケル基合金の熱処理方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of heat treating a nickel-based alloy to improve stress corrosion cracking resistance.

[発明の技術的背景とその問題点] ニッケルを主体にしてクロム、鉄を加えてなる重量%で
クロム10〜20%、鉄4〜10%を含むニッケル基合
金は、耐熱性に優れているために航空機材料等の分野に
用いられており、また環在では原子炉構造部品の材料と
して用いられつつある。
[Technical background of the invention and its problems] A nickel-based alloy containing 10 to 20% chromium and 4 to 10% iron by weight, which is made mainly of nickel with the addition of chromium and iron, has excellent heat resistance. Therefore, it is used in fields such as aircraft materials, and it is also being used as a material for structural parts of nuclear reactors.

しかして、原子炉の構造部品は1%温、高圧の苛酷な条
件下で使用されるので、この条件に絶え得る優れた耐食
性が要求される。そこで、本願発明者らは前記のクロム
、鉄およびジルコニウム等を含むニッケル基合金を原子
炉構造部品の材料として用いるために、耐食性の面で種
々研究、実験を積重ねてきたが、高温、高圧の条件下で
絶えるためには特に耐応力腐食割れ性を向上させること
が必要であることに着目して本発明を完成した。
Since the structural parts of a nuclear reactor are used under severe conditions of 1% temperature and high pressure, they are required to have excellent corrosion resistance that can withstand these conditions. Therefore, in order to use the above-mentioned nickel-based alloy containing chromium, iron, zirconium, etc. as a material for nuclear reactor structural parts, the inventors of the present application have conducted various research and experiments in terms of corrosion resistance. The present invention was completed by focusing on the fact that it is necessary to particularly improve stress corrosion cracking resistance in order to survive under these conditions.

〔発明の目的〕[Purpose of the invention]

本発明は前述した研究結果に基づいてなされたもので、
高温、高圧の条件に絶え得る耐応力腐食割れ性を改善し
た耐熱部材の製造方法を提供することにある。
The present invention was made based on the research results mentioned above,
It is an object of the present invention to provide a method for manufacturing a heat-resistant member with improved stress corrosion cracking resistance that can withstand high temperature and high pressure conditions.

[発明の概要] 本発明は、重量%でCr10〜20%、l:e  4〜
10%で、lrを0.01%以下か、Mg、Ca 、Y
の中から選ばれる少なくとも一種の元素を0.01%以
下を含むニッケル基合金からなる材料に1000℃〜1
100℃の1度で溶体化処理を施すことを特徴とする耐
熱部材の製造方法である。
[Summary of the Invention] The present invention has Cr of 10 to 20% by weight, l:e of 4 to
10%, lr below 0.01%, Mg, Ca, Y
A material made of a nickel-based alloy containing 0.01% or less of at least one element selected from
This is a method for manufacturing a heat-resistant member, characterized by performing solution treatment at 100° C. once.

また、この材料に前記溶体化処理を施した後に690〜
120℃で時効硬化処理を施すことにある。
Moreover, after applying the solution treatment to this material, 690~
The purpose is to perform age hardening treatment at 120°C.

本発明によれば、ニッケル基合金にzrを0.01 %
以下か、Mg、Ca 、Yの中から選ばれる少なくとも
一種の元素を0.01%以下、添加することにより、硫
化物を結晶粒内に析出させることで、硫化物を均一に分
散させ、Sの粒界偏析をおさえることにより、高温、高
圧の条件下においても応力腐食割れが発生せず良好に使
用できる耐熱部材を製造することができる。そして、本
発明の製造方法においては材料に溶体化処理と時効硬化
処理を組合せることにより、最も優れた耐応力腐食割れ
性を有する耐熱部材を得ることができる。
According to the present invention, 0.01% ZR is added to the nickel-based alloy.
By adding 0.01% or less of at least one element selected from Mg, Ca, and Y, the sulfide is precipitated within the crystal grains, and the sulfide is uniformly dispersed. By suppressing grain boundary segregation, it is possible to produce a heat-resistant member that can be used satisfactorily without stress corrosion cracking even under high temperature and high pressure conditions. In the manufacturing method of the present invention, a heat-resistant member having the best stress corrosion cracking resistance can be obtained by combining solution treatment and age hardening treatment on the material.

一般に、Cr 、Fe等を含むニッケル基合金からなる
耐熱部材を製造する工程は次の通りである。
Generally, the steps for manufacturing a heat-resistant member made of a nickel-based alloy containing Cr, Fe, etc. are as follows.

すなわち、溶解して得られた所定成分の合金からなる材
料を鍛造、圧延した後に加工歪をとるとともに加工中に
発生した炭化物を固溶するために熱処理、すなわち溶体
化処理を行い、ざらに材料に切削加工を施して所定形状
に切削した後に溶体化処理で得られた状態に強度を加え
るために熱処理、すなわち時効硬化処理を行なうもので
ある。本発明は溶体化処理の工程において1000〜1
100℃の温償範囲で処理を行なう。この場合、処理時
間は材料の厚さ1インチあたり10〜60分、好ましく
は15分程度である。また、時効硬化処理は温度690
〜720℃、時間18〜24時間の条件好ましくは70
5℃付近で20時間程度で行なう。
That is, after forging and rolling a material made of an alloy with a predetermined composition obtained by melting, heat treatment, that is, solution treatment, is performed to remove processing strain and dissolve carbides generated during processing. After the material is cut into a predetermined shape, a heat treatment, that is, an age hardening treatment, is performed to add strength to the state obtained by the solution treatment. In the present invention, 1000 to 1
Processing is carried out in a temperature compensation range of 100°C. In this case, the processing time is on the order of 10 to 60 minutes, preferably 15 minutes per inch of material thickness. In addition, age hardening treatment is performed at a temperature of 690
~720°C, time 18-24 hours, preferably 70°C
This is done at around 5°C for about 20 hours.

なお、CrおよびFeを含むニッケル基合金からなる材
料に1000〜1100℃の温度で溶体化処理を行なう
ことにより、耐応力腐食割れ性が向上するのは次のよう
な理由であると考えられる。すなわち、前記の温度範囲
では粒界に炭化物が存在しても不連続であり、Qrの欠
乏域も不連続となる。
The reason why stress corrosion cracking resistance is improved by subjecting a material made of a nickel-based alloy containing Cr and Fe to a solution treatment at a temperature of 1000 to 1100°C is considered to be as follows. That is, in the above temperature range, even if carbides exist at grain boundaries, they are discontinuous, and the Qr-deficient region is also discontinuous.

なお、zrもしくはMO、Ca 、Yのうちの何れか1
種または2種以上を0.01%以下含むことにより硫化
物を粒内に析出させ硫化物を均一に分散させることでS
の粒界偏析もおさえ、耐応力腐食割れ性が向上する。
In addition, any one of zr, MO, Ca, Y
By containing 0.01% or less of a species or two or more species, sulfide is precipitated within the grains and the sulfide is uniformly dispersed.
It also suppresses grain boundary segregation and improves stress corrosion cracking resistance.

加熱温度を1000℃〜1100℃に限定したのは10
00℃未満の場合には、固溶が十分でなく、また、11
00℃を越える場合には結晶粒度が過度に粗大化するの
で、好ましくないとの理由による。
10 limited the heating temperature to 1000℃~1100℃
If the temperature is less than 00°C, solid solution may not be sufficient, and 11
This is because if the temperature exceeds 00°C, the crystal grain size becomes excessively coarse, which is not preferable.

また時効硬化熱処理は、微細なガンマプライム相を均一
に析出させて、ニッケル基合金に十分な強度を与えるた
めに行なうものである。
Furthermore, the age hardening heat treatment is performed to uniformly precipitate fine gamma prime phases and provide sufficient strength to the nickel-based alloy.

加熱温度を、690℃〜120℃に限定したのは、69
0℃未満の場合には、ガンマプライム相の析出が遅くな
るので実用的ではなく、また720℃を越える場合には
、析出するガンマプライムの粒度が粗くなるために、十
分な強度が得られなくなるとの理由による。
The heating temperature was limited to 690°C to 120°C in 69
If the temperature is less than 0°C, the precipitation of the gamma prime phase will be delayed, making it impractical; if the temperature exceeds 720°C, the grain size of the precipitated gamma prime will become coarse, making it impossible to obtain sufficient strength. Due to the reason.

したがって、本発明の製造方法によりクロムおよび鉄を
含むニッケル基合金に1000〜1100℃の温度で溶
体化処理を行い、さらに時効硬化処理を施して製造した
耐熱部材は、高温、高圧の条件トで使用されかつ優れた
耐応力腐食割れ性が頁末される部品、たとえば約300
℃、約70気圧という条件下で使用される原子炉構造部
品に適している。
Therefore, heat-resistant members manufactured by the manufacturing method of the present invention by subjecting a nickel-based alloy containing chromium and iron to solution treatment at a temperature of 1000 to 1100°C and then subjecting it to age hardening treatment can withstand high temperature and high pressure conditions. Parts that are used and have excellent stress corrosion cracking resistance, e.g.
It is suitable for nuclear reactor structural parts used under conditions of ℃ and approximately 70 atmospheres.

[発明の実施例] 実施例1 溶解によりN 172.15%、Cr16.4%、F 
e6.6%、Z ro、01%、G O,04%、S 
io、10%、M no、40%、Qo O,006%
、AJ20.82%、Ti  2.5%、NbおよびT
a  O,97%の組成を有するインコネルX−750
の合金材料を圧延して、厚さ2.8nX長さ110OB
x幅110mの板材からなる試料を形成し、この各試料
に対して表に示す各条件で溶体化処理を施し、さらに各
試料に対して704℃×20時間の条件で時効硬化処理
を行なった。
[Examples of the invention] Example 1 N 172.15%, Cr 16.4%, F by dissolution
e6.6%, Z ro, 01%, G O, 04%, S
io, 10%, M no, 40%, Qo O, 006%
, AJ20.82%, Ti 2.5%, Nb and T
Inconel X-750 with a composition of a O, 97%
The alloy material is rolled to a thickness of 2.8n and a length of 110OB.
A sample consisting of a plate material with a width of 110 m was formed, and each sample was subjected to solution treatment under the conditions shown in the table, and each sample was further subjected to age hardening treatment under the conditions of 704°C x 20 hours. .

そして、各試料に対して耐応力腐食割れを調べるために
次の条件で試験を行なった。すなわち、試料を研磨およ
び脱脂した後に第1図で示す治具に固定して1%の歪を
与え、温度290℃、70気圧、溶存酸素量20pp−
という沸騰水型原子炉(BWR)模擬環境中に50QW
#間浸漬した後に取出して、試料の表面に耐応力腐食割
れがあるかどうかを調べた。なお、W41図で示す冶具
は円弧面をなすホルダ1.21!lにグラファイト3お
よびスペーサ4とともに試料5を挟んで固定するもので
ある。
Then, tests were conducted on each sample under the following conditions to examine stress corrosion cracking resistance. That is, after polishing and degreasing the sample, it was fixed in the jig shown in Fig. 1 to give a strain of 1%, and the temperature was 290°C, 70 atm, and the amount of dissolved oxygen was 20 pp-.
50QW in a boiling water reactor (BWR) simulated environment.
After being immersed for ##, the sample was taken out and examined to see if there was any stress corrosion cracking on the surface of the sample. Note that the jig shown in figure W41 is a holder 1.21 with an arcuate surface! The sample 5 is sandwiched and fixed together with the graphite 3 and the spacer 4.

しかして、前記の耐応力腐食割れ試験の結果を第2図に
線図に示す。この線図は横軸に試料の溶体化処理温度を
、縦軸に試料に発生した最大応力腐食割れ深さをそれぞ
れ示している。この縮図にヨレハ、1000〜1100
℃以外ノIlv!L1%溶体化処理を行なつだ試料A、
(比較例)は多くの応力腐食割れを発生したが、100
0〜1100℃の温度で溶体化処理を行なった試料S、
C,O<本発明例)は応力腐食割れがほとんど発生しな
かった。
The results of the stress corrosion cracking test described above are shown in a diagram in FIG. In this diagram, the horizontal axis shows the solution treatment temperature of the sample, and the vertical axis shows the maximum stress corrosion cracking depth that occurred in the sample. Yoreha in this microcosm, 1000-1100
Ilv other than ℃! Sample A subjected to L1% solution treatment,
(Comparative example), many stress corrosion cracks occurred, but 100
Sample S subjected to solution treatment at a temperature of 0 to 1100°C,
C, O <Inventive Example) Stress corrosion cracking hardly occurred.

したがって、本発明の製造方法により製造したものは耐
応力WA食割れ性が大変優れていることがわかる。
Therefore, it can be seen that the products manufactured by the manufacturing method of the present invention have very excellent stress WA corrosion resistance.

実施例2 溶解によりN i72.15%、Cr16.4%、F 
e6.6%、MgおよびQa  O,01%、CG、0
4%、S to、10%、Mn  O,40%、Co 
O,008%、An O,82%、TI  2.5%、
Nbおよび7a  O,97%の組成を有するインコネ
ルX−750について表に示す溶体化処理を施した試料
について、実施例1と同様な耐応力腐食割れ試験を行な
った結果を第3図の縮図に示す。結果は実施例1と同様
、1000〜1100℃以外の温度の溶体化処理を行な
った試料F、 J (比較例)は多くの応力腐食割れを
発生したが、1000〜1100℃の濃度で溶体化処理
を行なりた試料G1H%I(本発明例)は応力腐食割れ
がほとんど発生しなかった。したがって、本発明により
製造したものは耐応力腐食割れ性が大変優れていること
がわかる。
Example 2 By dissolving Ni72.15%, Cr16.4%, F
e6.6%, Mg and Qa O, 01%, CG, 0
4%, S to, 10%, MnO, 40%, Co
O, 008%, An O, 82%, TI 2.5%,
A stress corrosion cracking test similar to that in Example 1 was conducted on samples of Inconel show. The results are the same as in Example 1, and samples F and J (comparative examples) that were solution-treated at temperatures other than 1000-1100°C developed many stress corrosion cracks; Sample G1H%I (example of the present invention) subjected to the treatment showed almost no stress corrosion cracking. Therefore, it can be seen that the products manufactured according to the present invention have very excellent stress corrosion cracking resistance.

[発明の効果] 以上説明したように本発明に係る耐熱部材の製造方法に
よれば、耐応力腐食割れ性に優れた耐熱部材を得ること
ができ、溶体化処理温度の温度範囲が1000〜110
0℃と広くなる効果がある。
[Effects of the Invention] As explained above, according to the method for manufacturing a heat-resistant member according to the present invention, a heat-resistant member with excellent stress corrosion cracking resistance can be obtained, and the temperature range of solution treatment temperature is 1000 to 110.
It has the effect of widening the temperature to 0°C.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は耐応力腐食割れ試験装置を示す断面図、第2図
および第3図はそれぞれ本発明例と従来例について溶体
化処理vA度と応力腐食割れとの関係を比較して示す線
図である。 1・・・・・・・・・ホルダ 2・・・・・・・・・ホルダ 3・・・・・・・・・グラフフィト 4・軸・・・・・・スペーサ 5・・・・・・・・・試料 出願人      株式会社 東芝 代理人弁理士   須 山 佐 − 第1 図 ジき呵イ本イζ、丸浬Jc/L    (’C)第3歯
Figure 1 is a cross-sectional view showing a stress corrosion cracking resistance test device, and Figures 2 and 3 are diagrams comparing the relationship between solution treatment vA degree and stress corrosion cracking for the present invention and conventional example, respectively. It is. 1...Holder 2...Holder 3...Graphite 4/Axis...Spacer 5... ...Sample applicant: Toshiba Corporation Patent attorney Suyama Sa - 1st figure 2, 1, 2, Maruho Jc/L ('C) 3rd tooth

Claims (4)

【特許請求の範囲】[Claims] (1)重量%で、クロム10〜20%、鉄4〜10%、
ジルコニウム0.01%以下を含むニッケル基合金から
なる材料に、1000℃〜1100℃の温度で溶体化処
理を施す工程を具備することを特徴とする耐熱部材の製
造方法。
(1) In weight%, chromium 10-20%, iron 4-10%,
A method for manufacturing a heat-resistant member, comprising the step of subjecting a material made of a nickel-based alloy containing 0.01% or less of zirconium to solution treatment at a temperature of 1000°C to 1100°C.
(2)重量%でクロム10〜20%、鉄4〜10%、M
g、Ca、Yの中から選ばれる少なくとも一種の元素を
0.01%以下を含むニッケル基合金からなる材料に、
1000℃〜1100℃の温度で溶体化処理を施す工程
を具備することを特徴とする特許請求の範囲第1項記載
の耐熱部材の製造方法。
(2) Chromium 10-20%, iron 4-10%, M
A material made of a nickel-based alloy containing 0.01% or less of at least one element selected from g, Ca, and Y,
2. The method for manufacturing a heat-resistant member according to claim 1, further comprising the step of performing solution treatment at a temperature of 1000°C to 1100°C.
(3)溶体化処理は、材料厚さ1インチあたり10分間
〜60分間行なう特許請求の範囲第1項記載の耐熱部材
の製造方法。
(3) The method for manufacturing a heat-resistant member according to claim 1, wherein the solution treatment is performed for 10 minutes to 60 minutes per inch of material thickness.
(4)材料に溶体化処理を施した後に、690℃〜72
0℃の温度で時効硬化処理を施す工程を具備してなる特
許請求の範囲第1項記載の耐熱部材の製造方法。
(4) After applying solution treatment to the material, 690°C to 72°C
The method for manufacturing a heat-resistant member according to claim 1, which comprises the step of performing age hardening treatment at a temperature of 0°C.
JP9008785A 1985-04-26 1985-04-26 Manufacture of heat resistant member Pending JPS61250156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9008785A JPS61250156A (en) 1985-04-26 1985-04-26 Manufacture of heat resistant member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9008785A JPS61250156A (en) 1985-04-26 1985-04-26 Manufacture of heat resistant member

Publications (1)

Publication Number Publication Date
JPS61250156A true JPS61250156A (en) 1986-11-07

Family

ID=13988740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9008785A Pending JPS61250156A (en) 1985-04-26 1985-04-26 Manufacture of heat resistant member

Country Status (1)

Country Link
JP (1) JPS61250156A (en)

Similar Documents

Publication Publication Date Title
EP0235075B1 (en) Ni-based alloy and method for preparing same
US20100116383A1 (en) method of heat treatment for desensitizing a nikel-based alloy relative to environmentally-assisted craking, in particular for a nuclear for a nuclear reactor fuel assembly and for a nuclear reactor, and a part made of the alloy and subjected to the treatment
JPS604895B2 (en) Structure with excellent stress corrosion cracking resistance and its manufacturing method
JPS58174538A (en) Ni-based alloy member and manufacture thereof
JPS5827340B2 (en) How do you know what&#39;s going on?
JPS6325062B2 (en)
US4494987A (en) Precipitation hardening austenitic superalloys
JPS61250156A (en) Manufacture of heat resistant member
JPH0114991B2 (en)
JPS6277448A (en) Manufacture of high strength nickel alloy member having superior scc resistance
JPS5956567A (en) Production of heat-resistant member
JPS62167839A (en) Ni base alloy and its manufacture
JPS62167838A (en) Ni base alloy and its manufacture
JPH02247358A (en) Fe-base alloy for nuclear reactor member and its manufacture
JPS6150143B2 (en)
JPH0132290B2 (en)
JPS6131179B2 (en)
JPS59136443A (en) Bolt material excellent in stress, corrosion, cracking resistance
JPS6396214A (en) Production of high-strength high-toughness spring material having excellent scc resistance
JPH05171359A (en) Austenitic stainless steel markedly lowered in contents of nitrogen and boron
JPH0153340B2 (en)
JPS59110767A (en) Austenite stainless steel
Holden et al. Tensile Properties of Titanium Alloys at Low Temperatures
JPS5941456A (en) Heat treatment of structural forging material for nuclear reactor
JPS6039152A (en) Manufacture of spring for nuclear reactor