JPS6039152A - Manufacture of spring for nuclear reactor - Google Patents

Manufacture of spring for nuclear reactor

Info

Publication number
JPS6039152A
JPS6039152A JP58146405A JP14640583A JPS6039152A JP S6039152 A JPS6039152 A JP S6039152A JP 58146405 A JP58146405 A JP 58146405A JP 14640583 A JP14640583 A JP 14640583A JP S6039152 A JPS6039152 A JP S6039152A
Authority
JP
Japan
Prior art keywords
spring
nuclear reactor
aging
alloy
treatment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58146405A
Other languages
Japanese (ja)
Inventor
Yoshinao Urayama
浦山 義直
Shigeo Hattori
成雄 服部
Isao Masaoka
正岡 功
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP58146405A priority Critical patent/JPS6039152A/en
Publication of JPS6039152A publication Critical patent/JPS6039152A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Springs (AREA)
  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To obtain a spring for a nuclear reactor with superior resistance to stress corrosion cracking by subjecting a precipitation strenghtening Ni alloy contg. specified amounts of Cr, Fe, Al, Ti and Nb to cold plastic working at a specified reduction of area between solid soln. treatment and aging stages. CONSTITUTION:The composition of a precipitation strengthening Ni alloy is composed of, by weight, 14-25% Cr, <30% Fe, 0.2-2% Al, 0.5-3% Ti, 0.7- 4.5% Nb and the balance Ni. The alloy is subjected to cold plastic working at >40-<60%, especially <=50% reduction of area between soln. heat treatment and aging (direct aging) stages. A spring for a nuclear reactor is manufactured using the resulting material.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はl’Ji基合金製部材およびその製造方法に係
り、特に原子炉用ばねに適用するに好適なものに関する
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a member made of l'Ji-based alloy and a method for manufacturing the same, and particularly to one suitable for application to a spring for a nuclear reactor.

〔発明の背景〕[Background of the invention]

従来の原子炉用ばねは主に溶製後に固溶化処理を施した
後、冷間圧延により30〜40%の加工を与え、その後
に時効処理を施して製作されていた。これらは冷間加工
十時効処理により、原子炉用ばね材として要求される高
温強度並びにはね特性を確保するための処理製作法であ
るが、実機適用上特に問題となる隙間部での耐応力腐食
割れ性(以下耐SCC性という)に関する検討が必ずし
も十分に行なわれてはいないという欠点があった。
Conventional springs for nuclear reactors have been produced mainly by subjecting them to solution treatment after melting, followed by cold rolling to give them 30 to 40% processing, and then subjecting them to aging treatment. These are manufacturing methods that use cold working and aging to ensure the high-temperature strength and spring characteristics required for spring materials for nuclear reactors. There has been a drawback in that studies regarding corrosion cracking resistance (hereinafter referred to as SCC resistance) have not necessarily been sufficiently conducted.

特に、原子炉用ばね(例えばBWR制御棒、駆動機構の
Cスプリング)は、高応力作用下で隙間が形成された賢
所で使用される場合が多く、SCC対策が重要である。
In particular, nuclear reactor springs (for example, BWR control rods, C springs in drive mechanisms) are often used in sensitive areas where gaps are formed under high stress, and SCC countermeasures are important.

現在、原子炉用ばねとしては高強度と高耐食性に優れた
インコネル(商品名)×750が用いられており、その
ほとんどが固溶化処理後に30〜40%の冷間加工を施
し、その後に時効処理(直接時効)する工程で製作され
ている。固溶化処理後の冷間加工は最終的なばねの形状
を得ることを目的としているが、一方今間加工に引き続
く時効処理は原子炉用ばね材としてのはね特性並びに高
温強度向上に寄与するものである。しかし、固溶化処理
と時効処理との中間に30〜40%の冷間加工を施して
も、30〜40%の冷間加工が実用上で問題となる耐隙
間SCC性に有効か否かの検討が十分になされていない
Currently, Inconel (trade name) x750, which has high strength and high corrosion resistance, is used as springs for nuclear reactors, and most of them undergo 30 to 40% cold working after solution treatment, and then undergo aging. Manufactured using a processing (direct aging) process. The purpose of cold working after solution treatment is to obtain the final shape of the spring, while the aging treatment that follows cold working contributes to improving the spring properties and high-temperature strength of the spring material for nuclear reactors. It is something. However, even if 30 to 40% cold working is performed between solution treatment and aging treatment, it is unclear whether 30 to 40% cold working is effective in improving clearance SCC resistance, which is a practical problem. It has not been sufficiently considered.

なお、析出強化型合金の隙間SCC感受性は固溶強化型
合金と異なり、粒界腐食とSCCとの相関性は認められ
ない。
Note that the interstitial SCC susceptibility of precipitation strengthened alloys is different from that of solid solution strengthened alloys, and no correlation between intergranular corrosion and SCC is observed.

〔発明の目的〕[Purpose of the invention]

本発明はこのような従来の問題点を解消し、耐SCC性
に優れたNi基合金製部材およびその製造方法を提供す
ることを目的とするものである。
It is an object of the present invention to solve these conventional problems and provide a Ni-based alloy member with excellent SCC resistance and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本発明者らは、固溶化処理と時効処理との中間に実施す
る冷間加工度を変え、耐隙間SCC性に及ぼす冷間加工
度の影響を高温高圧純水中隙間付定歪試験により検討し
た。その結果、次の様な新たな事実を発見した。■固溶
化処理と直接時効処理との中間に10〜30%の冷間加
工を施すと隙間SCC感受性が大きく示される。しかし
、40%を越え60%未満の冷間加工を施せば耐隙間S
CC性の向上が認められる。
The present inventors changed the degree of cold working performed between solution treatment and aging treatment, and investigated the effect of the degree of cold working on clearance SCC resistance by a constant strain test with a gap in high-temperature, high-pressure pure water. did. As a result, we discovered the following new facts. (2) If 10 to 30% cold working is performed between the solution treatment and the direct aging treatment, the gap SCC susceptibility is greatly increased. However, if cold working is applied to more than 40% and less than 60%, the gap resistance S
Improvement in CC properties was observed.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を説明する。素材はインコネル
X750 (商品名)である。その主な化学成分は72
.92%Ni、15.48%Cr、6.91%Fe、0
.57%At、2.60%Ti、0.95%Nb+Ta
、0.04%Cである。第1表は高温高圧純水中におけ
る隙間付定歪試験結果を示す。試験条件は次の通りであ
る。試験温度:288tr。
An embodiment of the present invention will be described below. The material is Inconel X750 (trade name). Its main chemical components are 72
.. 92%Ni, 15.48%Cr, 6.91%Fe, 0
.. 57%At, 2.60%Ti, 0.95%Nb+Ta
, 0.04%C. Table 1 shows the results of a constant strain test with a gap in high-temperature, high-pressure pure water. The test conditions are as follows. Test temperature: 288tr.

圧力ニ 86 Kg/ tyn” 、溶存酸素: 8P
F、 IFi間形酸形成材ラファイト・ファイバーウー
ル、ひずみ:約1.0%、試験時間=500時間。
Pressure: 86 Kg/tyn”, dissolved oxygen: 8P
F, IFi acid forming material graphite fiber wool, strain: approximately 1.0%, test time = 500 hours.

第 1 表 第1表において、記号は次の内容を示す。Table 1 In Table 1, the symbols indicate the following contents.

・:割れ感受性大(1000I1m以上の割れ)1;割
れ感受性中(200μm〜1000μmの割れ) 02割れ感受性小(0〜200μmの割れ)固溶化処理
(1066CX1 h→水冷)と直接時効処理(704
7:X4または20h→空冷)との中間に断面減少率1
0〜50%の冷間加工を施すと、10%、20%及び3
0%の冷間加工で隙間SCC感受性が犬きく示され、3
0%以下の冷間加工は隙間SCC性に関して有害である
ことが第1表より認められる。一方、冷間加工度45〜
55%となると隙間SCC性は著しく小さくなることが
知られる。
・: High cracking sensitivity (cracks of 1000I1m or more) 1; Medium cracking sensitivity (cracks of 200 μm to 1000 μm) 02 Low cracking sensitivity (cracks of 0 to 200 μm) Solid solution treatment (1066CX1 h → water cooling) and direct aging treatment (704
7: Cross section reduction rate 1 between X4 or 20h → air cooling)
When subjected to cold working from 0 to 50%, 10%, 20% and 3
The gap SCC susceptibility was clearly shown at 0% cold working, and 3
It is recognized from Table 1 that cold working of 0% or less is harmful to the gap SCC property. On the other hand, the degree of cold working is 45~
It is known that the gap SCC property becomes significantly smaller when it becomes 55%.

なお、本発明は原子炉用ポルトにも適用できる。Note that the present invention can also be applied to ports for nuclear reactors.

〔発明の効果〕〔Effect of the invention〕

これらのことから、耐隙間SCC性に優れた原子炉ばね
、ボルトを製作するに当っては、固溶化処理と時効処理
(直接時効処理)との中間に40%を越え60%未満、
特に50%以下で冷間塑性加工を施せば耐SCC性に優
れたNi基合金製部材が得られる。
For these reasons, when manufacturing reactor springs and bolts with excellent gap SCC resistance, it is necessary to use a material that is between the solution treatment and the aging treatment (direct aging treatment), exceeding 40% and less than 60%.
In particular, if cold plastic working is performed at 50% or less, a Ni-based alloy member with excellent SCC resistance can be obtained.

代理人 弁理士 高橋明夫Agent: Patent Attorney Akio Takahashi

Claims (1)

【特許請求の範囲】[Claims] 1、重量%で、Cr14〜25%、Fe50%以下、A
t0.2〜2%、TiO,5〜3%、NbO,7〜4.
5%、残部実質的にNiからなる析出強化型Ni合金を
用い、固溶化処理と時効処理(直接時効処理)との中間
に断面減少率40%を越え60%未満の冷間塑性加工を
施すことを特徴とする原子炉用ばねの製作法。
1. In weight%, Cr14-25%, Fe50% or less, A
t0.2-2%, TiO, 5-3%, NbO, 7-4.
Using a precipitation-strengthened Ni alloy consisting of 5% Ni and the remainder substantially Ni, cold plastic working with a reduction in area of more than 40% and less than 60% is performed between the solution treatment and the aging treatment (direct aging treatment). A method of manufacturing a spring for a nuclear reactor, which is characterized by the following.
JP58146405A 1983-08-12 1983-08-12 Manufacture of spring for nuclear reactor Pending JPS6039152A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58146405A JPS6039152A (en) 1983-08-12 1983-08-12 Manufacture of spring for nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58146405A JPS6039152A (en) 1983-08-12 1983-08-12 Manufacture of spring for nuclear reactor

Publications (1)

Publication Number Publication Date
JPS6039152A true JPS6039152A (en) 1985-02-28

Family

ID=15406952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58146405A Pending JPS6039152A (en) 1983-08-12 1983-08-12 Manufacture of spring for nuclear reactor

Country Status (1)

Country Link
JP (1) JPS6039152A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0981135A1 (en) * 1997-06-10 2000-02-23 Mitsubishi Heavy Industries, Ltd. Upper hold-down spring structure for a nuclear reactor fuel assembly

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0981135A1 (en) * 1997-06-10 2000-02-23 Mitsubishi Heavy Industries, Ltd. Upper hold-down spring structure for a nuclear reactor fuel assembly
US6154514A (en) * 1997-06-10 2000-11-28 Mitsubishi Heavy Industries, Ltd. Nuclear reaction fuel assembly for a nuclear reactor fuel assembly

Similar Documents

Publication Publication Date Title
US4798632A (en) Ni-based alloy and method for preparing same
JPS6358213B2 (en)
EP0261880B1 (en) Nickel-base alloy heat treatment
JPH03166346A (en) Heat treatment of alloy 718 for improvement of resistance to stress corrosion cracking
CN114150184A (en) Low-stress corrosion-sensitivity high-strength corrosion-resistant Zr702L alloy
Cupp The effect of neutron irradiation on the mechanical properties of zirconium-2.5% niobium alloy
JPH03138343A (en) Nickel-base alloy member and its production
US4494987A (en) Precipitation hardening austenitic superalloys
JPS6039152A (en) Manufacture of spring for nuclear reactor
JPS6050869B2 (en) Method for manufacturing zirconium alloy structural members for boiling water reactors
JPS6150143B2 (en)
JPH0114991B2 (en)
US5122334A (en) Zirconium-gallium alloy and structural components made thereof for use in nuclear reactors
JPS6277448A (en) Manufacture of high strength nickel alloy member having superior scc resistance
JPH02247358A (en) Fe-base alloy for nuclear reactor member and its manufacture
JPH024937A (en) Zr alloy for reactor fuel assembled body
JPS59136443A (en) Bolt material excellent in stress, corrosion, cracking resistance
JPS6396214A (en) Production of high-strength high-toughness spring material having excellent scc resistance
JPS61581A (en) Corrosion resistant beryllium substrate
JPS63140057A (en) Ni-base alloy excellent in stress corrosion cracking resistance and its production
JPS60100629A (en) Production of austenite stainless steel
JPH07173587A (en) Production of zirconium alloy welded member
JPS5956567A (en) Production of heat-resistant member
JPS61153250A (en) High strength ni alloy member having superior scc resistance
JPS6353234A (en) Structural member having heat resistance and high strength