JPH03138343A - Nickel-base alloy member and its production - Google Patents

Nickel-base alloy member and its production

Info

Publication number
JPH03138343A
JPH03138343A JP27573889A JP27573889A JPH03138343A JP H03138343 A JPH03138343 A JP H03138343A JP 27573889 A JP27573889 A JP 27573889A JP 27573889 A JP27573889 A JP 27573889A JP H03138343 A JPH03138343 A JP H03138343A
Authority
JP
Japan
Prior art keywords
base alloy
cooling
heat treatment
nickel
alloy member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP27573889A
Other languages
Japanese (ja)
Inventor
Kazuya Tsujimoto
和也 辻本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP27573889A priority Critical patent/JPH03138343A/en
Publication of JPH03138343A publication Critical patent/JPH03138343A/en
Pending legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Nonferrous Metals Or Alloys (AREA)

Abstract

PURPOSE:To produce an Ni-base alloy member excellent in SCC resistance by subjecting an Ni-base alloy having a specific composition consisting of Cr, Mo, Nb, Ta, Fe, and Ni to specific solid solution heat treatment, to cooling, and then to plastic working at specific draft. CONSTITUTION:An Ni-base alloy having a composition consisting of, by weight, 18-25% Cr, 5-12% Mo, 2-6% Nb and/or Ta, <=10% Fe, and the balance Ni with inevitable impurities is subjected to solid solution heat treatment at 950-1150 deg.C, followed by temporary cooling. It is preferable to perform the above cooling by means of rapid cooling to prevent the formation of Cr carbide. After cooling, the above alloy is subjected to plastic working at a draft of >=10%, preferably of 10 to about 30%. By this method, the Ni-base alloy member improved in SCC resistance as well as in mechanical properties can be obtained.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はニッケル基合金に関し、特に原子炉などの高温
水を含むプラントなどで使用される耐応力腐食割れ性(
以下、耐SCC性という)にすぐれたNi基合金部材お
よびその製造方法に関する。
Detailed Description of the Invention [Objective of the Invention] (Industrial Application Field) The present invention relates to a nickel-based alloy, and in particular to a nickel-based alloy with stress corrosion cracking resistance (
The present invention relates to a Ni-based alloy member with excellent SCC resistance (hereinafter referred to as SCC resistance) and a method for manufacturing the same.

(従来の技術) 従来、原子炉用のランタンスプリングやフィンガースプ
リングなどのバネ材としては、比較的バネ特性にすぐれ
たインコネルX−750のNi基合金により製造されて
いる。この場合、従来法においては、インコネルX−7
50を溶解製造後、これを固溶化熱処理し、さらに時効
硬化熱処理を施すなどして製作されていた。
(Prior Art) Conventionally, spring materials such as lantern springs and finger springs for nuclear reactors have been manufactured from a Ni-based alloy of Inconel X-750, which has relatively excellent spring properties. In this case, in the conventional method, Inconel
After melting and manufacturing 50, it was manufactured by subjecting it to solution heat treatment and further age hardening heat treatment.

(発明が解決しようとする課題) 従来のインコネル合金により製造された合金部材は、比
較的すぐれた特性を有しており、原子炉などの高温水を
含む過酷な条件下で使用されるバネ材などのプラント部
材としては好適であり、また、製造過程において時効硬
化処理を行うことにより原子炉用部材として要求される
機械的強度などの特性をより一層良好なものとすること
ができる。
(Problems to be Solved by the Invention) Alloy members manufactured from conventional Inconel alloys have relatively excellent properties, and are suitable for spring materials used under harsh conditions including high-temperature water such as in nuclear reactors. It is suitable as a plant member such as, and by performing an age hardening treatment during the manufacturing process, properties such as mechanical strength required for a nuclear reactor member can be made even better.

しかしながら、上記のような従来のインコネル合金を用
いた部材においては、耐SCC性の点で必ずしも十分満
足するものは得られておらず、特に過酷な高温水環境中
で使用される部材、特にバネ材においては強度やバネ特
性と共に耐SCC性の向上は重要な課題である。
However, members using conventional Inconel alloys as described above do not always have sufficient SCC resistance, and are particularly suitable for members used in harsh high-temperature water environments, especially springs. In addition to strength and spring characteristics, improving SCC resistance is an important issue for materials.

本発明は上述した従来技術に伴う問題点に鑑みてなされ
たものであり、耐SCC性の向上が図られたニッケル基
合金部材の製造方法を提供することを目的としている。
The present invention has been made in view of the problems associated with the prior art described above, and an object of the present invention is to provide a method for manufacturing a nickel-based alloy member with improved SCC resistance.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段・作用)本発明のニッケ
ル基合金部材の製造方法は、重量比で、Cr:18〜2
5%、Mo=5〜12%、Nbおよび/またはTa:2
〜6%、Fe : 10%以下含有し、残部がNiなら
びに不可避的不純物からなるニッケル基合金に対して9
50〜1150℃の温度で固溶化熱処理を行い、冷却後
、15%以上の塑性加工を行うことを特徴としている。
(Means and effects for solving the problem) The method for manufacturing a nickel-based alloy member of the present invention has a weight ratio of Cr: 18 to 2.
5%, Mo=5-12%, Nb and/or Ta:2
~6%, Fe: 9% for nickel-based alloys containing 10% or less, with the remainder consisting of Ni and unavoidable impurities.
It is characterized by performing solution heat treatment at a temperature of 50 to 1150°C, and after cooling, performing plastic working of 15% or more.

本発明者は、従来のニッケル基合金部材(特にインコネ
ルX−750合金部材)における応力腐食割れ(S C
C)の発生メカニズムについて研究した結果、次のよう
な知見を得た。すなわち、応力腐食割れは、粒界および
粒内の析出物が固溶した固溶化熱処理状態では生じ難く
、その後の時効硬化熱処理に起因して発生することが判
明した。
The present inventor has discovered that stress corrosion cracking (S C
As a result of research on the mechanism of occurrence of C), the following findings were obtained. That is, it has been found that stress corrosion cracking is difficult to occur in the solution heat treatment state in which precipitates at the grain boundaries and within the grains are dissolved, but occurs due to the subsequent age hardening heat treatment.

通常、時効硬化熱処理によって合金の強度を上げるγ′
相(Ni3(Al、Ti))が析出し、これと同時に粒
界にCr炭化物が析出する。このCr炭化物が析出する
と、それに伴い粒界近傍のCr濃度が低下し、これに起
因してCr濃度低下部分から選択的に腐食が生じ易くな
って応力腐食割れが発生するものと推定される。
Usually, the strength of the alloy is increased by age hardening heat treatment.
A phase (Ni3(Al, Ti)) is precipitated, and at the same time, Cr carbide is precipitated at the grain boundaries. It is presumed that when this Cr carbide precipitates, the Cr concentration near the grain boundaries decreases, and as a result, corrosion tends to occur selectively in the areas where the Cr concentration is decreased, resulting in stress corrosion cracking.

本発明者は、上記の知見に着目してさらに研究した結果
、従来行われていた時効硬化熱処理を実質的に行わなく
ても、合金の組成ならびに固溶化熱処理温度とその後の
塑性加工の加工率を厳格に制御することにより機械的強
度と耐SCC性の双方の向上を調和的に達成することが
できることを発見したものである。
As a result of further research focusing on the above findings, the present inventors have found that the composition of the alloy, the solution heat treatment temperature, and the processing rate of subsequent plastic working can be improved without substantially performing the conventional age hardening heat treatment. It has been discovered that by strictly controlling , it is possible to harmoniously achieve improvements in both mechanical strength and SCC resistance.

以下、本発明を具体的に説明する。The present invention will be specifically explained below.

まず、本発明で用いるNi基合金において、Crは18
〜25%、さらに好ましくは23〜25%含有される。
First, in the Ni-based alloy used in the present invention, Cr is 18
-25%, more preferably 23-25%.

Crは耐食性に寄与する成分であり、18%未満ではそ
の効果が乏しく、一方25%を超えて添加すると逆に加
工性を低下させるので好ましくない。
Cr is a component that contributes to corrosion resistance, and if it is less than 18%, its effect is poor, while if it is added in an amount exceeding 25%, it conversely reduces workability, which is not preferable.

Moは固溶強化ならびに耐食性の向上に寄与する成分で
あり、5〜12%、さらに好ましくは10〜12%添加
される。添加量が多くなるに従って耐食性が良くなるが
、その反面加工性に悪影響を及ぼすので上記範囲に制限
することが望ましい。
Mo is a component that contributes to solid solution strengthening and improvement of corrosion resistance, and is added in an amount of 5 to 12%, more preferably 10 to 12%. Corrosion resistance improves as the amount added increases, but on the other hand it has a negative effect on workability, so it is desirable to limit it to the above range.

Nbおよび/またはTaも上記Moと同様に固溶強化な
らびに耐食性の向上に寄与する成分であり、2〜6%、
さらに好ましくは2〜4%添加される。添加量が多くな
るに従って耐食性が良くなるが、その反面加工性に悪影
響を及ぼすので上記範囲に制限することが望ましい。
Nb and/or Ta are also components that contribute to solid solution strengthening and improvement of corrosion resistance, like the above Mo, and are present in an amount of 2 to 6%.
More preferably, it is added in an amount of 2 to 4%. Corrosion resistance improves as the amount added increases, but on the other hand it has a negative effect on workability, so it is desirable to limit it to the above range.

Feは延性の向上に寄与する成分であるが、反面、耐食
性が低下するので10%以下、さらに好ましくは5%以
下に制限することが望ましい。
Fe is a component that contributes to improving ductility, but on the other hand, it reduces corrosion resistance, so it is desirable to limit it to 10% or less, more preferably 5% or less.

上記の成分が必須成分であるが、本発明においては、脱
酸剤としてTiやA1を添加してもよい。
Although the above components are essential components, in the present invention, Ti or A1 may be added as a deoxidizing agent.

また、CはCr炭化物の生成を増大させるので、0.1
%以下、さらに好ましくは0.05%以下に制限される
べきである。
Also, since C increases the formation of Cr carbide, 0.1
% or less, more preferably 0.05% or less.

本発明においては、上述した組成範囲の合金成分を、常
法に従って例えば溶融してインゴットを製造したのち鍛
造し、さらに熱間圧延を行ったのち固溶化熱処理を行う
。この固溶化熱処理は、950〜1150℃の温度範囲
で行う。950℃未満では前加工で生じた析出物の固溶
が不完全となって固溶化の効果は得られず、一方115
0℃を超えて加熱すると強度が低下するので好ましくな
い。より好ましくは1000〜1100℃である。
In the present invention, an ingot is manufactured by melting the alloy components in the above-mentioned composition range according to a conventional method, for example, and then forged, further hot rolled, and then subjected to solution heat treatment. This solution heat treatment is performed at a temperature range of 950 to 1150°C. If the temperature is lower than 950°C, the solid solution of the precipitates generated in the pre-processing will be incomplete and the effect of solid solution cannot be obtained;
Heating above 0°C is not preferred because the strength decreases. More preferably it is 1000-1100°C.

固溶化熱処理ののち、合金を一旦急冷することが好まし
い。このような冷却はCr炭化物の発生を防止する上で
好ましい。
After the solution heat treatment, it is preferable to once rapidly cool the alloy. Such cooling is preferable in order to prevent the generation of Cr carbides.

次いで、冷却後、塑性加工を行い所定の部材形状にする
。この塑性加工は少なくとも加工率10%のものである
ことが肝要である。本発明者の知見によれば、上記の固
溶化熱処理によって耐SCC性の発現が達成されるが、
上記10%以上の塑性加工によって機械的特性にも一層
すぐれたものが得られる。しかし、加工率が30%を超
えると延性がなくなり構造材料として使用する場合は1
0〜30%が好ましい範囲となる。
Next, after cooling, plastic working is performed to form a predetermined member shape. It is important that this plastic working has a working rate of at least 10%. According to the findings of the present inventors, the development of SCC resistance is achieved by the above-mentioned solution heat treatment; however,
By the above-mentioned plastic working of 10% or more, even better mechanical properties can be obtained. However, when the processing rate exceeds 30%, the ductility decreases and when used as a structural material, 1
A preferable range is 0 to 30%.

(実施例) 下記、第1表に示す組成の合金成分を溶解し各試料につ
いてインゴットを製造した。
(Example) Ingots were produced for each sample by melting alloy components having the compositions shown in Table 1 below.

第1表 次いで、得られたインゴットを鍛造し、得られたビレッ
トを熱間圧延し、その後急冷する。さらにこれを105
0℃の温度で固溶化熱処理を行った。
Table 1 The resulting ingot is then forged, the resulting billet is hot rolled, and then rapidly cooled. Add this to 105
Solution heat treatment was performed at a temperature of 0°C.

次いで、上記処理のち種々の加工率で冷間加工を行い部
材特性を試験した。
Next, after the above treatment, cold working was performed at various processing rates to test the member properties.

まず、引張試験は、JISZ2241に従い、0.2%
耐力を求めるまでは2kgf/−/seeで行い、耐力
以降破断までは50%/m1nの引張速度で行った。
First, the tensile test was conducted at 0.2% according to JIS Z2241.
The tensile strength was 2 kgf/-/see until the yield strength was determined, and the tensile rate was 50%/m1n after the yield strength until breakage.

腐食試験は、3X15X15■■の大きさの試験片を洗
浄後、試験片の重量および表面積を測定する。次に、こ
の試験片を硫酸濃度が50%の硫酸溶液中に10時間浸
漬する。試験後の試験片の重量を測定し試験前後の重量
差から腐食速度(g/ゴ/h)を求める。
In the corrosion test, a test piece with a size of 3 x 15 x 15 mm is washed, and then the weight and surface area of the test piece are measured. Next, this test piece is immersed in a sulfuric acid solution having a sulfuric acid concentration of 50% for 10 hours. The weight of the test piece after the test is measured, and the corrosion rate (g/g/h) is determined from the difference in weight before and after the test.

応力腐食割れ(S CC)試験は、第1図に示すように
、2X10X50s■の大きさの試験片1をカーボング
ラファイト2とともに治具3.3′間に挿入して試験片
1に一定の応力を印加した状態のままこれらを原子炉内
と同一の環境(288℃、70気圧)に500時間保持
しておき、さらに保持後、当該試験片の断面を研磨して
顕微鏡でSCCによるクラックを全面にわたり観察し、
最大SCC深さ(μm)を測定することにより行った。
In the stress corrosion cracking (SCC) test, as shown in Figure 1, a test piece 1 with a size of 2 x 10 x 50 seconds is inserted between a jig 3 and 3' together with carbon graphite 2, and a constant stress is applied to the test piece 1. The specimens were kept in the same environment as inside the reactor (288°C, 70 atm) for 500 hours with the applied pressure applied to them, and after further holding, the cross section of the test pieces was polished and cracks caused by SCC were removed from the entire surface using a microscope. Observe for a long time,
This was done by measuring the maximum SCC depth (μm).

上述した各試験の測定結果を下記第2表に示す。The measurement results of each test described above are shown in Table 2 below.

第 表 〔発明の効果〕 本発明においては、合金の組成ならびに固溶化熱処理温
度とその後の塑性加工の加工率を一定範囲に制御するよ
うにしたので、機械的特性と耐SCC性の双方の向上が
調和的に図られたニッケル基合金が提供される。
Table [Effects of the Invention] In the present invention, since the composition of the alloy, the solution heat treatment temperature, and the processing rate of the subsequent plastic working are controlled within a certain range, both mechanical properties and SCC resistance are improved. Provided is a nickel-based alloy in which the following properties are harmoniously achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はCBB試験法による試験治具を模式的に示す断
面図である。 1・・・試験片、2・・・カーボングラファイト、3・
・・治具。
FIG. 1 is a cross-sectional view schematically showing a test jig according to the CBB test method. 1... Test piece, 2... Carbon graphite, 3...
··jig.

Claims (1)

【特許請求の範囲】 1、重量比で、Cr:18〜25%、Mo:5〜12%
、Nbおよび/またはTa:2〜6%、Fe:10%以
下含有し、残部がNiならびに不可避的不純物からなる
ニッケル基合金に対して950〜1150℃の温度で固
溶化熱処理を行い、冷却後、10%以上の塑性加工を行
うことを特徴とする、ニッケル基合金部材の製造方法。 2、請求項1に記載の方法で得られたことを特徴とする
ニッケル基合金部材。
[Claims] 1. Weight ratio: Cr: 18-25%, Mo: 5-12%
, Nb and/or Ta: 2 to 6%, Fe: 10% or less, and the remainder is Ni and unavoidable impurities. Solution heat treatment is performed at a temperature of 950 to 1150 ° C., and after cooling. A method for producing a nickel-based alloy member, characterized by performing plastic working of 10% or more. 2. A nickel-based alloy member obtained by the method according to claim 1.
JP27573889A 1989-10-23 1989-10-23 Nickel-base alloy member and its production Pending JPH03138343A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP27573889A JPH03138343A (en) 1989-10-23 1989-10-23 Nickel-base alloy member and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27573889A JPH03138343A (en) 1989-10-23 1989-10-23 Nickel-base alloy member and its production

Publications (1)

Publication Number Publication Date
JPH03138343A true JPH03138343A (en) 1991-06-12

Family

ID=17559703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27573889A Pending JPH03138343A (en) 1989-10-23 1989-10-23 Nickel-base alloy member and its production

Country Status (1)

Country Link
JP (1) JPH03138343A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10144999B2 (en) 2010-07-19 2018-12-04 Ati Properties Llc Processing of alpha/beta titanium alloys
US10435775B2 (en) 2010-09-15 2019-10-08 Ati Properties Llc Processing routes for titanium and titanium alloys
US10513755B2 (en) 2010-09-23 2019-12-24 Ati Properties Llc High strength alpha/beta titanium alloy fasteners and fastener stock
US10287655B2 (en) 2011-06-01 2019-05-14 Ati Properties Llc Nickel-base alloy and articles
US10570469B2 (en) 2013-02-26 2020-02-25 Ati Properties Llc Methods for processing alloys
US10337093B2 (en) 2013-03-11 2019-07-02 Ati Properties Llc Non-magnetic alloy forgings
US10370751B2 (en) 2013-03-15 2019-08-06 Ati Properties Llc Thermomechanical processing of alpha-beta titanium alloys
US11111552B2 (en) 2013-11-12 2021-09-07 Ati Properties Llc Methods for processing metal alloys
US10619226B2 (en) 2015-01-12 2020-04-14 Ati Properties Llc Titanium alloy
US10808298B2 (en) 2015-01-12 2020-10-20 Ati Properties Llc Titanium alloy
US11319616B2 (en) 2015-01-12 2022-05-03 Ati Properties Llc Titanium alloy
US11851734B2 (en) 2015-01-12 2023-12-26 Ati Properties Llc Titanium alloy
US10502252B2 (en) 2015-11-23 2019-12-10 Ati Properties Llc Processing of alpha-beta titanium alloys

Similar Documents

Publication Publication Date Title
EP3441489B1 (en) Method for manufacturing ni-based alloy member
US8470106B2 (en) Method of heat treatment for desensitizing a nickel-based alloy relative to environmentally-assisted cracking, in particular for a nuclear reactor fuel assembly and for a nuclear reactor, and a part made of the alloy and subjected to the treatment
JP2588705B2 (en) Nickel-base superalloys
JP7223121B2 (en) High-strength fastener material by forged titanium alloy and its manufacturing method
CN106337145B (en) Nickel-chromium-molybdenum alloy and method for producing same
JPS604895B2 (en) Structure with excellent stress corrosion cracking resistance and its manufacturing method
JPH03138343A (en) Nickel-base alloy member and its production
CN111394663A (en) Heat-resistant iron-based alloy and preparation method thereof
JP2002146497A (en) METHOD FOR MANUFACTURING Ni-BASED ALLOY
CN106435318B (en) A kind of vanadium alloy of high-strength and high ductility and preparation method thereof
EP0260510B1 (en) Thermomechanical method of forming fatigue crack resistant nickel base superalloys and product formed
JP2965841B2 (en) Method of manufacturing forged Ni-base superalloy product
JPS6128746B2 (en)
CN114318194B (en) Nickel-based casting high-temperature alloy, heat treatment method thereof and alloy casting
EP3520915A1 (en) Method of manufacturing ni-based super heat resistant alloy extruded material, and ni-based super heat resistant alloy extruded material
JPH03134144A (en) Nickel-base alloy member and its manufacture
CN105734344A (en) Nickel-based alloy with excellent comprehensive high temperature performance and production technology of nickel-based alloy
CN111254317A (en) Nickel-based casting alloy and preparation method thereof
JPS6277448A (en) Manufacture of high strength nickel alloy member having superior scc resistance
JPS62167839A (en) Ni base alloy and its manufacture
JPS63140057A (en) Ni-base alloy excellent in stress corrosion cracking resistance and its production
JP2568047B2 (en) Nickel-based alloy
JPH0633206A (en) Method for heat-treating ni-base alloy
JP2004091816A (en) Nickel-based alloy, heat treatment method for nickel-based alloy, and member for nuclear power with the use of nickel-based alloy
JPS6123862B2 (en)