JPS61249592A - Biological reaction device - Google Patents

Biological reaction device

Info

Publication number
JPS61249592A
JPS61249592A JP60092950A JP9295085A JPS61249592A JP S61249592 A JPS61249592 A JP S61249592A JP 60092950 A JP60092950 A JP 60092950A JP 9295085 A JP9295085 A JP 9295085A JP S61249592 A JPS61249592 A JP S61249592A
Authority
JP
Japan
Prior art keywords
liquid
microorganisms
membrane
membranes
separation membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60092950A
Other languages
Japanese (ja)
Other versions
JPH0634985B2 (en
Inventor
Mikio Kitagawa
幹夫 北川
Yoshio Taniguchi
良雄 谷口
Mitsuharu Furuichi
光春 古市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP9295085A priority Critical patent/JPH0634985B2/en
Publication of JPS61249592A publication Critical patent/JPS61249592A/en
Publication of JPH0634985B2 publication Critical patent/JPH0634985B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Biological Wastes In General (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)
  • External Artificial Organs (AREA)
  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To make the constitution over the entire part of a device compact by disposing separating membranes on liquid permeable supporting materials, depositing microorganisms on the surfaces of the separating membranes and installing the assembly into a reaction vessel. CONSTITUTION:The liquid permeable supporting materials 4 are disposed in a manner as to part an introducing port 2 and a take-out port 3 in the reaction vessel 1 provided with the introducing port 2 for the feed liquid and the take-out port 3 for the produced liquid in a biological reaction device for treating biologically org. waste liquid by using microorganisms. The separating membranes 5 are disposed on the surface on the feed liquid side of the materials 4 and further layers 6 to carry the microorganisms are provided on the surface on the feed liquid side of the membranes 5. Since the microorganisms are deposited on the separating membrane surfaces, the constitution over the entire part of the device is made compact. The clogging of the separating membranes is prevented by the effect of the microorganisms, by which the decrease in the rate of the liquid permeation through the membranes is lessened. The separating membranes do not require cleaning or require very little cleaning.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は生物反応装置に係り、特に限外濾過膜や精密濾
過膜などの分離膜に微生物を固定化させたものを用いて
生物反応を行わせるようにした生物反応装置に関するも
のである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a biological reaction device, and particularly to a biological reaction device using a separation membrane such as an ultrafiltration membrane or a microfiltration membrane in which microorganisms are immobilized. The present invention relates to a biological reaction device designed to carry out such a reaction.

[従来の技術] 生物処理装置と膜分離装置とを組み合わせた生物反応装
置が、廃水処理装置などの分野において知られている0
例えば、特開昭57−7293には生物処理装置からの
生物処理液を膜分離処理し、この濃縮液を生物処理装置
に返送するようにしたものが、また、特公昭46−41
584には生物処理後の処理水を膜分離し処理水の水質
向上を図るようにしたものが開示されている。
[Prior Art] A biological reaction device that combines a biological treatment device and a membrane separation device is known in the field of wastewater treatment devices, etc.
For example, Japanese Patent Publication No. 57-7293 discloses a system in which biological treatment liquid from a biological treatment device is subjected to membrane separation treatment and the concentrated liquid is returned to the biological treatment device.
No. 584 discloses a system in which treated water after biological treatment is subjected to membrane separation to improve the quality of the treated water.

このように、従来の膜分離装置を備えた生物反応装置に
おける膜分離膜の役割りは、生物処理装置内の汚泥濃度
を所定値以上に保持したり、生物処理水中のSS除去、
生物処理で分解されない残留成分の除去等であり、終沈
、凝集沈殿、濾過などの役割りを果している。
As described above, the role of the membrane separation membrane in a biological reaction device equipped with a conventional membrane separation device is to maintain the sludge concentration in the biological treatment device above a predetermined value, remove SS from the biologically treated water,
It removes residual components that cannot be decomposed by biological treatment, and plays roles such as final sedimentation, coagulation and sedimentation, and filtration.

このような従来の生物反応装置においても、例えば生物
処理装置内の微生物濃度(例えば汚泥濃度)を高めるこ
とは可能であり、これにより負荷量の高い処理装置を提
供し得る。
Even in such a conventional biological reaction device, it is possible to increase the concentration of microorganisms (for example, sludge concentration) in the biological treatment device, thereby providing a treatment device with a high load amount.

[発明が解決しようとする問題点] しかしながら、上記従来の生物反応装置は、それぞれ作
用の異なる生物処理装置と膜分離装置とを単に組み合わ
せたものであり、高効率化には限界があった。また、従
来の生物反応装置における分離膜には、生物処理装置か
らの膜汚染物質(例えば汚泥、残留成分、原液中の無機
物質、生物の代謝物質等)が付着し、分離膜の透過水量
を低下させ、薬品洗浄、ポール洗浄などの膜面付着物質
の除去操作を必要とした。また、従って、上記生物反応
装置においては、生物処理装置(反応槽)、分離膜の他
に、膜洗浄装置をも必要とし、三つの異なる機能を有す
るユニットが必要とされていた。
[Problems to be Solved by the Invention] However, the conventional biological reaction device described above is simply a combination of a biological treatment device and a membrane separation device, each of which has a different function, and there is a limit to its high efficiency. In addition, membrane contaminants from the biological treatment equipment (e.g. sludge, residual components, inorganic substances in the raw solution, metabolic substances of organisms, etc.) adhere to the separation membrane in conventional biological reaction equipment, reducing the amount of water permeated through the separation membrane. It was necessary to perform operations to remove substances adhering to the membrane surface, such as chemical cleaning and pole cleaning. Furthermore, in the above biological reaction device, a membrane cleaning device is also required in addition to the biological treatment device (reaction tank) and the separation membrane, and a unit having three different functions is required.

[問題点を解決するための手段] 本発明は、°液透過可能な支持材上に分離膜を配置し、
この分離膜の原液側表面に微生物を担持させ、これを反
応容器内に設置する。そして、原液を反応容器内に導入
し、分離膜に担持された微生物により生物処理を施した
後、該分離膜及び支持材を透過させて反応容器から取り
出すようにしたものである。
[Means for solving the problems] The present invention provides a separation membrane disposed on a liquid-permeable support material,
Microorganisms are supported on the surface of the separation membrane on the raw solution side, and this is placed in a reaction vessel. Then, the stock solution is introduced into a reaction vessel, subjected to biological treatment using microorganisms supported on a separation membrane, and then taken out from the reaction vessel by passing through the separation membrane and support material.

[作用] 本発明においては、分離膜面上に微生物が担持されてい
るので、従来のごとき生物処理装置と分離装置とを単に
組み合わせた生物反応装置とは異なり、生物処理手段と
膜分離手段とを一つのユニット内に組み入れることがで
き、高効率でコンパクトな処理装置とし得る。また、分
離膜への付着物質が固定化微生物により分解されるので
、膜の娩浄が不必要かあるいはその頻度が極めて少なく
て足りる。
[Function] In the present invention, since microorganisms are supported on the separation membrane surface, unlike a conventional biological reaction device that simply combines a biological treatment device and a separation device, a biological treatment means and a membrane separation device are combined. can be incorporated into one unit, resulting in a highly efficient and compact processing device. Furthermore, since the substances adhering to the separation membrane are decomposed by the immobilized microorganisms, cleaning of the membrane is unnecessary or can be done very infrequently.

[実施例] 以下図面を参照して実施例について説明する。[Example] Examples will be described below with reference to the drawings.

第1図は本発明の実施例に係る生物反応装置の縦断面図
、第2図及び第3図はそれぞれ第1図■−■線、m−m
線に沿う断面図、第4図は異なる実施例に係る生物反応
装置の縦断面図である。
FIG. 1 is a longitudinal cross-sectional view of a bioreactor according to an embodiment of the present invention, and FIGS. 2 and 3 are the lines ■-■ and m-m in FIG.
A cross-sectional view along the line, FIG. 4 is a longitudinal cross-sectional view of a bioreactor according to a different embodiment.

第4図は本発明の最も基本的な構成を示すものであるの
で、まず第4図を参照して本発明の構成について説明す
る。
Since FIG. 4 shows the most basic configuration of the present invention, the configuration of the present invention will first be explained with reference to FIG.

第4図においてlは反応装置の容器であって、上部に原
液の導入口2が、そして下部に生産液の取出口3が設け
られている。そして、容器lを水平方向に横断するよう
に液透過可能な材質からなる支持材4が設置され、これ
により容器1内が原液室1aと生産液室tbとに2分さ
れている。支持材4の液導入側には分離膜5が設けられ
ており、この分離膜5の表面には微生物が担持された層
(生物固定化層)6が設けられている。
In FIG. 4, reference numeral 1 denotes a container of the reactor, and an inlet 2 for the stock solution is provided at the upper part, and an outlet 3 for the production solution is provided at the lower part. A support member 4 made of a liquid-permeable material is installed so as to cross the container 1 in the horizontal direction, thereby dividing the inside of the container 1 into a stock solution chamber 1a and a production solution chamber tb. A separation membrane 5 is provided on the liquid introduction side of the support material 4, and a layer 6 carrying microorganisms (bioimmobilization layer) 6 is provided on the surface of the separation membrane 5.

このように構成された生物反応装置において、導入口2
から反応容器l内に導入された原液は生物固定化層6と
接触して生物処理を受け、生物学的に分解される。そし
て、分解生成物は分離膜5を透過し支持材4を通過して
生産液取出室1bに入り、次いで取出口3かち取り出さ
れる。
In the bioreactor configured in this way, the inlet 2
The stock solution introduced into the reaction vessel 1 is subjected to biological treatment by contacting the biological immobilization layer 6 and is biologically decomposed. The decomposition products pass through the separation membrane 5, pass through the support material 4, enter the product liquid extraction chamber 1b, and are then extracted from the extraction port 3.

このように、分離膜5面上に担持されている微生物によ
り分解又は改質された物質は直ちに分離膜により分離さ
れる。また、膜面に付着し透過水量を減少させる膜面閉
塞汚染物質は固定化微生物により生物学的に分解される
。そのため、処理効率が高いと共に、膜の目詰りが抑制
され、膜洗浄処理の頻度が極めて少なくなる。
In this way, the substance decomposed or modified by the microorganisms supported on the surface of the separation membrane 5 is immediately separated by the separation membrane. In addition, membrane surface clogging contaminants that adhere to the membrane surface and reduce the amount of permeated water are biologically decomposed by immobilized microorganisms. Therefore, processing efficiency is high, membrane clogging is suppressed, and the frequency of membrane cleaning treatment is extremely reduced.

なお、11−13の部材については実験例の項において
説明する。
Note that members 11-13 will be explained in the experimental example section.

次に第1図を参照して本発明の好ましい実施例について
説明する。
Next, a preferred embodiment of the present invention will be described with reference to FIG.

第1図において、反応容器lは原液導入口2を上部に、
また生産液取出口3を下部に有し、その内部には仕切板
7が設けられている。この仕切板7は複数個の円形の孔
を有しており、この孔から原液室la側に立ち上がるよ
うに筒状の支持材4が設けられている。そして、この筒
状支持材4の周面に分子11111!I5が設けられ、
この分離膜5の表面に生物固定化層6が設けられている
。なお支持材4、分離膜5及び生物固定化層6の上端面
は蓋状部材8によって封じられている。
In FIG. 1, the reaction vessel l has the stock solution inlet 2 at the top,
Further, a production liquid outlet 3 is provided at the bottom, and a partition plate 7 is provided inside the outlet. This partition plate 7 has a plurality of circular holes, and a cylindrical support member 4 is provided so as to rise from the holes toward the stock solution chamber la side. Then, molecules 11111! I5 is provided,
A biological immobilization layer 6 is provided on the surface of this separation membrane 5. Note that the upper end surfaces of the support material 4, separation membrane 5, and biological immobilization layer 6 are sealed with a lid-like member 8.

この第1図の実施例においても、導入口2から原液室1
aに導入された原液は、生物固定化層6に固定化されて
いる微生物によって生物学的な処理(例えば、分解、改
質反応等)を受ける。生じた物質は分離膜5及び支持材
4を透過して生産液室tbに入り、取出口3から取り出
される0図中lOはガス抜出口である。
Also in the embodiment shown in FIG. 1, from the inlet 2 to the stock solution chamber 1.
The stock solution introduced into a is subjected to biological treatment (for example, decomposition, reforming reaction, etc.) by microorganisms immobilized in the biological immobilization layer 6. The generated substance passes through the separation membrane 5 and the support material 4, enters the production liquid chamber tb, and is taken out from the outlet 3. In the figure, lO is a gas outlet.

この第1図の実施例は、第4図の実施例に比べ反応容器
1内に設けられている支持材4の表面積が大きいので、
微生物固定化層6の面積も大きく、従って同一容量で処
理し得る原液の量が極めて多い。
In the embodiment shown in FIG. 1, the surface area of the support material 4 provided in the reaction vessel 1 is larger than that in the embodiment shown in FIG.
The area of the microorganism immobilization layer 6 is also large, and therefore the amount of stock solution that can be treated with the same volume is extremely large.

なお本発明においては、第1図及び第4図に示すように
、生産液の一部を原液室la側に戻すように配管1cを
設けてもよい、もちろん、−過大に流下させてもよい。
In addition, in the present invention, as shown in FIGS. 1 and 4, a pipe 1c may be provided to return a part of the production liquid to the stock solution chamber la side, or, of course, an excessive amount may be allowed to flow down. .

本発明において支持材5としては、焼結合金、多孔質セ
ラミックス、素焼き陶器などを用いることができる。
In the present invention, as the support material 5, sintered alloy, porous ceramics, unglazed earthenware, etc. can be used.

分離膜としては、特に限定されることなく各種のものを
用いることができるが、反応の種類に応じて選定するの
が好ましい0例えば通常の廃水処理を行う場合には孔径
1−0.IILmの精密濾過膜を用いることができ、高
度な廃水処理を行う場合は分画分子量が20000〜1
000の限外濾過膜を用いることができる。また有機酸
発酵、アルコール発酵等を行う場合は、生成した有機酸
、アルコールが透過する性状の精密濾過膜、限外濾過膜
を用いることができる。
Various types of separation membranes can be used without particular limitation, but it is preferable to select one according to the type of reaction. For example, when performing ordinary wastewater treatment, a membrane with a pore size of 1-0. IILm precision filtration membrane can be used, and when performing advanced wastewater treatment, the molecular weight cut-off is 20,000 to 1.
000 ultrafiltration membranes can be used. Further, when performing organic acid fermentation, alcohol fermentation, etc., a microfiltration membrane or an ultrafiltration membrane that allows the generated organic acid and alcohol to pass through can be used.

分離膜面上に担持される微生物としては、目的とする反
応に応じて選定されるのであるが、例えば嫌気性廃水処
理を行う場合は、酸生成菌、メタ  □ン生成菌を用い
る。また好気性廃水処理を行う場合にはズーグレア等を
用いる。アルコール発酵を目的としている場合は酵母を
担持する。従って、本発明における「微生物」は、酵母
や酵素をも含む広い概念で用いられる。
The microorganisms to be supported on the separation membrane surface are selected depending on the desired reaction; for example, when performing anaerobic wastewater treatment, acid-producing bacteria and methane-producing bacteria are used. In addition, when performing aerobic wastewater treatment, zooglare or the like is used. If the purpose is alcoholic fermentation, carry yeast. Therefore, the term "microorganism" in the present invention is used in a broad sense, including yeast and enzymes.

なお、酸生成菌、メタン生成菌等の嫌気性菌を固定化さ
せ、嫌気性生物処理を行う場合には、原液室1aを嫌気
状態とする。また、好気性微生物を固定化して好気性生
物処理を行う場合には、原液室1aに散気装置を設けた
り、或いは予め原液に酸素を十分に溶存させて原液室1
aに導入する。
Note that when anaerobic bacteria such as acid-producing bacteria and methane-producing bacteria are immobilized and anaerobic biological treatment is performed, the stock solution chamber 1a is brought into an anaerobic state. In addition, when performing aerobic biological treatment by immobilizing aerobic microorganisms, an aeration device may be provided in the stock solution chamber 1a, or oxygen may be sufficiently dissolved in the stock solution in advance.
Introduce into a.

分離膜面上に微生物を担持させる手段としては次によう
な方法を用いることができる。
The following methods can be used to support microorganisms on the separation membrane surface.

■ 分離膜の表面に、アクリルアミド、カラギーナンな
どの通水可能な性質を有する補材を用いて微生物を付着
させる。
■ Microorganisms are attached to the surface of the separation membrane using a water-permeable supplement such as acrylamide or carrageenan.

■ 活性炭やスポンジ等のポーラスな性状の充填剤を上
記アクリルアミドやカラギーナンなどの補材を用いて分
離膜表面に付着させ、この充填剤の表面や細孔内に微生
物を付着、増殖させる。
(2) A porous filler such as activated carbon or sponge is attached to the surface of the separation membrane using the above-mentioned auxiliary material such as acrylamide or carrageenan, and microorganisms are allowed to adhere and multiply on the surface and within the pores of this filler.

しかして、本発明においては、上述のように膜面に付着
し、透過水量を減少させる膜面閉塞汚染物質は1分離膜
面上に担持されている微生物により生物学的に分解され
るので、分離膜の目詰りが殆ど進行しない、しかしなが
ら、長期間装置の運転を継続すると、原液中の無機物質
、難分解性物質、生物代謝物質等が分離膜の表面や空隙
に溜まり閉塞を生じることもあり得る。その場合には。
Therefore, in the present invention, as mentioned above, the membrane surface clogging contaminants that adhere to the membrane surface and reduce the amount of permeated water are biologically decomposed by the microorganisms supported on the separated membrane surface. Clogging of the separation membrane hardly progresses. However, if the device is operated for a long period of time, inorganic substances, persistent substances, biological metabolites, etc. in the stock solution may accumulate on the surface and voids of the separation membrane, causing clogging. could be. In that case.

清浄な液や生産液を生産液室1b側から支持材4を通し
て供給し分離膜を逆洗し閉塞物質を剥離させしめる。
Clean liquid or production liquid is supplied from the production liquid chamber 1b side through the support material 4 to backwash the separation membrane and peel off the clogging substances.

次に好適な実験例について説明する。Next, a suitable experimental example will be explained.

実験例1(本発明例) 第4図に示す装置において1反応容器lとして直径10
cm、高さ20cmの攪拌装置11付のカラムを用い、
支持材4として素焼陶器を用いた。この上に分画分離量
8000の限外濾過膜5を設け、更にその上に生物固定
材としてスポンジを厚さ10mmのものを1%寒天液を
用いて付着させた。
Experimental example 1 (example of the present invention) In the apparatus shown in Fig. 4, one reaction vessel l has a diameter of 10 mm.
Using a column with a stirring device 11 with a height of 20 cm and a height of 20 cm,
Unglazed pottery was used as the support material 4. An ultrafiltration membrane 5 with a fractional separation amount of 8,000 was placed on top of this, and a 10 mm thick sponge was adhered thereon as a biological fixation material using 1% agar solution.

このスポンジ上に次のようにして嫌気性菌体を付着させ
た。即ちグルコースと酢酸を混合した合成基質を用いて
増殖させておいた嫌気性菌体をvSS量として1gを濃
縮して反応容器l内に投入し、寒天を用いスポンジに菌
体を付着させた。
Anaerobic bacterial cells were attached to this sponge in the following manner. That is, 1 g of anaerobic bacterial cells grown using a synthetic substrate containing a mixture of glucose and acetic acid was concentrated as a vSS amount and put into a reaction vessel 1, and the bacterial cells were attached to a sponge using agar.

この寒天濃度は0.1%以下とした。The agar concentration was 0.1% or less.

実験用の基質としてはグルコースと酢酸との混合したC
ODcrlO000mg/Jlの合成基質を用いた。
The experimental substrate was C mixed with glucose and acetic acid.
A synthetic substrate with ODcrlO000 mg/Jl was used.

この基質を、ポンプにより反応容器l内に連続的に10
0mJL/日で注入すると共に、反応容器l内の液面レ
ベルを一定とするためレベル計を設置して該レベルを検
出し、液面レベルが下ったときには生産液の一部を原液
室1aに返送した。また原液質1a及び生産液室tbに
背圧弁12を有する配管13を接続し、運転圧力をこの
背圧弁12を調整することにより2kg/crrfとし
た。
This substrate was continuously pumped into the reaction vessel 1 for 10 minutes.
In addition to injecting at a rate of 0 mJL/day, a level meter is installed to detect the level in order to keep the liquid level in the reaction container l constant, and when the liquid level drops, a part of the production liquid is transferred to the stock liquid chamber 1a. Sent it back. Further, a pipe 13 having a back pressure valve 12 was connected to the raw liquid quality 1a and the production liquid chamber tb, and the operating pressure was set to 2 kg/crrf by adjusting the back pressure valve 12.

なお、反応容器1内の液量は1文とし、原液室1aの液
のpHは、リン酸バッファを用い。
Note that the amount of liquid in the reaction container 1 was set to 1, and the pH of the liquid in the stock solution chamber 1a was adjusted using a phosphate buffer.

6.8〜7.2とした。It was set as 6.8 to 7.2.

運転開始後10日、20日及び30日経過後の生産液の
水質、限外濾過膜の液透過量を第1表に示す。
Table 1 shows the water quality of the produced liquid and the amount of liquid permeated through the ultrafiltration membrane 10, 20, and 30 days after the start of operation.

実験例2(比較例) 支持材4の上に分画分子量8000の限外濾過膜5を設
けただけで、その上の生物固定化層6は設けなかった。
Experimental Example 2 (Comparative Example) Only an ultrafiltration membrane 5 having a molecular weight cutoff of 8000 was provided on the support material 4, and no biological immobilization layer 6 was provided thereon.

そして、この生物固定化層の代りに原液室l内に菌体を
浮遊せしめ、上記実験例1と同様にして実験を行った。
Then, instead of this biological immobilization layer, bacterial cells were suspended in the stock solution chamber 1, and an experiment was conducted in the same manner as in Experimental Example 1 above.

運転10日、20日、30日後の生産液の水質、限外濾
過膜の透過量の測定結果を第1表に示す。
Table 1 shows the measurement results of the water quality of the produced liquid and the amount of permeation through the ultrafiltration membrane after 10, 20, and 30 days of operation.

なお、第1表中、生産液の水質は原液からのCOD c
rの除去率として示す。
In addition, in Table 1, the water quality of the production liquid is COD c from the raw liquid.
It is expressed as the removal rate of r.

第1表 第1表より、生産液の水質は実験例1.2共に差はない
が、液透過量は本発明例の場合比較例に比べ2倍以上の
数値を示し、運転期間を長くしても液透過量の低下がな
いことが認められる。
Table 1 From Table 1, there is no difference in the water quality of the produced liquid between Experimental Examples 1 and 2, but the amount of liquid permeated in the invention example is more than double that of the comparative example, and the operation period is longer. It was observed that there was no decrease in the amount of liquid permeation.

[効果] 以上詳述した通り、本発明の生物反応装置においては、
分離膜面上に微生物が担持されているので、装置全体の
構成が極めてコンパクトとなる。
[Effect] As detailed above, in the bioreactor of the present invention,
Since the microorganisms are supported on the surface of the separation membrane, the structure of the entire device becomes extremely compact.

更に、この微生物の作用により分離膜の目詰りが防止さ
れ、膜透過液量の減少が極めて少ない、そして1分離膜
の洗浄が不要であるか極めて少なくて足りる。更に、従
来の分離膜のように薬品洗浄を行うことは不要であり、
洗浄を行う場合でも簡単な逆洗で足りる。
Furthermore, the action of these microorganisms prevents clogging of the separation membrane, the decrease in the amount of liquid permeated through the membrane is extremely small, and cleaning of the separation membrane is not necessary or only needs to be done in a very small amount. Furthermore, unlike conventional separation membranes, there is no need for chemical cleaning.
Even when cleaning is required, simple backwashing is sufficient.

また1本発明の装置においては、生産液は分離膜を透過
した液であるので、SS成分のない極めて高度な浄化液
である。更に、分離膜透過用動力も不要とし得る。
Furthermore, in the apparatus of the present invention, the production liquid is a liquid that has permeated through a separation membrane, so it is an extremely highly purified liquid that does not contain SS components. Furthermore, power for permeating the separation membrane may be unnecessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る生物反応装置の縦断面図
、第2図及び第3図はそれぞれ第1図■−■線、及び■
−■線に沿う断面図、第4図は異なる実施例に係る生物
反応装置の断面図である。 3・・・反応容器、    2・・・導入口、3・・・
取出口、     4・・・支持材、5・・・分離膜、
     6・・・生物固定化層、7・・・仕切板。
FIG. 1 is a longitudinal cross-sectional view of a biological reaction device according to an embodiment of the present invention, and FIGS. 2 and 3 are the lines ■-■ in FIG.
A sectional view taken along line -■, and FIG. 4 is a sectional view of a biological reaction device according to a different embodiment. 3... Reaction container, 2... Inlet, 3...
Output port, 4... Support material, 5... Separation membrane,
6... Biological immobilization layer, 7... Partition plate.

Claims (1)

【特許請求の範囲】[Claims] (1)有機性廃液などを微生物を用いて生物学的に処理
する生物反応装置であって、原液の導入口及び生産液の
取出口を備えた反応容器と、該導入口と取出口とを隔て
るように該反応容器内に配置された液透過可能な支持材
と、該支持材の原液側表面に配置された分離膜と、該分
離膜の原液側表面に設けられた微生物を担持する暦とを
有することを特徴とする生物反応装置。
(1) A biological reaction device for biologically treating organic waste liquid etc. using microorganisms, which comprises a reaction vessel equipped with an inlet for a stock solution and an outlet for a production liquid, and the inlet and outlet. A liquid permeable support material arranged in the reaction vessel so as to separate them, a separation membrane arranged on the raw solution side surface of the support material, and a microorganism-supporting microorganism supported material provided on the raw solution side surface of the separation membrane. A biological reaction device comprising:
JP9295085A 1985-04-30 1985-04-30 Bioreactor Expired - Lifetime JPH0634985B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9295085A JPH0634985B2 (en) 1985-04-30 1985-04-30 Bioreactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9295085A JPH0634985B2 (en) 1985-04-30 1985-04-30 Bioreactor

Publications (2)

Publication Number Publication Date
JPS61249592A true JPS61249592A (en) 1986-11-06
JPH0634985B2 JPH0634985B2 (en) 1994-05-11

Family

ID=14068740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9295085A Expired - Lifetime JPH0634985B2 (en) 1985-04-30 1985-04-30 Bioreactor

Country Status (1)

Country Link
JP (1) JPH0634985B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2737202A1 (en) * 1995-07-25 1997-01-31 Omnium Traitement Valorisa INSTALLATION FOR THE BIOLOGICAL TREATMENT OF WATERS FOR THEIR POTABILIZATION
US5932099A (en) * 1995-07-25 1999-08-03 Omnium De Traitements Et De Valorisation (Otv) Installation for biological water treatment for the production of drinkable water
WO2015083717A1 (en) * 2013-12-02 2015-06-11 東レ株式会社 Water treatment method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2737202A1 (en) * 1995-07-25 1997-01-31 Omnium Traitement Valorisa INSTALLATION FOR THE BIOLOGICAL TREATMENT OF WATERS FOR THEIR POTABILIZATION
WO1997005072A1 (en) * 1995-07-25 1997-02-13 Otv Omnium De Traitements Et De Valorisation Biological water treatment plant for producing drinking water
US5932099A (en) * 1995-07-25 1999-08-03 Omnium De Traitements Et De Valorisation (Otv) Installation for biological water treatment for the production of drinkable water
WO2015083717A1 (en) * 2013-12-02 2015-06-11 東レ株式会社 Water treatment method
JP5804228B1 (en) * 2013-12-02 2015-11-04 東レ株式会社 Water treatment method
CN106103349A (en) * 2013-12-02 2016-11-09 东丽株式会社 Method for treating water

Also Published As

Publication number Publication date
JPH0634985B2 (en) 1994-05-11

Similar Documents

Publication Publication Date Title
Pankhania et al. Membrane aeration bioreactors for wastewater treatment: completely mixed and plug-flow operation
EP1899273B1 (en) Water treatment process
EP2651833B1 (en) Process, apparatus and membrane bioreactor for wastewater treatment
JPH0470958B2 (en)
US8273247B2 (en) Water reclamation without biosludge reproduction
JPH07256281A (en) Waste water purifying method and tank
KR101565647B1 (en) Advaced treatment apparatus for removing the nonbiodegradable organic material and nutrient salt of wastewater and remiving method by using it
KR102100991B1 (en) Liquefied fertilizer purification apparatus using porous ceramic membrane
JP4859170B2 (en) Nitrogen-containing organic wastewater treatment system
JP2006326534A (en) Organic waste treatment method and treatment apparatus
JPS61249592A (en) Biological reaction device
JPH07275887A (en) Purifying tank
JPS61120694A (en) Treatment of organic waste water
US6099731A (en) Method and apparatus for treating water
JPH07155759A (en) Waste water treating device
JPH04371298A (en) Treatment of organic sewage and equipment
JPS61249598A (en) Two-phase type anaerobic treatment device
JPH09117794A (en) Biological denitrification device
KR20030097075A (en) Hybrid Submerged Plate Type Membrane Bioreactor Using microfilter Combined With Biofilm-Activated Carbon for Advanced Treatment of Sewage and Wastewater
JPH0366959B2 (en)
Lobos et al. Membrane bioreactor performances: effluent quality ofcontinuous and sequencing systems for water reuse
JPS61249593A (en) Biological reaction device
Arnot et al. Membrane bioreactors as an alternative to conventional waste water treatment processes
JPH0445895A (en) Waste water treating equipment
Visvanathan et al. Membrane bioreactor applications in wastewater treatment

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term