JPS61249598A - Two-phase type anaerobic treatment device - Google Patents

Two-phase type anaerobic treatment device

Info

Publication number
JPS61249598A
JPS61249598A JP60092951A JP9295185A JPS61249598A JP S61249598 A JPS61249598 A JP S61249598A JP 60092951 A JP60092951 A JP 60092951A JP 9295185 A JP9295185 A JP 9295185A JP S61249598 A JPS61249598 A JP S61249598A
Authority
JP
Japan
Prior art keywords
membrane
acid
methane
production reaction
reaction section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60092951A
Other languages
Japanese (ja)
Inventor
Mikio Kitagawa
幹夫 北川
Yoshio Taniguchi
良雄 谷口
Mitsuharu Furuichi
光春 古市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kurita Water Industries Ltd
Original Assignee
Kurita Water Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kurita Water Industries Ltd filed Critical Kurita Water Industries Ltd
Priority to JP60092951A priority Critical patent/JPS61249598A/en
Publication of JPS61249598A publication Critical patent/JPS61249598A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

PURPOSE:To prevent the clogging of separating membranes by sticking of contaminants thereto by providing an acid formation reactive part consisting of an acid forming bacteria- immobilized layer, separating membrane and supporting material and a methane formation reactive part consisting of a methane forming bacterial-immobilized layer, separating membrane and supporting material. CONSTITUTION:The acid formation reactive part 19 consists of the liquid permeable supporting material 21, the separating membrane 22 attached onto said material and the acid forming bacteria-immobilized layer 23 formed thereon. The methane formation reactive part 20 consists of the liquid permeable supporting material 24, the separating membrane 25 attached onto said material and the methane forming bacterial-immobilized layer 26 formed thereon. The acid formation reactive part and methane formation reactive part are contained in a tank body 14 and the feed water is passed through the separating membrane 22, the supporting material 21, the separating membrane 25 and the supporting material 24 in this order in the tank body 14 and is then taken out of the tank body. As a result, the clogging of the separating membranes by the sticking of the pollutants to the membranes is prevented and the smaller driving power for membrane permeation is required. The microorganisms are integrally immobilized on the separating membranes, by which the constitution of the device is made compact.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は二相式嫌気性処理装置に係り、特に有機性廃水
をまず酸生成菌によって酢酸などの有機酸に分解し、こ
れを更にメタン生成菌によりメタンに分解する二相式嫌
気性処理装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a two-phase anaerobic treatment device, in which organic wastewater is first decomposed by acid-producing bacteria into organic acids such as acetic acid, which are then further decomposed into methane and other organic acids. This relates to a two-phase anaerobic treatment device that decomposes methane into methane using producing bacteria.

[従来の技術] 有機性排水を嫌気性処理する方式として単相方式よりも
処理効率の高い二相方式がある。この二相式嫌気性処理
は、互いに異なる菌種の微生物を用いて2段階に分けて
嫌気性処理を施すものであり、それぞれの菌が最も好ま
しい環境となるように処理条件を維持することができる
ので、処理効率が高い。
[Prior Art] As a method for anaerobically treating organic wastewater, there is a two-phase method that has higher treatment efficiency than a single-phase method. In this two-phase anaerobic treatment, anaerobic treatment is performed in two stages using different species of microorganisms, and the treatment conditions must be maintained to create the most favorable environment for each type of bacteria. processing efficiency is high.

ところで、嫌気性処理方式においては、嫌気性処理液を
限外濾過膜や精密濾過膜などの膜分離手段によって高次
の処理を行うものが知られている0例えば、嫌気性反応
槽から取り出される液を膜分離装置に導入し、濃縮液を
嫌気性反応槽に返送すると共に膜通過液を処理水として
取り出すものである。このようにすれば嫌気性反応槽内
の汚泥濃度を増加させ、高負荷処理を行い、且つSS成
分等の分離された高度な処理水を得ることが可能である
By the way, in the anaerobic treatment method, it is known that the anaerobic treatment liquid is subjected to high-level treatment using membrane separation means such as an ultrafiltration membrane or a microfiltration membrane. The liquid is introduced into the membrane separation device, the concentrated liquid is returned to the anaerobic reaction tank, and the liquid passing through the membrane is taken out as treated water. In this way, it is possible to increase the sludge concentration in the anaerobic reaction tank, perform high-load treatment, and obtain highly treated water from which SS components and the like have been separated.

このような嫌気性あ理と膜分離処理とを組み合わせたも
のは二相嫌気性処理方式においても考えられている。第
2図はこの嫌気性処理装置と膜分離装置とを併用した二
相式嫌気性処理方式の装置系統図である。
A combination of such anaerobic aeration and membrane separation treatment is also being considered in a two-phase anaerobic treatment system. FIG. 2 is a system diagram of a two-phase anaerobic treatment system that uses both the anaerobic treatment device and the membrane separation device.

第2図においては、原水は配管1から酸生成反応槽2に
導入され、その処理液はポンプ3を有する配管4から抜
き出されて膜分離装置5に導入される。膜分離装置5の
分離膜5aによって濃縮された液は配管6から酸生成反
応槽2に戻され、分離11!5aを通過した処理液は配
管7からメタン生成反応槽8に送られる。メタン生成反
応槽8における反応液は、ポンプ9を有する配管10に
よって抜き出され膜分離装置11に導入され、濃縮液は
配管12によってメタン生成反応槽8に戻される0分離
W111 aを通過した液は配管13から処理水として
取り出される。
In FIG. 2, raw water is introduced into an acid production reaction tank 2 from a pipe 1, and the treated liquid is extracted from a pipe 4 having a pump 3 and introduced into a membrane separation device 5. The liquid concentrated by the separation membrane 5a of the membrane separator 5 is returned to the acid production reaction tank 2 from the pipe 6, and the treated liquid that has passed through the separation 11!5a is sent from the pipe 7 to the methane production reaction tank 8. The reaction liquid in the methane production reaction tank 8 is extracted by a pipe 10 having a pump 9 and introduced into the membrane separation device 11, and the concentrated liquid is returned to the methane production reaction tank 8 by a pipe 12. is taken out from the pipe 13 as treated water.

このような第2図に示す如き嫌気性処理と膜分離装置と
を組み合わせた二相式嫌気処理方式によれば、各反応槽
2.8における高負荷処理が可能とされ、処理水水質も
高度なものとなる。
According to the two-phase anaerobic treatment system that combines anaerobic treatment and membrane separation equipment as shown in Figure 2, high-load treatment is possible in each reaction tank 2.8, and the quality of the treated water is also highly improved. Become something.

[発明が解決しようとする問題点] しかしながら、第2図に示される二相式嫌気処理方式の
ものは、嫌気性反応槽と膜分離装置との組み合せを2段
に直列的に接続設置したに過ぎず、各膜分離装置5.1
1においては分離膜5a、llaに膜汚染物質が付着し
易く、膜透過液量が比較的短い時間で低下してしまい、
薬品による化学洗浄やボール洗浄などの物理洗浄を頻繁
に行わなければならない、また膜汚染物質が付着した場
合の膜透過液量の低下を防ぐためには、S分離装置の液
透過圧力を大きくせねばならず、動力コストも大きなち
となっていた。
[Problems to be solved by the invention] However, the two-phase anaerobic treatment method shown in Fig. 2 has a combination of an anaerobic reaction tank and a membrane separation device connected in two stages. Membrane separation equipment 5.1
In No. 1, membrane contaminants tend to adhere to the separation membranes 5a and lla, and the amount of liquid permeated through the membrane decreases in a relatively short period of time.
Chemical cleaning with chemicals and physical cleaning such as ball cleaning must be performed frequently, and the liquid permeation pressure of the S separation device must be increased to prevent a decrease in the amount of membrane permeate when membrane contaminants adhere. However, the power cost was also significant.

[問題点を解決するための手段] 本発明は、液通過可能な支持材上に微生物が固定化され
た分離膜を添装して嫌気性処理反応部を構成し、この嫌
気性処理反応部を2段に設置する。前段に設置されるも
のは微生物として酸生成菌が用いられている酸生成反応
部であり、後段側に設置されるものはメタン生成菌が固
定化されたメタン生成反応部である。原液はまず酸生成
反応部で酸生成処理を受け、然る後第1分離膜及び第1
支持材を通過して第2分離膜に至り、これに固定化され
たメタン生成菌により処理を受ける。このメタン生成反
応を受けた液が第2分離膜及び第2支持材を通過して装
置外に処理水として取り出される。
[Means for Solving the Problems] The present invention configures an anaerobic treatment reaction section by attaching a separation membrane in which microorganisms are immobilized on a support material through which a liquid can pass, and the anaerobic treatment reaction section are installed in two stages. The one installed at the front stage is an acid production reaction section in which acid-producing bacteria are used as microorganisms, and the one installed at the rear stage is a methane production reaction section in which methane production bacteria are immobilized. The stock solution first undergoes acid generation treatment in the acid generation reaction section, and then passes through the first separation membrane and the first separation membrane.
It passes through the support material and reaches the second separation membrane, where it is treated by the methanogens immobilized thereon. The liquid that has undergone this methane production reaction passes through the second separation membrane and the second support material and is taken out of the apparatus as treated water.

[作用] 本発明においては、微生物が分離膜に固定化されている
ので、膜面に付着する膜汚染物質はこの固定化した微生
物の作用により速やかに分解され、膜の目詰現象が著し
く抑制される。また、分離膜と微生物とが一体化されて
いるので、装置の全体的な構成をコンパクトなものとし
、高効率な処理を可能とする。また、膜の閉塞が抑制さ
れるので、分離膜通過に要する圧力が小さくて足り、従
って動力コストを大幅に減少させることが可能である。
[Function] In the present invention, since microorganisms are immobilized on the separation membrane, membrane contaminants adhering to the membrane surface are quickly decomposed by the action of the immobilized microorganisms, and the phenomenon of membrane clogging is significantly suppressed. be done. Furthermore, since the separation membrane and the microorganisms are integrated, the overall structure of the device is compact and highly efficient processing is possible. Further, since membrane clogging is suppressed, only a small pressure is required to pass through the separation membrane, and therefore, it is possible to significantly reduce power costs.

熱論、得られる処理水は2段の嫌気性処理及び2段の膜
分離処理を受けているので、極めて高度な水質のものと
なっている。
Thermal theory is that the resulting treated water undergoes two stages of anaerobic treatment and two stages of membrane separation treatment, resulting in extremely high quality water.

[実施例] 以下図面を参照して実施例について説明する。[Example] Examples will be described below with reference to the drawings.

第1図は本発明の実施例に係る二相式嫌気性処理装置の
構成を示す縦断面図である。14は反応槽の槽体であっ
て、その上部には原水の導入口15を有し、底部には処
理水の取出口16を有している。導入口15及び取出口
16にはそれぞれ配管17.18が接続されている。
FIG. 1 is a longitudinal sectional view showing the configuration of a two-phase anaerobic treatment apparatus according to an embodiment of the present invention. Reference numeral 14 denotes a tank body of a reaction tank, which has an inlet 15 for raw water at the top and an outlet 16 for treated water at the bottom. Pipes 17 and 18 are connected to the inlet 15 and the outlet 16, respectively.

槽体14の内部には、該槽体14を横断するように酸生
成反応部19とメタン生成反応部20とが設置されてい
る。
Inside the tank body 14, an acid production reaction section 19 and a methane production reaction section 20 are installed so as to cross the tank body 14.

酸生成反応部19は反応槽14を横断するように設置さ
れた液通過可能な材質からなる支持材(第1の支持材)
21.該支持材21上に添装された分離膜22及びこの
分離膜22の表面に形成された酸生成菌の固定層23を
有して構成されている。
The acid generation reaction section 19 has a support material (first support material) made of a material through which a liquid can pass, which is installed across the reaction tank 14.
21. It has a separation membrane 22 mounted on the support material 21 and an immobilized layer 23 of acid-producing bacteria formed on the surface of the separation membrane 22.

メタン生成反応部20は、支持材21と同様に反応槽1
4を横断するように設置された液通過可能な材質からな
る支持材(第2の支持材)24゜該支持材24上に添装
された分離膜25及び該分離膜25の表面に形成された
メタン生成菌の固定層26を有して構成されている。酸
生成反応部19と導入口15との間の空間部は酸生成室
27であり、酸生成反応部19とメタン生成反応部20
との間はメタン生成室28である。またメタン生成反応
部20と取出口16との間は処理水室29である。
The methane production reaction section 20 includes the reaction tank 1 as well as the supporting material 21.
A support material (second support material) 24 made of a material through which a liquid can pass, which is installed across the support material 24, and a separation membrane 25 loaded on the support material 24, and a support material formed on the surface of the separation membrane 25. The structure includes a fixed layer 26 of methane-producing bacteria. The space between the acid production reaction section 19 and the inlet 15 is an acid production chamber 27, and the acid production reaction section 19 and the methane production reaction section 20
There is a methane generation chamber 28 between the two. Further, a treated water chamber 29 is located between the methane production reaction section 20 and the outlet 16.

なお本実施例において、酸生成室27及びメタン生成室
28から、微生物の作用より生じたガスを抜き出すため
に、配管30.31が槽体14に接続されている。
In this embodiment, pipes 30 and 31 are connected to the tank body 14 in order to extract gas generated by the action of microorganisms from the acid generation chamber 27 and the methane generation chamber 28.

本発明において、支持材21.24は通水性のよい多孔
質の素材が好適に用いられ、具体的には例えば焼結合金
、多孔質セラミック、素焼きの陶器などを用いることが
できる。
In the present invention, a porous material with good water permeability is preferably used for the supporting materials 21 and 24, and specifically, for example, sintered alloy, porous ceramic, unglazed earthenware, etc. can be used.

本発明において用いる分離膜としては、限外濾過膜や精
密濾過膜が好ましい、第1の分離膜22として、酸生成
菌の分解作用により生じる低級脂肪酸を透過し得る性質
の分離膜を用いれば、酸生成室27中における低級脂肪
酸の蓄積が回避され、酸生成菌の活性を高い状態に維持
することが可能である。
As the separation membrane used in the present invention, an ultrafiltration membrane or a precision filtration membrane is preferable.If the first separation membrane 22 is a separation membrane that can permeate lower fatty acids produced by the decomposition action of acid-producing bacteria, Accumulation of lower fatty acids in the acid-producing chamber 27 is avoided, making it possible to maintain the activity of the acid-producing bacteria at a high level.

またメタン生成菌が維持される第2の分離膜25として
、分画分子量が2000〜20000程度の限外濾過膜
を用いることにより、高度に処理された処理水を得るこ
とができる。
Further, by using an ultrafiltration membrane with a molecular weight cut-off of about 2,000 to 20,000 as the second separation membrane 25 in which methanogenic bacteria are maintained, highly treated treated water can be obtained.

このように構成された装置において、原水を適度な圧力
下で流入させることにより、酸生成菌により含有する有
機物質が分解され低分子化された液がメタン生成室28
に流入し、効率のよいメタン化処理を受け、高度な処理
水となる。また、液は処理途中で新たな動力を加えるこ
となく分離膜を通過することができ、動力コストの削減
が図られる。
In the apparatus configured in this way, by flowing raw water under moderate pressure, the organic substances contained in the acid-producing bacteria are decomposed and the liquid is reduced to low molecular weight, and the liquid is transferred to the methane generation chamber 28.
The water flows into the water, undergoes efficient methanation treatment, and becomes highly treated water. In addition, the liquid can pass through the separation membrane without applying new power during the process, reducing power costs.

本発明においては、膜面に付着する膜汚染物質は、分離
膜に固定化した微生物の生物学的な働きにより分解され
るので、従来のような薬品洗浄は必要ではない、但し、
原水中の無機物や生物分解の難しい有機物は、第1の分
離膜22に付着する。この場合は、°メタン生成室28
側から第1の支持材21を通して圧力水を供給し分離膜
22を洗浄(逆光)すれば、これら汚染物質を容易に除
去することが可能である。
In the present invention, membrane contaminants adhering to the membrane surface are decomposed by the biological action of microorganisms immobilized on the separation membrane, so conventional chemical cleaning is not necessary.
Inorganic substances and organic substances that are difficult to biodegrade in the raw water adhere to the first separation membrane 22. In this case, ° methane generation chamber 28
These contaminants can be easily removed by supplying pressure water from the side through the first support material 21 to wash (backlight) the separation membrane 22.

分離膜に微生物を固定化させるには次のような方法を用
いることができる。
The following method can be used to immobilize microorganisms on a separation membrane.

■ 分離膜の表面にアクリルアミドやポリビニルアルコ
ールなど通水可能な性質を有する糊状物質を用いて微生
物を固定化する方法。
■ A method of immobilizing microorganisms on the surface of a separation membrane using a glue-like substance that allows water to pass through, such as acrylamide or polyvinyl alcohol.

■ 活性炭や多孔質セラミックス、スポンジ状高分子物
質等多孔質充填材を分離膜表面に付着させ、これらの充
填材の表面もしくは内部に微生物を付着、増殖させる方
法。
■ A method in which porous fillers such as activated carbon, porous ceramics, and sponge-like polymeric substances are attached to the surface of a separation membrane, and microorganisms are allowed to adhere to and multiply on the surface or inside of these fillers.

■ 膜と生物とが一体となるように膜を成形する方法。■ A method of forming membranes so that the membrane and living organisms become one.

などである。etc.

上記第1図の実施例においては、各支持材21.24は
それぞれ平板状のものであるが、本発明においてはこの
支持材21.24はその他の形状、例えば円筒形状のも
のであってもよい、また1反応槽14は1つの槽体とし
て示されているが、酸生成反応部19を有する槽と、メ
タン生成反応部20を有する槽に分けても良い、この場
合、両槽とも、第1図の処理水室29に相当する室を設
けるようにする。
In the embodiment shown in FIG. 1, each support member 21.24 has a flat plate shape, but in the present invention, the support member 21.24 may have another shape, for example, a cylindrical shape. Also, although one reaction tank 14 is shown as one tank body, it may be divided into a tank having an acid production reaction section 19 and a tank having a methane production reaction section 20. In this case, both tanks have A chamber corresponding to the treated water chamber 29 in FIG. 1 is provided.

次に好適な実験例について説明する。Next, a suitable experimental example will be explained.

実験例1(本発明) 第1図に示す装置において、槽体14として直径10c
m、高さ20cmの攪拌装置付カラムを用い、支持材2
1.24として素焼きの陶器を用いた。また、配管30
及び18は、背圧弁32を有する配管33に接続し、こ
の背圧弁32の弁圧の調節により運転圧力を調整した。
Experimental Example 1 (Invention) In the apparatus shown in FIG.
Using a column with a stirring device with a height of 20 cm, support material 2
Unglazed pottery was used as 1.24. In addition, piping 30
and 18 were connected to a pipe 33 having a back pressure valve 32, and the operating pressure was adjusted by adjusting the valve pressure of this back pressure valve 32.

さらに、配管33から取り出された処理水の一部は配管
34によって酸生成室27へ導入可能とした。
Further, a portion of the treated water taken out from the pipe 33 can be introduced into the acid generation chamber 27 through the pipe 34.

酸生成室27には、液面レベルを検出するためのレベル
計35を設置し、このレベル計35によって検出される
液面レベルが設定値よりも下った場合には配管34から
酸生成室27へ処理水を戻し、槽内の液量を一定にした
。また、酸生成室27には攪拌機36を設け、室内の液
の攪拌を行った。
A level meter 35 for detecting the liquid level is installed in the acid generation chamber 27, and when the liquid level detected by the level meter 35 falls below a set value, the acid generation chamber 27 is The treated water was returned to the tank to maintain a constant level of liquid in the tank. Further, a stirrer 36 was provided in the acid generation chamber 27 to stir the liquid in the chamber.

また、支持材21.24の上に分画分子量8000の限
外濾過膜22.25を設け、更にその上に生物固定材と
して平均孔径0.1mmのスポンジを厚さ10mm設置
した。
Further, an ultrafiltration membrane 22.25 with a molecular weight cut off of 8000 was provided on the support material 21.24, and a sponge with an average pore diameter of 0.1 mm and a thickness of 10 mm was further placed thereon as a biological fixation material.

このスポンジ上に次のようにして酸生成菌及びメタン生
成菌を付着させた。即ち前もってグルコース基質で増殖
しておいた酸生成菌と、酸基質で増殖させておいたメタ
ン生成菌の各々をスポンジに1%寒天液を用いて付着さ
せる。付着菌体量は各々1 g−VSSとした。
Acid-producing bacteria and methanogenic bacteria were attached to this sponge in the following manner. That is, acid-producing bacteria previously grown on a glucose substrate and methanogens grown on an acid substrate are each attached to a sponge using a 1% agar solution. The amount of attached bacterial cells was 1 g-VSS for each.

カラム内の液量は11、カラム背圧は2kg/crn’
、液温は30℃とした。原水はグルコースを主体とし、
C0Dc r10000mg/!Lとし。
The liquid volume in the column is 11, and the column back pressure is 2 kg/crn'.
The liquid temperature was 30°C. Raw water is mainly composed of glucose,
C0Dc r10000mg/! Let's say L.

通水量は100〜400m!L/日、負荷量1〜4g−
CODcr/見・日とした。PH調整は行わなかった。
Water flow rate is 100-400m! L/day, load amount 1-4g-
It was set as CODcr/see/day. No pH adjustment was performed.

負荷量を1.2.4g−CODc r/l・日で、各t
o−15日間連続運転を行った。各負荷条件におけるC
0Dcr除去率、分離膜22.25の透過液量を次の第
1表に示す。
Load amount is 1.2.4g-CODcr/l/day, each t
Continuous operation was performed for o-15 days. C under each load condition
The 0Dcr removal rate and the amount of liquid permeated through the separation membrane 22.25 are shown in Table 1 below.

第1表 第1表より負荷量を高めても、本発明例においては良好
な処理を行うことができ、且つ分離膜の液透過量の低下
もちられないことは明らかである。
From Table 1, it is clear that even if the load amount is increased, good treatment can be performed in the examples of the present invention, and there is no decrease in the amount of liquid permeated through the separation membrane.

[効果] 以上詳述した通り1本発明においては分離膜への汚染物
質の付着による目詰りが防止され、従来例の如き薬品洗
浄が必要でない、また、無機物や生物分解の難しい有機
の付着物は簡単な逆洗で容易に除去することができる。
[Effects] As detailed above, the present invention prevents clogging due to adhesion of contaminants to the separation membrane, eliminates the need for chemical cleaning as in the conventional example, and eliminates inorganic and organic adhesion that is difficult to biodegrade. can be easily removed by simple backwashing.

このように、膜の目詰りがないので、膜透過用動力が著
しく少なくて足りる。また1分離膜上に微生物が一体的
に固定化されているので、装置構成がコンパクトとなる
。しかも処理水質も極めて優れたものになる。
In this way, since there is no clogging of the membrane, the power required for membrane permeation can be significantly reduced. Furthermore, since the microorganisms are integrally immobilized on one separation membrane, the device configuration becomes compact. Furthermore, the quality of the treated water is also extremely excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る二相式嫌気性処理装置の
断面図、第2図は従来の二相式嫌気性処理装置の一般的
な構成を示す系統図である。 14・・・槽体、       15・・・原水の導入
口。 16・・・処理水の取出口、 21.24・・・支持材、 22.25・・・分離膜、 23・・・酸生成菌固定層、 26・・・メタン生成菌固定層、 27・・・酸生成室、  28・・・メタン生成室、3
2・・・背圧弁。 代理人  弁理士  重 野  剛 第1図 第2図 1  2  655a7  6  1211 11a手
続補正書 昭和60年5月27日
FIG. 1 is a sectional view of a two-phase anaerobic treatment apparatus according to an embodiment of the present invention, and FIG. 2 is a system diagram showing the general configuration of a conventional two-phase anaerobic treatment apparatus. 14...tank body, 15... raw water inlet. 16... Treated water outlet, 21.24... Support material, 22.25... Separation membrane, 23... Acid-producing bacteria fixed layer, 26... Methanogen-producing bacteria fixed layer, 27. ...Acid generation chamber, 28...Methane generation chamber, 3
2...Back pressure valve. Agent Patent Attorney Tsuyoshi Shigeno Figure 1 Figure 2 1 2 655a7 6 1211 11a Procedural Amendment May 27, 1985

Claims (3)

【特許請求の範囲】[Claims] (1)液通過可能な第1の支持材と、酸生成菌が固定化
されており該第1の支持材の一方の表面に添装された第
1の分離膜とを有した酸生成反応部と、 液通過可能な第2の支持材と、メタン生成菌が固定化さ
れており該第2の支持材の一方の表面に添装された第2
の分離膜とを有したメタン生成反応部と、 これら酸生成反応部及びメタン生成反応部を収容する槽
体と、 を具備し、原水は槽体内を、第1分離膜、第1支持材、
第2分離膜及び第2支持材の順に通過された後、槽体外
に取り出されることを特徴とする二相式嫌気性処理装置
(1) Acid production reaction having a first support material through which a liquid can pass, and a first separation membrane on which acid-producing bacteria are immobilized and attached to one surface of the first support material. a second support material through which a liquid can pass; and a second support material on which methane-producing bacteria are immobilized and which is attached to one surface of the second support material.
a methane production reaction section having a separation membrane; a tank body that accommodates the acid production reaction section and the methane production reaction section;
A two-phase anaerobic treatment device characterized in that the device is taken out of the tank after passing through a second separation membrane and a second support material in that order.
(2)一端側に液の導入口を、そして他端側に液の排出
口を備えた1個の槽体内に前記酸生成反応部とメタン生
成反応部とがそれぞれ該導入口と排出口とを隔てるよう
に配設されており、該液導入口と酸生成反応部との間に
酸生成室が形成され、酸生成反応部とメタン生成反応部
との間にメタン生成室が形成されていることを特徴とす
る特許請求の範囲第1項に記載の二相式嫌気性処理装置
(2) The acid production reaction section and the methane production reaction section are arranged in one tank body having a liquid inlet at one end and a liquid outlet at the other end, respectively. An acid production chamber is formed between the liquid inlet and the acid production reaction section, and a methane production chamber is formed between the acid production reaction section and the methane production reaction section. A two-phase anaerobic treatment apparatus according to claim 1, characterized in that:
(3)前記酸生成室からのガス排出手段及びメタン生成
室からのガス排出手段を有することを特徴とする特許請
求の範囲第2項に記載の二相式嫌気性処理装置。
(3) The two-phase anaerobic treatment apparatus according to claim 2, further comprising gas exhaust means from the acid generation chamber and gas exhaust means from the methane generation chamber.
JP60092951A 1985-04-30 1985-04-30 Two-phase type anaerobic treatment device Pending JPS61249598A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60092951A JPS61249598A (en) 1985-04-30 1985-04-30 Two-phase type anaerobic treatment device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60092951A JPS61249598A (en) 1985-04-30 1985-04-30 Two-phase type anaerobic treatment device

Publications (1)

Publication Number Publication Date
JPS61249598A true JPS61249598A (en) 1986-11-06

Family

ID=14068768

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60092951A Pending JPS61249598A (en) 1985-04-30 1985-04-30 Two-phase type anaerobic treatment device

Country Status (1)

Country Link
JP (1) JPS61249598A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02241595A (en) * 1989-03-14 1990-09-26 Akua Runesansu Gijutsu Kenkyu Kumiai Filling of immobilizing carrier
JPH03224697A (en) * 1990-01-31 1991-10-03 Akua Runesansu Gijutsu Kenkyu Kumiai Separating membrane-combined methane fermentation device
CN102557189A (en) * 2012-01-18 2012-07-11 长沙矿冶研究院有限责任公司 Method for separating and recovering peracid and high arsenic from waste liquor obtained after arsenic is extracted from nickel-molybdenum ore smelting dust
JP2020104057A (en) * 2018-12-27 2020-07-09 住友重機械工業株式会社 Wastewater treatment apparatus and wastewater treatment method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02241595A (en) * 1989-03-14 1990-09-26 Akua Runesansu Gijutsu Kenkyu Kumiai Filling of immobilizing carrier
JPH03224697A (en) * 1990-01-31 1991-10-03 Akua Runesansu Gijutsu Kenkyu Kumiai Separating membrane-combined methane fermentation device
CN102557189A (en) * 2012-01-18 2012-07-11 长沙矿冶研究院有限责任公司 Method for separating and recovering peracid and high arsenic from waste liquor obtained after arsenic is extracted from nickel-molybdenum ore smelting dust
JP2020104057A (en) * 2018-12-27 2020-07-09 住友重機械工業株式会社 Wastewater treatment apparatus and wastewater treatment method

Similar Documents

Publication Publication Date Title
TWI284119B (en) Biological membrane filtration system for water treatment and water treatment process using the same
EP2651833B1 (en) Process, apparatus and membrane bioreactor for wastewater treatment
JPS61129094A (en) Apparatus for treating membrane
WO2008066497A1 (en) Water reclamation without biosludge production
JPH07256281A (en) Waste water purifying method and tank
KR102100991B1 (en) Liquefied fertilizer purification apparatus using porous ceramic membrane
JP4859170B2 (en) Nitrogen-containing organic wastewater treatment system
JP4006011B2 (en) Method and apparatus for treating organic waste
JPS61249598A (en) Two-phase type anaerobic treatment device
CN210150897U (en) Reclaimed water recycling device
JPS61120694A (en) Treatment of organic waste water
Alberti et al. Hydrocarbon removal from industrial wastewater by hollow-fibre membrane bioreactors
KR20030097075A (en) Hybrid Submerged Plate Type Membrane Bioreactor Using microfilter Combined With Biofilm-Activated Carbon for Advanced Treatment of Sewage and Wastewater
JPH0634985B2 (en) Bioreactor
CN201317709Y (en) Membrane bioreactor
Semmens et al. Studies of a membrane aerated bioreactor for wastewater treatment
Lobos et al. Membrane bioreactor performances: effluent quality ofcontinuous and sequencing systems for water reuse
KR100390524B1 (en) Apparatus for treating wastewater by using submerged membrain saparation anaerobic digester
EP2199261A1 (en) A novel waste water purification method and a process for use therefor
JP4104806B2 (en) Solid-liquid separation method and apparatus for organic wastewater treatment
CN216273634U (en) MBR pretreatment system for sea water desalination
JPH09108672A (en) Parallel two-stage membrane separation type septic tank
JPS61249593A (en) Biological reaction device
JPH08173988A (en) Anaerobic water treatment apparatus
Matsuda et al. Stable operational condition of submerged membrane activated sludge process without sludge withdrawal