JP2006326534A - Organic waste treatment method and treatment apparatus - Google Patents

Organic waste treatment method and treatment apparatus Download PDF

Info

Publication number
JP2006326534A
JP2006326534A JP2005156096A JP2005156096A JP2006326534A JP 2006326534 A JP2006326534 A JP 2006326534A JP 2005156096 A JP2005156096 A JP 2005156096A JP 2005156096 A JP2005156096 A JP 2005156096A JP 2006326534 A JP2006326534 A JP 2006326534A
Authority
JP
Japan
Prior art keywords
membrane
fermentation
methane fermentation
organic waste
methane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005156096A
Other languages
Japanese (ja)
Other versions
JP4006011B2 (en
Inventor
Tomohiro Sato
朋弘 佐藤
Toshio Shibuya
敏生 渋谷
Atsushi Kawashima
淳 川嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinko Pantec Co Ltd
Original Assignee
Kobelco Eco Solutions Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobelco Eco Solutions Co Ltd filed Critical Kobelco Eco Solutions Co Ltd
Priority to JP2005156096A priority Critical patent/JP4006011B2/en
Publication of JP2006326534A publication Critical patent/JP2006326534A/en
Application granted granted Critical
Publication of JP4006011B2 publication Critical patent/JP4006011B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Landscapes

  • Processing Of Solid Wastes (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
  • Treatment Of Sludge (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide organic waste treatment method and treatment apparatus capable of stably carrying out membrane separation treatment of a methane fermentation solution at a high permeation flux for a long duration. <P>SOLUTION: A portion of a methane fermentation solution is taken out a methane fermentation tank and subjected to membrane separation treatment by a pressure type membrane separation apparatus equipped with a circulation line for the methane fermentation solution and then the concentrated methane fermentation solution is turned back to the methane fermentation tank. The membrane of the membrane separation apparatus is hardly clogged by making the apparatus have the above described structure and no blower is required for the biogas and thus the apparatus can be compact. Further, the valve opening of the return line of the concentrated methane fermentation solution is changed in accordance with the membrane-permeating solution amount of the pressure type membrane separation apparatus, so that in-plane membrane pressure difference in the pressure type membrane separation apparatus can be adjusted and a prescribed membrane-permeating solution amount can be maintained. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、生ゴミや食品廃棄物等の有機性廃棄物のメタン発酵による処理方法及び処理装置に関する。   The present invention relates to a method and apparatus for treating organic waste such as garbage and food waste by methane fermentation.

屎尿、生ゴミ、食品廃棄物、浄化槽汚泥等の高濃度有機性廃棄物を処理する方法として、メタン菌等の嫌気性微生物を用いて有機物を生物学的に分解する嫌気性消化法がある。このメタン発酵法では、発酵槽内に高濃度有機性廃棄物を投入し、メタン菌による発酵によって有機性廃棄物を分解し、生成する発酵汚泥をメタン発酵槽外へ引き抜いており、発酵汚泥の引抜量は、投入汚泥量に等しくするのが一般的である。そして、メタンを主成分とするガスを燃料として利用することも可能である(特許文献1、2)。   An anaerobic digestion method that biologically decomposes organic matter using anaerobic microorganisms such as methane bacteria is a method for treating high-concentration organic waste such as manure, food waste, food waste, and septic tank sludge. In this methane fermentation method, high-concentration organic waste is introduced into the fermenter, the organic waste is decomposed by fermentation with methane bacteria, and the resulting fermented sludge is extracted outside the methane fermenter. The withdrawal amount is generally equal to the input sludge amount. And it is also possible to use the gas which has methane as a main component as a fuel (patent documents 1, 2).

ここで、メタン発酵槽から発酵汚泥を引き抜くと、発酵汚泥と共にメタン菌も槽外に流出するため、メタン発酵槽内のメタン菌濃度を高濃度に維持することが困難であった。この問題を解決する方法として、閉鎖領域を形成する発酵槽と膜分離槽の間で発酵汚泥を循環し、膜分離槽に浸漬した膜分離装置(浸漬型膜分離装置)によって発酵汚泥を固液分離(濃縮)し、膜分離装置の膜透過液を系外に取り出すことにより発酵槽内のメタン菌濃度を維持すると共に、発酵槽の底部から余剰な発酵汚泥を引き抜くメタン発酵方法が、特許文献3に開示されている。
特開平11−28445号公報 特開平11−300323号公報 特開平2000−24661号公報
Here, when the fermentation sludge is extracted from the methane fermentation tank, the methane bacteria also flow out of the tank together with the fermentation sludge, so it was difficult to maintain the methane bacteria concentration in the methane fermentation tank at a high concentration. As a method for solving this problem, fermented sludge is circulated between a fermenter and a membrane separator forming a closed region, and the fermented sludge is solid-liquid by a membrane separator (immersion type membrane separator) immersed in the membrane separator. A methane fermentation method that maintains the concentration of methane bacteria in the fermenter by separating (concentrating) and removing the membrane permeate from the membrane separator out of the system, and pulling out excess fermentation sludge from the bottom of the fermenter is a patent document. 3 is disclosed.
JP-A-11-28445 Japanese Patent Laid-Open No. 11-300323 Japanese Patent Laid-Open No. 2000-24661

しかし、特許文献3に開示されている方法では、膜間差圧が30〜40kPa程度である浸漬型膜分離装置によって発酵液を濃縮するため、発酵液の透過流束が小さい。このため、大面積の膜が必要になり、膜分離装置が大型化せざるを得ない。   However, in the method disclosed in Patent Document 3, the fermentation broth is concentrated by the submerged membrane separation apparatus having a transmembrane pressure difference of about 30 to 40 kPa, and therefore the permeate flux of the fermentation broth is small. For this reason, a membrane with a large area is required, and the membrane separation apparatus must be enlarged.

また、膜面の洗浄は発酵液を嫌気性状態に保つために、メタン発酵槽から発生するバイオガス(メタンを主成分とする嫌気性ガス)を膜分離装置内でブローすることにより行っているため、気泡が膜面に付着して透過流束がさらに低下しやすいという問題もあった。また、透過流束が低いため、大型の膜分離装置が必要であった。   In addition, in order to keep the fermentation liquid in an anaerobic state, the membrane surface is washed by blowing biogas generated from the methane fermentation tank (anaerobic gas mainly composed of methane) in the membrane separator. For this reason, there is also a problem that bubbles permeate the membrane surface and the permeation flux is likely to further decrease. Further, since the permeation flux is low, a large membrane separation apparatus is necessary.

本発明は、透過流束が高く、かつ、長期間安定してメタン発酵液の膜分離処理を行い得る有機性廃棄物の処理方法及び処理装置を提供することを目的とする。   An object of the present invention is to provide an organic waste treatment method and a treatment apparatus that have a high permeation flux and that can stably perform membrane separation treatment of a methane fermentation broth for a long period of time.

本発明者は、前記課題を解決すべく、鋭意検討した結果、メタン発酵液の濃縮手段として、発酵液循環ラインを備えた加圧型膜分離装置を用いることにより、高い透過流束を長期間維持することができることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above problems, the present inventor has maintained a high permeation flux for a long period of time by using a pressurized membrane separator equipped with a fermentation liquid circulation line as a means for concentrating methane fermentation liquid. As a result, the present invention has been completed.

具体的に、本発明は、メタン発酵槽で有機性廃棄物をメタン発酵によって分解する方法であって、メタン発酵槽内の発酵液の一部を、発酵液を循環させる発酵液循環ラインを備える加圧型膜分離装置によって濃縮し、膜透過液を系外に排出すると共に、濃縮された発酵液をメタン発酵槽へと返送することにより、メタン発酵槽内の発酵液の固形物濃度を、メタン発酵の適値に維持することを特徴とする有機性廃棄物の処理方法である(請求項1)。   Specifically, the present invention is a method for decomposing organic waste by methane fermentation in a methane fermenter, comprising a fermentation liquid circulation line for circulating a part of the fermentation liquid in the methane fermenter. By concentrating with a pressurized membrane separator, discharging the membrane permeate out of the system, and returning the concentrated fermentation broth to the methane fermenter, the solids concentration of the fermented liquor in the methane fermenter is reduced to methane. It is the processing method of the organic waste characterized by maintaining to the suitable value of fermentation (Claim 1).

また、本発明は、有機性廃棄物をメタン発酵させるメタン発酵槽と、
メタン発酵槽内の発酵液の一部を吸引手段によって取り出す発酵液取出ラインと、
前記発酵液取出ラインが接続し、前記発酵液取出ラインからの発酵液を加圧手段によって循環させる発酵液循環ラインを備える加圧型膜分離装置と、
前記発酵液循環ラインに接続し、前記発酵液循環ライン内を循環する濃縮された発酵液を、メタン発酵槽へと返送する濃縮発酵液返送ラインと
を備えることを特徴とする有機性廃棄物の処理装置である(請求項7)。
The present invention also provides a methane fermentation tank for methane fermentation of organic waste,
A fermentation liquor extraction line for taking out part of the fermentation liquor in the methane fermentation tank by suction means;
A pressure-type membrane separation device comprising a fermentation liquid circulation line connected to the fermentation liquid extraction line and circulating the fermentation liquid from the fermentation liquid extraction line by a pressurizing means;
An organic waste product comprising: a concentrated fermented liquid return line that is connected to the fermented liquid circulating line and returns the concentrated fermented liquid circulating in the fermented liquid circulating line to a methane fermentation tank. A processing device (claim 7).

本発明の有機性廃棄物の処理方法及び処理装置は、メタン発酵液の濃縮に加圧型膜分離装置を用いるため、浸漬型膜分離装置を用いる場合と比較して、膜間差圧が大きいため透過流束が高く、処理時間が短い。また、大きな膜面積を要しないため、膜分離装置がコンパクトである。   The organic waste processing method and processing apparatus of the present invention uses a pressure membrane separator for concentration of methane fermentation liquor, and therefore has a larger transmembrane pressure difference than when a submerged membrane separator is used. High permeation flux and short processing time. Moreover, since a large membrane area is not required, the membrane separation apparatus is compact.

また、本発明の有機性廃棄物の処理方法及び処理装置は、加圧型膜分離装置がメタン発酵液を循環させる発酵液循環ラインを備えることにより、メタン発酵液の循環流によって膜面を洗浄することができる。このため、発酵液循環ラインを備えない通常の加圧型膜分離装置を用いる場合と比較して、膜に固形分が付着しにくく、透過液量を長時間、高く維持することが可能となる。また、通常の加圧型膜分離装置よりも装置をコンパクト化することが可能となる。さらに、バイオガスによるブローが必要ないため、膜表面に気泡が付着し、有効透過面積が減少することもない。   Moreover, the processing method and processing apparatus of the organic waste of this invention wash | clean a membrane surface with the circulation flow of a methane fermentation liquid, when a pressurized type membrane separator is provided with the fermentation liquid circulation line which circulates a methane fermentation liquid. be able to. For this reason, compared with the case where the normal pressurization type | mold membrane separator which does not have a fermented liquid circulation line is used, it becomes difficult for solid content to adhere to a film | membrane, and it becomes possible to maintain the permeate amount high for a long time. In addition, the apparatus can be made more compact than a normal pressure type membrane separation apparatus. Furthermore, since blowing with biogas is not required, bubbles adhere to the membrane surface and the effective permeation area does not decrease.

前記加圧型膜分離装置における発酵液の膜面流速は、0.6m/秒以上であることが好ましい(請求項2、8)。膜面流速0.6m/秒未満では、加圧型膜分離装置の膜面へ固形物が付着しやすくなったり、膜分離装置内の膜と膜との間に固形物が堆積し、発酵液の流路を閉塞するおそれがあるので好ましくない。   It is preferable that the membrane surface flow rate of the fermentation liquor in the pressurized membrane separator is 0.6 m / second or more (Claims 2 and 8). If the flow rate at the membrane surface is less than 0.6 m / sec, the solid matter tends to adhere to the membrane surface of the pressurized membrane separator, or the solid matter is deposited between the membranes in the membrane separator, causing the flow of the fermentation broth. This is not preferable because the road may be blocked.

前記加圧型膜分離装置における膜面差圧は、50kPa以上200kPa以下であることが好ましい(請求項3、9)。加圧型膜分離装置の膜間差圧を上記範囲とすることにより、膜間圧力が通常30〜40kPa程度である浸漬型膜分離装置と比較して、循環ポンプの消費電力を過大にしないで、メタン発酵液の迅速な濃縮が可能となる。   The pressure difference on the membrane surface in the pressure type membrane separator is preferably 50 kPa or more and 200 kPa or less (Claims 3 and 9). By setting the transmembrane pressure difference of the pressure type membrane separation device within the above range, the power consumption of the circulation pump is not excessive compared with the immersion type membrane separation device in which the transmembrane pressure is usually about 30 to 40 kPa. Rapid concentration of methane fermentation broth is possible.

加圧型膜分離装置から系外に排出される膜透過液の排出量を、膜透過液の排出ラインに設けた計測手段によって計測し、
膜透過液量が基準値よりも減少した場合、制御手段が濃縮発酵液返送ラインに設けた弁を絞るように調整することによって、前記加圧型膜分離装置内の膜面差圧を上昇させ、一方、膜透過液量が基準値よりも増加した場合、制御手段が濃縮発酵液返送ラインに設けた弁を開くように調整することによって、前記加圧型膜分離装置内の膜面差圧を減少させることができる(請求項4,10)。このような構成とすることにより、(1)メタン発酵液の有機物質濃度、粘度等が増加してメタン発酵液の膜処理効率が低下した場合に、メタン発酵槽への濃縮汚泥返送ラインに設けられた弁を絞ることによって、膜間差圧が増大して膜透過量を増加させ、(2)メタン発酵液の有機物質濃度、粘度等が減少してメタン発酵液の膜処理効率が上昇した場合に、メタン発酵槽への濃縮汚泥返送ラインに設けられた弁を開くことによって、膜間差圧が減少して膜透過量を減少させることが可能となる。
The amount of membrane permeate discharged from the pressurized membrane separator is measured by a measuring means provided in the membrane permeate discharge line,
When the amount of the membrane permeate decreases below the reference value, the control means adjusts the valve provided in the concentrated fermentation liquid return line to throttle, thereby increasing the membrane surface differential pressure in the pressurized membrane separator, On the other hand, when the amount of the permeated liquid increases from the reference value, the control means adjusts the valve provided in the concentrated fermented liquid return line to open the pressure difference in the pressure type membrane separator. (Claims 4 and 10). By adopting such a configuration, (1) When the organic substance concentration, viscosity, etc. of the methane fermentation liquid increase and the membrane treatment efficiency of the methane fermentation liquid decreases, it is provided in the concentrated sludge return line to the methane fermentation tank By closing the valve, the transmembrane pressure difference increased and the membrane permeation amount increased, and (2) the organic substance concentration and viscosity of the methane fermentation broth decreased and the membrane treatment efficiency of the methane fermentation broth increased. In this case, by opening the valve provided in the concentrated sludge return line to the methane fermentation tank, the transmembrane pressure difference can be reduced and the membrane permeation amount can be reduced.

独立した酸発酵槽を設け、メタン発酵処理の前に、有機性廃棄物を酸発酵槽内で酸発酵により分解する二相式の嫌気性分解処理としてもよい(請求項5,11)。   An independent acid fermenter may be provided, and a two-phase anaerobic decomposition process in which organic waste is decomposed by acid fermentation in the acid fermenter before the methane fermentation treatment.

硝化脱窒槽を設け、メタン発酵処理の後に、前記膜透過液をさらに硝化脱窒処理してもよい(請求項6,12)。   A nitrification denitrification tank may be provided, and after the methane fermentation treatment, the membrane permeate may be further subjected to nitrification denitrification treatment (Claims 6 and 12).

本発明の有機性廃棄物の処理方法及び処理装置は、従来技術の問題点を解消し、長期間、メタン発酵液を迅速、かつ、安定して濃縮することが可能であり、しかも、メタン発酵液の膜分離装置のメインテナンスも少なくて済む。また、メタン発酵液の膜分離装置の小型化も可能である。   The organic waste processing method and processing apparatus of the present invention can solve the problems of the prior art, can concentrate the methane fermentation liquor quickly and stably for a long period of time, and further, methane fermentation. Less maintenance is required for the liquid membrane separator. Further, it is possible to reduce the size of the methane fermentation broth membrane separation apparatus.

以下に、本発明の実施の形態について、適宜図面を参照しながら説明する。なお、本発明はこれらに限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings as appropriate. The present invention is not limited to these.

まず、生ゴミ等の固形物を含む有機性廃棄物をメタン発酵処理する場合、一軸破砕機等の粗破砕機を用いて粗破砕(粒径20〜100mm)した後、圧縮破砕機等を用いて圧縮破砕してペースト状有機性廃棄物とした上で、発酵処理を行う。   First, when organic waste containing solids such as raw garbage is subjected to methane fermentation, it is roughly crushed using a coarse crusher such as a uniaxial crusher (particle size 20 to 100 mm), and then a compression crusher or the like is used. Then, it is compressed and crushed into paste-like organic waste, and then fermented.

屎尿や浄化槽汚泥等の固形物濃度の低い有機性廃棄物をメタン発酵処理する場合は、沈殿処理やろ過処理によって固形分を濃縮して、濃縮物について発酵処理を行う。また、固形物濃度が低く、かつ、可溶性有機物濃度が高い有機性廃液については、固形物の濃縮を行うことなく、発酵処理を行ってもよい。   When organic waste having a low solid matter concentration such as manure or septic tank sludge is subjected to methane fermentation, solids are concentrated by precipitation or filtration, and the concentrate is subjected to fermentation treatment. Moreover, about an organic waste liquid with a low solid substance density | concentration and a high soluble organic substance density | concentration, you may perform a fermentation process, without concentration of a solid substance.

図1は、本発明の有機性廃棄物の処理方法におけるフローを示す図である。上述したような前処理(ステップS1)を行った有機性廃棄物は、攪拌しながら所定時間酸発酵を行い、有機物を酸生成菌の働きにより酢酸、酪酸、プロピオン酸等の有機酸へと分解される(ステップS2)。   FIG. 1 is a diagram showing a flow in the organic waste processing method of the present invention. The organic waste subjected to the pretreatment as described above (step S1) is subjected to acid fermentation for a predetermined time with stirring, and the organic matter is decomposed into organic acids such as acetic acid, butyric acid, propionic acid by the action of acid-producing bacteria. (Step S2).

次に、酸発酵液を適宜濃度調整及び温度調整し、嫌気性条件下でメタン発酵処理する(ステップS3)。このとき、酸発酵液中の有機酸は、メタン菌の働きによりメタンや二酸化炭素等へと分解される。メタン発酵槽内の温度は、高温メタン発酵の場合は、50〜60℃、中温メタン発酵の場合は、30〜40℃に調整する。   Next, the concentration and temperature of the acid fermentation liquor are adjusted as appropriate, and methane fermentation is performed under anaerobic conditions (step S3). At this time, the organic acid in the acid fermentation broth is decomposed into methane, carbon dioxide and the like by the action of methane bacteria. The temperature in the methane fermentation tank is adjusted to 50 to 60 ° C. in the case of high temperature methane fermentation, and 30 to 40 ° C. in the case of medium temperature methane fermentation.

次に、メタン発酵液の一部を取り出し、メタン発酵液の循環ラインを備える加圧型膜分離装置によって膜分離処理する(ステップS5)。メタン発酵液の膜分離処理により、メタン発酵槽内の汚泥濃度が上昇すると同時に、有機酸、アンモニア態窒素等のメタン発酵液に溶解している物質が膜透過液として加圧型膜分離装置から排出される。なお、汚泥濃度が上昇しすぎるのを防ぐため、メタン発酵液の一部は、適宜メタン発酵槽から引き抜き廃棄する(ステップS4)。   Next, a part of the methane fermentation liquor is taken out and subjected to membrane separation treatment by a pressure type membrane separation apparatus equipped with a circulation line for the methane fermentation broth (step S5). Membrane separation of the methane fermentation liquid increases the sludge concentration in the methane fermentation tank, and at the same time, substances dissolved in the methane fermentation liquid, such as organic acids and ammonia nitrogen, are discharged from the pressurized membrane separator as a membrane permeate. Is done. In addition, in order to prevent a sludge density | concentration rising too much, a part of methane fermentation liquid is suitably extracted from a methane fermentation tank, and is discarded (step S4).

次に、濃縮されたメタン発酵液を、メタン発酵槽へと返送する(ステップS6)。このとき、加圧型膜分離装置の膜透過液は、排水処理工程へと送られる。   Next, the concentrated methane fermentation liquid is returned to the methane fermentation tank (step S6). At this time, the membrane permeate of the pressurized membrane separator is sent to the wastewater treatment step.

図1のフローでは、酸発酵槽とメタン発酵槽を別個に設けて、酸発酵処理とメタン発酵処理を順に行う二相式消化処理方法の例を示したが、単一嫌気性消化処理方法として、酸発酵とメタン発酵を単一槽内で同時に行ってもよい。すなわち、ステップS2とステップS3を一つの槽内で同時進行させてもよい。ただし、酸発酵とメタン発酵は、至適な有機物濃度、反応温度等が異なるため、単一嫌気性消化処理方法を採用する場合には、二相式消化処理方法と比較して消化効率が低下し、また、滞留時間を長くする必要があるために、大型の消化槽が必要となる。このため、省スペースと消化効率の観点からは、二相式消化処理方法を採用することが好ましい。   In the flow of FIG. 1, an acid fermentation tank and a methane fermentation tank are separately provided, and an example of a two-phase digestion treatment method in which an acid fermentation treatment and a methane fermentation treatment are sequentially performed is shown. Acid fermentation and methane fermentation may be performed simultaneously in a single tank. That is, step S2 and step S3 may be performed simultaneously in one tank. However, acid fermentation and methane fermentation differ in optimal organic matter concentration, reaction temperature, etc., so when using a single anaerobic digestion method, digestion efficiency is reduced compared to the two-phase digestion method. Moreover, since it is necessary to lengthen the residence time, a large digester is required. For this reason, it is preferable to employ a two-phase digestion method from the viewpoint of space saving and digestion efficiency.

以上、図1を参照しつつ、本発明の有機性廃棄物処理方法の概念を説明した。   The concept of the organic waste processing method of the present invention has been described above with reference to FIG.

(実施例1)
次に、本発明の実施例1として、有機性廃棄物処理装置の一部構成を、従来の有機性廃棄物処理装置の対応部分と比較しつつ、さらに説明する。なお、本実施例は、単一嫌気性消化処理装置の例である。
Example 1
Next, as Example 1 of the present invention, a part of the configuration of the organic waste treatment apparatus will be further described in comparison with the corresponding part of the conventional organic waste treatment apparatus. In addition, a present Example is an example of a single anaerobic digestion processing apparatus.

まず、図2は、従来の有機性廃棄物処理装置のメタン発酵槽及び膜分離装置の一部構成を示す図である。従来の有機性廃棄物処理装置においては、適宜、前処理を行った有機性廃棄物1をメタン発酵槽2に投入し、酸発酵及びメタン発酵を行う。そして、メタン発酵槽2内の汚泥を、底部から引抜汚泥3として、適宜取り出して廃棄する。   First, FIG. 2 is a diagram showing a partial configuration of a methane fermentation tank and a membrane separator of a conventional organic waste treatment apparatus. In the conventional organic waste processing apparatus, the organic waste 1 that has been pretreated is appropriately put into the methane fermentation tank 2 to perform acid fermentation and methane fermentation. And the sludge in the methane fermenter 2 is taken out from the bottom as the sludge 3 and appropriately taken out and discarded.

メタン発酵槽2内の発酵液5の一部は、ポンプ6によって浸漬型膜分離装置8へと送られる。浸漬型膜分離装置8によって濃縮された発酵液15は、メタン発酵槽2へと返送される。   A part of the fermentation broth 5 in the methane fermentation tank 2 is sent to the submerged membrane separation device 8 by the pump 6. The fermented liquid 15 concentrated by the submerged membrane separator 8 is returned to the methane fermentation tank 2.

浸漬型膜分離装置8は、複数の浸漬膜9を適当な間隔で平行に収納しており、膜モジュール下部に、メタン発酵槽2から発生するバイオガス4を散気するためのブロア13及び散気装置14を備える。そして、散気装置14からバイオガス4を散気することにより、浸漬膜9の表面を嫌気的に洗浄する。   The submerged membrane separator 8 accommodates a plurality of submerged membranes 9 in parallel at appropriate intervals, and a blower 13 and a diffuser for aerating the biogas 4 generated from the methane fermentation tank 2 at the lower part of the membrane module. A gas device 14 is provided. And the surface of the immersion film 9 is anaerobically cleaned by aeration of the biogas 4 from the aeration device 14.

しかし、浸漬膜9の表面に、バイオガス4の気泡が付着するため、浸漬膜9を洗浄しても有効透過面積が少なくなる欠点がある。また、引抜ポンプ10によって得られる浸漬型膜分離装置8の膜間差圧は、通常30〜40kPaであるため、発酵液の迅速な濃縮は困難である。   However, since bubbles of the biogas 4 adhere to the surface of the immersion film 9, there is a drawback that the effective transmission area is reduced even if the immersion film 9 is washed. Moreover, since the transmembrane pressure difference of the submerged membrane separator 8 obtained by the drawing pump 10 is usually 30 to 40 kPa, it is difficult to concentrate the fermentation broth quickly.

次に、図3は、本実施例の有機性廃棄物処理装置のメタン発酵槽、及び膜分離装置の一部構成を示す図である。本実施例の有機性廃棄物処理装置は、メタン発酵槽2からメタン発酵液5の一部を、発酵液循環ライン17を備える加圧型膜分離装置20へと送り、メタン発酵液5の濃縮を行うことを特徴とする。   Next, FIG. 3 is a figure which shows the partial structure of the methane fermenter of the organic waste processing apparatus of a present Example, and a membrane separator. The organic waste treatment apparatus of the present embodiment sends a part of the methane fermentation solution 5 from the methane fermentation tank 2 to the pressurized membrane separator 20 having the fermentation solution circulation line 17 to concentrate the methane fermentation solution 5. It is characterized by performing.

ここで、加圧型膜分離装置20の具体的な構造を、図6及び7に示す。加圧型膜分離装置20は、ABS製の支持板の両面にポリエチレン製の処理水スペーサーと平膜とが、1枚ずつ重ね合わされ外周部がシールされて形成された封筒状平膜エレメント62が、スペーサー61を挟んで多層に積層されて構成されている。
スペーサー61は、封筒状平膜エレメント62から洗浄廃水が漏れ出るのを防止するためのものである。そして、このように封筒状平膜エレメント62が多層に積層されたものが、図6に示すように一対の半割体63、半割体63からなる平膜エレメント挟持体64内に収容され、さらに図7に示すように、圧力容器65内に収容されて構成されている。
Here, the specific structure of the pressure type membrane separation apparatus 20 is shown in FIGS. The pressure-type membrane separation apparatus 20 includes an envelope-like flat membrane element 62 formed by superposing polyethylene treated water spacers and flat membranes on both sides of an ABS support plate one by one and sealing the outer periphery. The spacer 61 is laminated in multiple layers.
The spacer 61 is for preventing the cleaning waste water from leaking out from the envelope-like flat membrane element 62. The envelope flat membrane element 62 thus laminated in multiple layers is accommodated in a flat membrane element sandwiching body 64 composed of a pair of halves 63 and halves 63 as shown in FIG. Furthermore, as shown in FIG. 7, it is accommodated in a pressure vessel 65 and configured.

圧力容器65は、一端にメタン発酵液を導入する入口部66が形成され、もう一端には濃縮メタン発酵液の出口部67が形成されている。平膜エレメント挟持体64の内部であって、多層に積層された封筒状平膜エレメント62の側方には、透過液排出経路68が形成されている。そして、多層に積層された封筒状平膜エレメント62には貫通孔69が穿設され、該貫通孔69が透過液排出路68に連通状態とされている。   The pressure vessel 65 has an inlet 66 for introducing the methane fermentation liquid at one end, and an outlet 67 for the concentrated methane fermentation liquid at the other end. A permeate discharge path 68 is formed inside the flat membrane element sandwiching body 64 and on the side of the envelope-shaped flat membrane element 62 laminated in multiple layers. A through-hole 69 is formed in the envelope flat membrane element 62 laminated in multiple layers, and the through-hole 69 is in communication with the permeate discharge path 68.

貫通孔69には、封筒状平膜エレメント62を透過した透過液を、透過液排出路68に供給するパイプ70が挿入されている。なお、符号71は、入口部66側の近辺に設けられた整流板を示す。   A pipe 70 for supplying the permeated liquid that has permeated through the envelope flat membrane element 62 to the permeated liquid discharge path 68 is inserted into the through hole 69. Reference numeral 71 denotes a current plate provided in the vicinity of the inlet 66 side.

加圧型膜分離装置の別の形態としては、図8に示すような矩形管状の圧力容器内に収容された構成のものも使用可能である。ここで、図8(a)は、膜分離装置の概略断面図を示し、図8(b)は図8(a)のB−B線矢視断面の概略断面図を示し、図8(c)は図8(a)のC−C線矢視断面の概略断面図を示す。なお、図8中、図6及び7と同様の構成については、同一の符号を付して説明を省略する。   As another form of the pressure-type membrane separation apparatus, a structure accommodated in a rectangular tubular pressure vessel as shown in FIG. 8 can be used. Here, FIG. 8 (a) shows a schematic cross-sectional view of the membrane separation device, FIG. 8 (b) shows a schematic cross-sectional view taken along the line BB of FIG. 8 (a), and FIG. ) Shows a schematic cross-sectional view taken along the line CC in FIG. In FIG. 8, the same components as those in FIGS. 6 and 7 are denoted by the same reference numerals and description thereof is omitted.

この加圧型膜分離装置は、矩形管状の圧力容器80、圧力容器内80内に設けられた平板状の平膜エレメント挟持体82、及び一対の集水部82に挟持して保持された二つの平膜エレメント群81等を用いて構成されている。また、平膜エレメント群81は、複数の封筒状平膜エレメント62と、各封筒状平膜エレメント62に設けられたスペーサー61とを積層して構成されている。   This pressure type membrane separation apparatus includes a rectangular tubular pressure vessel 80, a flat plate membrane element sandwiching body 82 provided in the pressure vessel 80, and two paired water collecting portions 82. The flat membrane element group 81 is used. The flat membrane element group 81 is configured by laminating a plurality of envelope-like flat membrane elements 62 and spacers 61 provided on each envelope-like flat membrane element 62.

そして、図8(a)に示すように、膜分離装置本体部分は、一対の平膜エレメント挟持体82間に平膜エレメント群81を挟持し、締付バンド83を用いて集水部82及び平膜エレメント群81の固定が行われている。集水部82は、図8(c)に示すように、平膜エレメント群81と略同様の幅寸法を有し、締付バンド83は、集水部82及び平膜エレメント群81の端部に接するようにして、一対の平膜エレメント挟持体82間の平膜エレメント群81を挟持している。   Then, as shown in FIG. 8 (a), the membrane separation device main body portion holds a flat membrane element group 81 between a pair of flat membrane element holding bodies 82, and uses a fastening band 83 to The flat membrane element group 81 is fixed. As shown in FIG. 8 (c), the water collecting portion 82 has a width dimension substantially the same as that of the flat membrane element group 81, and the fastening band 83 is an end portion of the water collecting portion 82 and the flat membrane element group 81. The flat membrane element group 81 is sandwiched between the pair of flat membrane element sandwiching bodies 82 so as to be in contact with each other.

ここで、加圧型膜分離装置の小型テスト機(膜面積32cm2、材質 ポリエーテルスルホン、分子分画量50,000の限外ろ過膜を使用)を用いて、メタン発酵液を膜処理する場合の膜間差圧(kPa)と透過液量(フラックス:m3/m2/日)を測定した結果を、図4に示す。膜間差圧が20kPaの場合、透過液量は0.016m3/m2/日であり、膜間差圧を5倍の100kPaとした場合には、透過液量も約5倍の0.075 m3/m2/日となった。加圧型膜分離装置の膜間差圧は、通常100kPa以上であるため、同じ材質の膜を用いた同一膜面積の浸漬型膜分離装置と比較すると、加圧型膜分離装置は透過液量が多く、メタン発酵液の濃縮処理速度が高いことは、図4から明らかである。 Here, a membrane for the membrane treatment of methane fermentation broth using a small-sized tester (using a membrane area of 32 cm 2 , material polyethersulfone, and a molecular fraction of 50,000) using a pressurized membrane separator The results of measuring the differential pressure (kPa) and the amount of permeate (flux: m 3 / m 2 / day) are shown in FIG. When the transmembrane pressure is 20 kPa, the permeate volume is 0.016 m 3 / m 2 / day. When the transmembrane pressure is 5 times 100 kPa, the permeate volume is also about 5 times 0.075 m 3. / m 2 / day. Since the transmembrane pressure difference of a pressurized membrane separator is usually 100 kPa or more, the pressurized membrane separator has a larger amount of permeate compared to a submerged membrane separator using the same membrane area and the same membrane area. It is clear from FIG. 4 that the concentration processing speed of the methane fermentation liquid is high.

Figure 2006326534
次に、うどん主体の麺廃棄物を、発酵容積:2m3のメタン発酵槽を用いて単一嫌気性消化処理し、メタン発酵槽内のメタン発酵液を膜分離処理しない場合と加圧型膜分離装置を使用して膜分離処理する場合について、限界CODcr容積負荷、SS除去率、COD除去率を比較した結果を、表1に示す。ここで、CODcr及びSSは、それぞれJISに定めるクロム酸カリウム法による化学的酸素要求量及び固形分を表し、それらの除去率とは、メタン発酵前後の測定値の差を、メタン発酵前の測定値で除し、100を乗じて算出した数値である。また、限界CODcr容積負荷は、1日にメタン発酵槽1m3当たりに処理可能な有機性廃棄物量を表す。なお、有機性廃棄物の処理量は、膜分離なしで運転する場合30kg/日、加圧型膜分離装置(株式会社神鋼環境ソリューション製:商品名「UFキューブ」(膜面積0.17m2))を運転する場合、90kg/日という条件でメタン発酵処理を行った。
Figure 2006326534
Then the noodles waste noodles mainly fermentation volume: using methane fermenter 2m 3 and single anaerobic digestion process, if not the membrane separation process methane fermentation liquid in the methane fermentation tank and the pressure type membrane separation Table 1 shows the results of comparison of the critical CODcr volumetric load, SS removal rate, and COD removal rate in the case of membrane separation using the apparatus. Here, CODcr and SS represent the chemical oxygen demand and solid content by the potassium chromate method specified in JIS, respectively, and their removal rate is the difference between measured values before and after methane fermentation, measured before methane fermentation. It is a numerical value calculated by dividing by 100 and multiplying by 100. The limit CODcr volumetric load represents the amount of organic waste that can be treated per 1 m 3 of methane fermenter per day. The amount of organic waste processed is 30 kg / day when operated without membrane separation. Pressurized membrane separator (made by Shinko Environmental Solution Co., Ltd .: trade name “UF Cube” (membrane area 0.17 m 2 )) When operating, the methane fermentation treatment was performed under the condition of 90 kg / day.

SS除去率及びCODcr除去率は、加圧型膜分離装置を使用してメタン発酵液を濃縮処理し、濃縮されたメタン発酵液をメタン発酵槽に返送した場合、膜処理を行わない場合と比較して、それぞれ2.1%及び7.5%上昇した。一方、限界CODcr負荷については、3倍にまで増大し、膜分離処理を行うことによって、メタン発酵処理の迅速化が図れることが示された。   SS removal rate and CODcr removal rate are compared with the case where the membrane treatment is not performed when the methane fermentation broth is concentrated using a pressurized membrane separator and the concentrated methane fermentation broth is returned to the methane fermentation tank. Increased 2.1% and 7.5% respectively. On the other hand, the critical CODcr load increased up to 3 times, and it was shown that the methane fermentation treatment can be accelerated by performing membrane separation treatment.

しかし、図2の浸漬型膜分離装置8を、単に加圧型膜分離装置20に置換しただけでは、メタン発酵液5中の固形分によって膜19がすぐにつまり、実用性に欠けるおそれがあるという問題が生じる。   However, if the submerged membrane separator 8 in FIG. 2 is simply replaced with the pressurized membrane separator 20, the membrane 19 may be immediately impeded by the solid content in the methane fermentation broth 5, i.e., lack of practicality. Problems arise.

そこで、本実施例の有機性廃棄物処理装置においては、図3に示すように、加圧型膜分離装置にメタン発酵液を循環させる発酵液循環ライン17を設置し、発酵液循環ライン17内でメタン発酵液を絶えず循環させることにより、膜19のつまりを防止する。   Therefore, in the organic waste treatment apparatus of the present embodiment, as shown in FIG. 3, a fermentation liquid circulation line 17 for circulating the methane fermentation liquid is installed in the pressurized membrane separator, and the fermentation liquid circulation line 17 The membrane 19 is prevented from clogging by continuously circulating the methane fermentation broth.

まず、加圧ポンプ6によってメタン発酵槽2から取り出されたメタン発酵液5は、所定の圧力まで加圧されて発酵液循環ライン17へと送られる。メタン発酵液は、循環ポンプ18によって発酵液循環ライン17及び加圧型膜分離装置20の内部を循環し、平行に並べられた複数の膜19の間を通過し、膜処理によって濃縮される。このように、膜19の透過方向とメタン発酵液の流れる方向を垂直とすることにより、メタン発酵液中の固形分による膜19のつまりが起こりにくい。なお、循環ポンプ18には、加圧型膜分離装置20内の膜面流速を高める機能と、発酵液循環ライン17及び加圧型膜分離装置20での圧力損失を補う機能がある。   First, the methane fermentation solution 5 taken out from the methane fermentation tank 2 by the pressurizing pump 6 is pressurized to a predetermined pressure and sent to the fermentation solution circulation line 17. The methane fermentation liquor is circulated through the fermentation liquor circulation line 17 and the pressurized membrane separator 20 by the circulation pump 18, passes between a plurality of membranes 19 arranged in parallel, and is concentrated by membrane treatment. Thus, by making the permeation | transmission direction of the film | membrane 19 and the flow direction of a methane fermentation liquid perpendicular | vertical, the clogging of the film | membrane 19 by the solid content in a methane fermentation liquid does not occur easily. The circulation pump 18 has a function of increasing the membrane surface flow rate in the pressurized membrane separator 20 and a function of compensating for pressure loss in the fermentation liquid circulation line 17 and the pressurized membrane separator 20.

平膜19の種類としては、限外濾過膜又は精密ろ過膜が用いられる。また、平膜19の材質としては、ポリエチレン、ポリエーテルスルホン、ポリアクリロニトリル等の高分子膜が好ましく、メタン生成菌の長さが0.5μm以上であることから、平均孔径は0.5μm以下であることが好ましい。   As the type of the flat membrane 19, an ultrafiltration membrane or a microfiltration membrane is used. The material of the flat membrane 19 is preferably a polymer membrane such as polyethylene, polyethersulfone, polyacrylonitrile, etc., and the length of the methanogen is 0.5 μm or more, so the average pore diameter is 0.5 μm or less. Is preferred.

メタン発酵液5の迅速処理の観点からは、発酵液循環ライン17内の圧力(加圧型膜分離装置20内の圧力に等しい)を50kPa以上にすることが好ましく、この圧力が膜間差圧となってメタン発酵液5が膜処理される。圧力を高めるほどメタン発酵液の透過液量(透過流束)が増加するが、加圧ポンプ6の消費電力も増大する。また、図4に示したように、膜間圧力が200kPaを超えると膜透過量の増加は頭打ちとなる。このため、加圧型膜分離装置20内の圧力は、50kPa以上200kPa以下にすることが実用的であり、高い透過液量を得る観点からは、100kPa以上200kPa以下とするのがより実用的である。なお、加圧型膜分離装置20内の膜面差圧は、圧力計25により測定することができる。   From the viewpoint of rapid processing of the methane fermentation broth 5, it is preferable to set the pressure in the fermentation broth circulation line 17 (equal to the pressure in the pressurized membrane separator 20) to 50 kPa or more, and this pressure is the transmembrane pressure difference. Thus, the methane fermentation broth 5 is subjected to membrane treatment. As the pressure is increased, the amount of permeate (permeation flux) of the methane fermentation liquid increases, but the power consumption of the pressure pump 6 also increases. Further, as shown in FIG. 4, when the transmembrane pressure exceeds 200 kPa, the increase in the membrane permeation amount reaches a peak. For this reason, it is practical to set the pressure in the pressurized membrane separator 20 to 50 kPa or more and 200 kPa or less, and from the viewpoint of obtaining a high permeate amount, it is more practical to set the pressure to 100 kPa or more and 200 kPa or less. . The membrane surface differential pressure in the pressurized membrane separator 20 can be measured by the pressure gauge 25.

ここで、膜19のつまりを防止するためには、加圧型膜分離装置20内の発酵液の膜面流速を0.6m/秒以上とすることが重要である。加圧型膜分離装置20内におけるメタン発酵液の膜面流速が0.6m/秒未満であれば、膜19のつまりを防止することが困難である。一方、膜面流速を0.6m/秒 よりも高くすればつまり防止効果が向上し、メタン発酵液の透過液量(透過流束)もさらに増加するが、1.2m/秒を超えると透過液量の増加が頭打ちとなる。このため、加圧型膜分離装置20におけるメタン発酵液の膜面流速は、好ましくは0.6 m/秒以上1.2 m/秒以下、より好ましくは0.8 m/秒以上1.0 m/秒以下である。なお、加圧型膜分離装置20内のメタン発酵液の膜面流速は、流量計26により測定することができる。   Here, in order to prevent clogging of the membrane 19, it is important to set the membrane surface flow rate of the fermentation broth in the pressurized membrane separator 20 to 0.6 m / second or more. If the membrane surface flow rate of the methane fermentation solution in the pressurized membrane separator 20 is less than 0.6 m / sec, it is difficult to prevent clogging of the membrane 19. On the other hand, if the membrane surface flow rate is higher than 0.6 m / sec, the prevention effect is improved, and the permeate volume (permeation flux) of the methane fermentation liquid is further increased. The increase will be peaked. For this reason, the membrane surface flow rate of the methane fermentation solution in the pressurized membrane separator 20 is preferably 0.6 m / sec or more and 1.2 m / sec or less, more preferably 0.8 m / sec or more and 1.0 m / sec or less. The membrane flow rate of the methane fermentation liquid in the pressurized membrane separator 20 can be measured by the flow meter 26.

次に、発酵液循環ライン17内のメタン発酵液は、膜19によって膜処理され、揮発性有機酸等の可溶性物質が膜透過液11として加圧型膜分離装置20から取り出される。そして、このような物質を含む膜透過液11は排水処理工程へと送られ、濃縮されたメタン発酵液15は、発酵液循環ライン17に接続された濃縮発酵液返送ライン16を経て、メタン発酵槽2へと返送される。   Next, the methane fermentation solution in the fermentation solution circulation line 17 is subjected to membrane treatment by the membrane 19, and soluble substances such as volatile organic acids are taken out from the pressurized membrane separator 20 as the membrane permeate 11. Then, the membrane permeate 11 containing such a substance is sent to the wastewater treatment process, and the concentrated methane fermentation solution 15 passes through the concentrated fermentation solution return line 16 connected to the fermentation solution circulation line 17, and is subjected to methane fermentation. Returned to tank 2.

メタン発酵液の有機物質濃度が高くなった、又は粘度が高くなった場合には、膜透過液量が減少し、メタン発酵液の膜分離効率が低下する。このような場合、濃縮メタン発酵液返送ライン16に設けられた弁21を閉じることによって、加圧型膜分離装置20内の膜面差圧を上昇させれば、膜透過液量を増大させることが可能となる。   When the organic substance density | concentration of a methane fermentation liquid becomes high, or when the viscosity becomes high, the amount of membrane permeate will reduce and the membrane separation efficiency of a methane fermentation liquid will fall. In such a case, the membrane permeate amount can be increased by closing the valve 21 provided in the concentrated methane fermentation liquid return line 16 to increase the membrane pressure difference in the pressurized membrane separator 20. It becomes possible.

図3に示した例では、加圧型膜分離装置20の膜透過液量は、膜透過液排出ライン22に設置された計測装置23によって計測され、計測量は弁開閉制御装置24へと伝えられる。弁開閉制御装置24は、予め入力された基準値よりも膜透過液量が減少した場合、弁を閉じる信号を弁21に送る。そして、弁21が閉じることにより、発酵液循環ライン17及び加圧型膜分離装置20内の膜面差圧が上昇し、膜透過液量を増大させることが可能となる。   In the example shown in FIG. 3, the membrane permeate amount of the pressurized membrane separator 20 is measured by the measuring device 23 installed in the membrane permeate discharge line 22, and the measured amount is transmitted to the valve opening / closing control device 24. . The valve opening / closing control device 24 sends a signal for closing the valve to the valve 21 when the amount of the membrane permeate decreases from a reference value inputted in advance. When the valve 21 is closed, the membrane surface differential pressure in the fermentation broth circulation line 17 and the pressurized membrane separator 20 is increased, and the amount of membrane permeate can be increased.

その後、メタン発酵液の有機物質濃度が低くなった、又は粘度が低くなった場合には、膜透過液量が必要以上に増大することになる。そこで、弁開閉制御装置23に予め入力された基準値よりも膜透過液量が増加した場合には、弁開閉制御装置24は、弁21に弁を開く信号を送る。この制御により、発酵液循環ライン17及び加圧型膜分離装置20内の膜面差圧が減少し、膜透過液量を減少させることが可能となる。   Thereafter, when the organic substance concentration of the methane fermentation liquid becomes low or the viscosity becomes low, the amount of the membrane permeate increases more than necessary. Therefore, when the amount of the membrane permeate increases from the reference value previously input to the valve opening / closing control device 23, the valve opening / closing control device 24 sends a signal to the valve 21 to open the valve. By this control, the membrane surface differential pressure in the fermentation liquid circulation line 17 and the pressurized membrane separator 20 is reduced, and the amount of membrane permeate can be reduced.

メタン発酵槽2に返送される濃縮されたメタン発酵液15には、メタン発酵菌が残存しており、メタン発酵槽2内のメタン発酵菌濃度を維持することができる。また、メタン発酵槽2内の有機物濃度をメタン発酵に好ましい濃度(懸濁物質濃度として5000〜20000 mg/L)に維持することもできる。
(実施例2)
次に、本発明の実施例2として、実施例1とは別の有機性廃棄物処理装置の全体構成を、図5に示す。メタン発酵槽及び加圧型膜分離装置の構成及び作用効果は、図3に示した有機性廃棄物処理装置の一部構成と同様である。なお、本実施例は、二相式嫌気性消化処理装置の例である。
In the concentrated methane fermentation solution 15 returned to the methane fermentation tank 2, methane fermentation bacteria remain, and the concentration of the methane fermentation bacteria in the methane fermentation tank 2 can be maintained. Moreover, the organic substance density | concentration in the methane fermenter 2 can also be maintained at the density | concentration preferable as methane fermentation (5000-20000 mg / L as suspension substance density | concentration).
(Example 2)
Next, as Example 2 of the present invention, an overall configuration of an organic waste treatment apparatus different from Example 1 is shown in FIG. The configurations and operational effects of the methane fermentation tank and the pressurized membrane separator are the same as the partial configuration of the organic waste treatment apparatus shown in FIG. In addition, a present Example is an example of a two-phase type anaerobic digestion processing apparatus.

まず、有機性廃棄物31は、前処理装置32によって分別、破砕、稀釈等される。有機物スラリー33となった有機性廃棄物は、酸発酵槽34へ送られて酸発酵処理される。酸発酵槽は、55〜65℃程度の温度で嫌気性雰囲気を保ったまま、所定時間滞留させる。   First, the organic waste 31 is separated, crushed, diluted, etc. by the pretreatment device 32. The organic waste that has become the organic slurry 33 is sent to the acid fermentation tank 34 and subjected to acid fermentation. The acid fermenter is retained for a predetermined time while maintaining an anaerobic atmosphere at a temperature of about 55 to 65 ° C.

次に、酸発酵液35がメタン発酵槽36へと送られ、メタン発酵処理される。メタン発酵槽は、30〜60℃程度の温度で嫌気性雰囲気を保ったまま、所定時間滞留させる。具体的には、高温メタン発酵の場合は、50〜60℃で、10〜20日程度、中温メタン発酵の場合は、30〜40℃で、20〜40日程度滞留させる。   Next, the acid fermentation liquid 35 is sent to the methane fermentation tank 36 and subjected to methane fermentation treatment. The methane fermenter is retained for a predetermined time while maintaining an anaerobic atmosphere at a temperature of about 30 to 60 ° C. Specifically, in the case of high temperature methane fermentation, it is retained at 50 to 60 ° C. for about 10 to 20 days, and in the case of medium temperature methane fermentation, it is retained at 30 to 40 ° C. for about 20 to 40 days.

メタン発酵液38を、メタン発酵液循環ライン(図示せず)を備える加圧型膜分離装置39によって膜分離処理し、濃縮メタン発酵液40をメタン発酵槽36へと返送することは、図3に示した装置と同じである。   It is shown in FIG. 3 that the methane fermentation liquid 38 is subjected to membrane separation treatment by a pressurized membrane separator 39 equipped with a methane fermentation liquid circulation line (not shown) and the concentrated methane fermentation liquid 40 is returned to the methane fermentation tank 36. It is the same as the apparatus shown.

加圧型膜分離装置39から排出される膜透過液41は、脱窒槽45へと送られる。脱窒槽45と硝化槽46において、膜透過液41のアンモニア態窒素が生物学的に硝化脱窒処理され、窒素ガス48等へと分解される。硝化脱窒処理後の処理水49は、さらに高度排水処理へと付される。   The membrane permeate 41 discharged from the pressurized membrane separator 39 is sent to the denitrification tank 45. In the denitrification tank 45 and the nitrification tank 46, the ammonia nitrogen in the membrane permeate 41 is biologically nitrified and denitrified and decomposed into nitrogen gas 48 and the like. The treated water 49 after the nitrification denitrification treatment is further subjected to advanced wastewater treatment.

一方、メタン発酵槽36の底部から引き抜かれた引抜汚泥42は、遠心分離装置等の固液分離装置43によって固液分離され、脱離液50(液体成分)は、脱窒槽45へと送り、膜透過液41と同じく脱窒処理することができるが、酸発酵槽34へと返送して有機物濃度を上昇させ、酸発酵を促進させることもできる。固形物残渣44は、適宜、別途処理される。   On the other hand, the extracted sludge 42 extracted from the bottom of the methane fermentation tank 36 is solid-liquid separated by a solid-liquid separator 43 such as a centrifugal separator, and the desorbed liquid 50 (liquid component) is sent to the denitrification tank 45. Although it can be denitrified in the same manner as the membrane permeate 41, it can be returned to the acid fermenter 34 to increase the concentration of organic matter and promote acid fermentation. The solid residue 44 is appropriately treated separately.

以上、説明したように、本発明の有機性廃棄物処理方法及び処理装置は、メタン発酵液の迅速な膜分離処理を長期間維持することができる。また、二相式嫌気性消化処理方法を採用することにより、酸発酵及びメタン発酵を、それぞれ最適な条件で行うことができ、有機性廃棄物の処理効率が向上する。さらに、硝化脱窒処理と組み合わせることにより、メタン発酵液及びメタン発酵槽の引抜汚泥からの脱離液を脱窒処理し、排水処理の負担をも軽減することができる。   As described above, the organic waste treatment method and treatment apparatus of the present invention can maintain a rapid membrane separation treatment of methane fermentation broth for a long period of time. Moreover, by employing the two-phase anaerobic digestion method, acid fermentation and methane fermentation can be performed under optimum conditions, respectively, and the processing efficiency of organic waste is improved. Furthermore, by combining with the nitrification denitrification treatment, the methane fermentation liquor and the effluent from the drawn sludge of the methane fermentation tank can be denitrified, and the burden of wastewater treatment can be reduced.

本発明の有機性廃棄物の処理方法及び処理装置は、生ゴミや食品廃棄物等の有機性廃棄物の効率的な処理方法及び処理装置として有用である。   The organic waste processing method and processing apparatus of the present invention are useful as an efficient processing method and processing apparatus for organic waste such as garbage and food waste.

本発明の有機性廃棄物処理方法のフローを示す図である。It is a figure which shows the flow of the organic waste processing method of this invention. 従来の有機性廃棄物処理装置の構成の一部を示す図である。It is a figure which shows a part of structure of the conventional organic waste processing apparatus. 本発明の実施例1に係る、有機性廃棄物処理装置の構成の一部を示す図である。It is a figure which shows a part of structure of the organic waste processing apparatus based on Example 1 of this invention. 加圧型膜分離装置の小型テスト機における膜間差圧と透過液量の関係を示す図である。It is a figure which shows the relationship between transmembrane differential pressure and the amount of permeate in the small test machine of a pressurization type membrane separator. 本発明の実施例2に係る、有機性廃棄物処理装置の構成の全体を示す図である。It is a figure which shows the whole structure of the organic waste processing apparatus based on Example 2 of this invention. 加圧型膜分離装置の平膜エレメント挟持体の構造を示す図である。It is a figure which shows the structure of the flat membrane element clamping body of a pressurization type membrane separator. 加圧型膜分離装置の圧力容器の一例について、その構造を示す図である。It is a figure which shows the structure about an example of the pressure vessel of a pressurization type membrane separator. 加圧型膜分離装置の圧力容器の別の一例について、その構造を示す図である。It is a figure which shows the structure about another example of the pressure vessel of a pressurization type membrane separator.

符号の説明Explanation of symbols

1,31:有機性廃棄物
2,36:メタン発酵槽
3,42:引抜汚泥
4,37:バイオガス
5,38:メタン発酵液
6:ポンプ
7:メタン発酵液取出ライン
8:浸漬型膜分離装置
9:浸漬膜
10:引抜ポンプ
11,41:膜透過液
12:ブロア用バイオガスライン
13:ブロア
14:散気装置
15,40:濃縮メタン発酵液
16:濃縮メタン発酵液返送ライン
17:発酵液循環ライン
18:循環ポンプ
19:平膜
20:加圧型膜分離装置
21:弁
22:膜透過液排出ライン
23:膜透過液量計測装置
24:弁開閉制御装置
32:前処理装置
33:廃棄物スラリー
34:酸発酵槽
35:酸発酵液
43:固液分離装置
44:固形物残渣
45:脱窒槽
46:硝化槽
47:硝化処理液
48:窒素ガス
49:処理水
50:脱離液
61:スペーサー
62:封筒状膜型エレメント
63:半割体
64:平膜エレメント挟持体
65:圧力容器
66:入口部
67:濃縮メタン発酵液出口部
68:透過液排出部
69:貫通孔
70:パイプ
71:整流板
80:矩形管状の圧力容器
81:平膜エレメント群
82:集水部
83:締付バンド
DESCRIPTION OF SYMBOLS 1,31: Organic waste 2,36: Methane fermentation tank 3,42: Extracted sludge 4,37: Biogas 5,38: Methane fermentation liquid 6: Pump 7: Methane fermentation liquid extraction line 8: Immersion type membrane separation Apparatus 9: Submerged membrane 10: Extraction pump 11, 41: Membrane permeate 12: Blower biogas line 13: Blower 14: Air diffuser 15, 40: Concentrated methane fermentation liquid 16: Concentrated methane fermentation liquid return line 17: Fermentation Liquid circulation line 18: Circulation pump 19: Flat membrane 20: Pressurized membrane separator 21: Valve 22: Membrane permeate discharge line 23: Membrane permeate amount measuring device 24: Valve opening / closing control device 32: Pretreatment device 33: Disposal Waste slurry 34: acid fermentation tank 35: acid fermentation liquid 43: solid-liquid separator 44: solid residue 45: denitrification tank 46: nitrification tank 47: nitrification treatment liquid 48: nitrogen gas 49: treated water 50: desorption liquid 61 :spacer 2: Envelope-shaped membrane element 63: Half body 64: Flat membrane element clamping body 65: Pressure vessel 66: Inlet part 67: Concentrated methane fermentation liquid outlet part 68: Permeate outlet part 69: Through hole 70: Pipe 71: Current plate 80: Rectangular tubular pressure vessel 81: Flat membrane element group 82: Water collecting part 83: Clamping band

Claims (12)

メタン発酵槽で有機性廃棄物をメタン発酵によって分解する方法であって、メタン発酵槽内の発酵液の一部を、発酵液を循環させる発酵液循環ラインを備える加圧型膜分離装置によって濃縮し、膜透過液を系外に排出すると共に、濃縮された発酵液をメタン発酵槽へと返送することにより、メタン発酵槽内の発酵液の固形物濃度を、メタン発酵の適値に維持することを特徴とする有機性廃棄物の処理方法。   In this method, organic waste is decomposed by methane fermentation in a methane fermentation tank, and a portion of the fermentation liquor in the methane fermentation tank is concentrated by a pressurized membrane separator equipped with a fermentation liquid circulation line for circulating the fermentation liquid. In addition to discharging the membrane permeate out of the system and returning the concentrated fermentation liquor to the methane fermentation tank, the solids concentration of the fermentation liquid in the methane fermentation tank should be maintained at an appropriate value for methane fermentation. A method for treating organic waste. 前記加圧型膜分離装置における発酵液の膜面流速が0.6m/秒以上であることを特徴とする請求項1に記載の有機性廃棄物の処理方法。   The method for treating organic waste according to claim 1, wherein the membrane surface flow rate of the fermentation broth in the pressurized membrane separator is 0.6 m / sec or more. 前記加圧型膜分離装置における膜面差圧が50kPa以上200kPa以下であることを特徴とする請求項1又は2に記載の有機性廃棄物の処理方法。   The method for treating organic waste according to claim 1 or 2, wherein the pressure difference on the membrane surface in the pressurized membrane separator is 50 kPa or more and 200 kPa or less. 系外に排出される膜透過液の排出量を計測し、
膜透過液量が基準値以下に減少した場合には、前記発酵液循環ラインからメタン発酵槽への返送ラインの弁を絞り、前記加圧型膜分離装置内の膜面差圧を上昇させ、
膜透過液量が基準値以上に増加した場合には、前記発酵液循環ラインからメタン発酵槽への返送ラインの弁を開き、前記加圧型膜分離装置内の膜面差圧を減少させるように制御することを特徴とする請求項1乃至3のいずれか1項に記載の有機性廃棄物の処理方法。
Measure the amount of membrane permeate discharged outside the system,
When the amount of membrane permeate decreases below the reference value, the valve of the return line from the fermentation liquid circulation line to the methane fermentation tank is throttled, and the membrane surface differential pressure in the pressurized membrane separator is increased,
When the membrane permeate amount exceeds the reference value, the valve of the return line from the fermentation liquid circulation line to the methane fermentation tank is opened to reduce the membrane surface differential pressure in the pressurized membrane separator. The organic waste processing method according to claim 1, wherein the organic waste processing method is controlled.
メタン発酵の前に、有機性廃棄物を酸発酵槽で酸発酵により分解することを特徴とする請求項1乃至4のいずれか1項に記載の有機性廃棄物の処理方法。   The organic waste treatment method according to any one of claims 1 to 4, wherein the organic waste is decomposed by acid fermentation in an acid fermenter before methane fermentation. メタン発酵の後に、前記膜透過液をさらに硝化脱窒処理することを特徴とする請求項1乃至5のいずれか1項に記載の有機性廃棄物の処理方法。   The method for treating organic waste according to any one of claims 1 to 5, wherein the membrane permeate is further nitrified and denitrified after methane fermentation. 有機性廃棄物をメタン発酵させるメタン発酵槽と、
メタン発酵槽内の発酵液の一部を吸引手段によって取り出す発酵液取出ラインと、
前記発酵液取出ラインが接続し、前記発酵液取出ラインからの発酵液を加圧手段によって循環させる発酵液循環ラインを備える加圧型膜分離装置と、
前記発酵液循環ラインに接続し、前記発酵液循環ライン内を循環する濃縮された発酵液を、メタン発酵槽へと返送する濃縮発酵液返送ラインとを備えることを特徴とする有機性廃棄物の処理装置。
A methane fermentation tank for methane fermentation of organic waste,
A fermentation liquor extraction line for taking out part of the fermentation liquor in the methane fermentation tank by suction means;
A pressure-type membrane separation device comprising a fermentation liquid circulation line connected to the fermentation liquid extraction line and circulating the fermentation liquid from the fermentation liquid extraction line by a pressurizing means;
An organic waste product comprising: a concentrated fermented liquid return line that is connected to the fermented liquid circulating line and returns the concentrated fermented liquid circulating in the fermented liquid circulating line to a methane fermentation tank. Processing equipment.
発酵液の膜分離操作時における前記加圧型膜分離装置内の発酵液の膜面流速が0.6m/秒以上であることを特徴とする請求項7に記載の有機性廃棄物の処理装置。   The apparatus for treating organic waste according to claim 7, wherein the membrane surface flow rate of the fermentation liquid in the pressurized membrane separator during the membrane separation operation of the fermentation liquid is 0.6 m / sec or more. 発酵液の膜分離操作時における前記加圧型膜分離装置内の膜面差圧が50kPa以上200kPa以下であることを特徴とする請求項7又は8に記載の有機性廃棄物の処理装置。   The organic waste treatment apparatus according to claim 7 or 8, wherein a membrane surface differential pressure in the pressure-type membrane separation apparatus during the membrane separation operation of the fermentation broth is 50 kPa or more and 200 kPa or less. 前記加圧型膜分離装置から膜透過液を排出する膜透過液排出ラインと、
前記膜透過液排出ラインに設けられた膜透過液量計測手段と、
前記濃縮発酵液返送ラインに設けられた弁と、
前記弁の開度を調節する制御手段とを備え、
前記計測手段が計測した膜透過液排出量が基準値以下に減少した場合、前記制御手段が前記弁を絞るように開度を調整して、前記発酵液循環ラインにおける膜面差圧を上昇させるように制御し、
前記計測手段が計測した膜透過液排出量が基準値以上に増加した場合、前記制御手段が前記弁を開くように開度を調整して、前記発酵液循環ラインにおける膜面差圧を減少させるように制御することを特徴とする請求項7乃至9のいずれか1項に記載の有機性廃棄物の処理装置。
A membrane permeate discharge line for discharging the membrane permeate from the pressurized membrane separator;
A membrane permeate amount measuring means provided in the membrane permeate discharge line;
A valve provided in the concentrated fermented liquid return line;
Control means for adjusting the opening of the valve,
When the membrane permeate discharge amount measured by the measuring means decreases below a reference value, the control means adjusts the opening so as to throttle the valve, and increases the membrane surface differential pressure in the fermentation liquor circulation line. To control and
When the membrane permeate discharge amount measured by the measuring means increases to a reference value or more, the opening degree is adjusted so that the control means opens the valve, and the membrane surface differential pressure in the fermentation liquor circulation line is reduced. The organic waste processing apparatus according to any one of claims 7 to 9, characterized by being controlled as follows.
有機性廃棄物をメタン発酵に先立ち酸発酵により分解するための酸発酵槽をさらに備えることを特徴とする請求項7乃至10のいずれか1項に記載の有機性廃棄物の処理装置。   The organic waste treatment apparatus according to any one of claims 7 to 10, further comprising an acid fermentation tank for decomposing the organic waste by acid fermentation prior to methane fermentation. メタン発酵の後に、前記膜透過液を硝化脱窒処理するための硝化脱窒槽をさらに備えることを特徴とする請求項7乃至11のいずれか1項に記載の有機性廃棄物の処理装置。
The apparatus for treating organic waste according to any one of claims 7 to 11, further comprising a nitrification / denitrification tank for nitrifying / denitrifying the membrane permeate after methane fermentation.
JP2005156096A 2005-05-27 2005-05-27 Method and apparatus for treating organic waste Expired - Fee Related JP4006011B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005156096A JP4006011B2 (en) 2005-05-27 2005-05-27 Method and apparatus for treating organic waste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005156096A JP4006011B2 (en) 2005-05-27 2005-05-27 Method and apparatus for treating organic waste

Publications (2)

Publication Number Publication Date
JP2006326534A true JP2006326534A (en) 2006-12-07
JP4006011B2 JP4006011B2 (en) 2007-11-14

Family

ID=37548817

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005156096A Expired - Fee Related JP4006011B2 (en) 2005-05-27 2005-05-27 Method and apparatus for treating organic waste

Country Status (1)

Country Link
JP (1) JP4006011B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110510A (en) * 2009-11-27 2011-06-09 Meidensha Corp Hydrogen-methane fermentation method and system for the same
KR101085270B1 (en) 2011-07-15 2011-11-22 현대건설주식회사 System and method for treating organic waste of menbrane-method using buffer reactor
WO2012074289A2 (en) * 2010-11-30 2012-06-07 현대건설주식회사 Apparatus and method for treating organic waste
KR101273937B1 (en) * 2011-05-27 2013-06-11 디에이치엠(주) Concentration apparatus for methane fermentation
JP2013532051A (en) * 2010-05-11 2013-08-15 ピーエムシー・バイオテック・カンパニー Biological processes for converting organic by-products
WO2019004478A1 (en) 2017-06-30 2019-01-03 東レ株式会社 Production method and production device for chemical product by continuous fermentation

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011110510A (en) * 2009-11-27 2011-06-09 Meidensha Corp Hydrogen-methane fermentation method and system for the same
JP2013532051A (en) * 2010-05-11 2013-08-15 ピーエムシー・バイオテック・カンパニー Biological processes for converting organic by-products
WO2012074289A2 (en) * 2010-11-30 2012-06-07 현대건설주식회사 Apparatus and method for treating organic waste
WO2012074289A3 (en) * 2010-11-30 2012-10-04 현대건설주식회사 Apparatus and method for treating organic waste
KR101273937B1 (en) * 2011-05-27 2013-06-11 디에이치엠(주) Concentration apparatus for methane fermentation
KR101085270B1 (en) 2011-07-15 2011-11-22 현대건설주식회사 System and method for treating organic waste of menbrane-method using buffer reactor
WO2019004478A1 (en) 2017-06-30 2019-01-03 東レ株式会社 Production method and production device for chemical product by continuous fermentation
JPWO2019004478A1 (en) * 2017-06-30 2020-04-23 東レ株式会社 Method and apparatus for manufacturing chemical products by continuous fermentation
JP7070416B2 (en) 2017-06-30 2022-05-18 東レ株式会社 Manufacturing method and equipment for chemical products by continuous fermentation

Also Published As

Publication number Publication date
JP4006011B2 (en) 2007-11-14

Similar Documents

Publication Publication Date Title
US7435349B2 (en) System for treating wastewater containing organic compounds
US20130319940A1 (en) Wastewater treatment process with anaerobic mbbr
EP2651833B1 (en) Process, apparatus and membrane bioreactor for wastewater treatment
JP4006011B2 (en) Method and apparatus for treating organic waste
KR101214991B1 (en) Method for treating waste water
CN111762970A (en) Method for treating leachate of garbage transfer station
JP4966523B2 (en) Biomass processing system
JP2012206040A (en) Treatment method and treatment apparatus of organic matter containing wastewater
WO2018237151A1 (en) System and method for continuous processing of organic waste with undigested solids recirculation
KR102100991B1 (en) Liquefied fertilizer purification apparatus using porous ceramic membrane
KR101421800B1 (en) Compact Energy-saving wastewater treatment system hybridizing sieving-membrane bioreactor and highly thickened sludge anaerobic digester by biosorption
JP5246665B2 (en) Methane fermentation treatment apparatus and methane fermentation treatment method
JP2006239627A (en) System for treatment of organic waste water containing nitrogen
WO2006029635A2 (en) Process for intensified, biological (waste-)water treatment in an mbr
JP4293529B2 (en) Organic wastewater treatment method
KR20200000056A (en) The method and apparatus for treatment of livestock manure, livestock wastewater or livestock washing water using ceramic membrane
JP6424807B2 (en) Water treatment system and water treatment method
CN100443424C (en) Chinese medicine production waste water treating system and its waste water treating method
JP5998254B1 (en) Digestion processing apparatus and digestion processing method
JP2005103375A (en) Methane fermentation treatment method and apparatus
KR102108870B1 (en) Membrane Treatment Device for Eliminating Nitrogen and/or Phosphorus
JP2001327998A (en) Organic sludge digesting method
JPH09117794A (en) Biological denitrification device
JPH10150973A (en) Methane fermentation system
KR20200101663A (en) Equipment capable of filtering of livestock wastewater and cleaning of membrane

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070625

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070821

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070824

R150 Certificate of patent or registration of utility model

Ref document number: 4006011

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100831

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110831

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120831

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130831

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees