JPS61249275A - Manufacture of abrasive grain - Google Patents

Manufacture of abrasive grain

Info

Publication number
JPS61249275A
JPS61249275A JP9073585A JP9073585A JPS61249275A JP S61249275 A JPS61249275 A JP S61249275A JP 9073585 A JP9073585 A JP 9073585A JP 9073585 A JP9073585 A JP 9073585A JP S61249275 A JPS61249275 A JP S61249275A
Authority
JP
Japan
Prior art keywords
grain
hardness
particles
thermal conductivity
tic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9073585A
Other languages
Japanese (ja)
Inventor
Kiyoshi Inoue
潔 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Inoue Japax Research Inc
Original Assignee
Inoue Japax Research Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Inoue Japax Research Inc filed Critical Inoue Japax Research Inc
Priority to JP9073585A priority Critical patent/JPS61249275A/en
Publication of JPS61249275A publication Critical patent/JPS61249275A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve specific conductance, hardness and thermal conductivity in an abrasive grain so better, by cladding a surface of each grain serving as a ground with ametal by means of electrodeposition process by evaporation, and nitrifying or carbonizing this metal. CONSTITUTION:Titanium is clad on a surface of a SiC grain 1 or a ground by means of evaporation or the like whereby a TiC covering layer 2 is formed there. Specific conductance, hardness and thermal conductivity in this abrasive grain secured by the presence of this covering layer 2 is able to be more excellent than those of a SiC single grain. In addition, graindability in this grain can be made yet higher, while manufacturing cost in this grain is reducible, and the ground grain and the quality of material in this covering layer are properly selected, so that specific conductance, hardness, thermal conductivity and so on in the abrasive grain are optionally selectable.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、主として電解研削等の研削加工用砥石として
使用するに好適な砥粒を製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention mainly relates to a method for producing abrasive grains suitable for use as a grindstone for grinding processes such as electrolytic grinding.

(従来の技術) 研削加工に使用される研削砥石は、ダイヤモンド、A見
203.5i02等のような不良導体や、SiC,Ti
B2.B4C,Tic、TiN、WC等の半導体を砥粒
として用い、これらをフリット、ビトリファイド、シリ
ケートその他の磁器質結合材や、樹脂、ゴム、炭素およ
び金属等の結合材を用いて結合することにより構成され
る。
(Prior art) Grinding wheels used for grinding are made of diamond, poor conductors such as A203.5i02, SiC, Ti, etc.
B2. Constructed by using semiconductors such as B4C, Tic, TiN, WC, etc. as abrasive grains and bonding them with frit, vitrified, silicate, other porcelain binders, resin, rubber, carbon, metal, etc. be done.

(発明が解決しようとする問題点) 従来の砥粒は、例えばTiC等のように、材料の種類に
よっては任意の粒径が得にくいものもあり、最適の粒径
が得にくい場合があった。また、材料の種類によって電
導度、硬度、熱伝導度等が一義的に決定されてしまい、
任意の特性のものを得ることが困難であった。
(Problems to be solved by the invention) With conventional abrasive grains, depending on the type of material, such as TiC, it may be difficult to obtain a desired grain size, and it may be difficult to obtain an optimal grain size. . In addition, the electrical conductivity, hardness, thermal conductivity, etc. are uniquely determined by the type of material.
It was difficult to obtain one with arbitrary characteristics.

(問題点を解決するための手段) 本発明の砥粒の製造方法は、不良導体もしくは半導体の
粒子の表面に金属を蒸着やスパッタ、イオンブレーティ
ングまたはCVD法等の薄膜形成手段により被覆し、該
金属を炭化あるいは窒化することによって、電導度ない
しは熱伝導度が高くかつ高硬度および高耐摩耗性を有す
る単層または多層の炭化物あるいは窒化物被覆層を形成
させる方法であり、被覆層に電導度ないしは熱伝導度が
高く、かつ高い硬度の材料を用いることにより。
(Means for Solving the Problems) The method for producing abrasive grains of the present invention includes coating the surface of a defective conductor or semiconductor particle with a metal by a thin film forming method such as vapor deposition, sputtering, ion blasting, or CVD method. By carbonizing or nitriding the metal, a single or multilayer carbide or nitride coating layer having high electrical conductivity or thermal conductivity, high hardness, and high wear resistance is formed. By using materials with high thermal conductivity and high hardness.

電解研削等研削用砥石として形成した場合。特性t−向
上させることができ、また、被覆層を形成する材料を選
択することにより、内部粒子を強化することができ、さ
らに、TiCやTiNのように、比較的小径のものしか
得にくい材料については、下地となる粒子としてSiC
のような比較的任意の径のものが得やすいものを用い、
被[71にTiCやTiNを用いることにより、TIC
やTiNの特性が強い砥粒を得ることができる。
When formed as a grinding wheel for electrolytic grinding etc. In addition, by selecting the material that forms the coating layer, the internal particles can be strengthened, and furthermore, materials such as TiC and TiN, which are difficult to obtain only in relatively small diameters, can be improved. For this, SiC is used as the underlying particle.
Use something that is easy to obtain with a relatively arbitrary diameter, such as
By using TiC or TiN for the target 71, TIC
It is possible to obtain abrasive grains having strong characteristics of TiN or TiN.

(実施例) 以下本発明の一実施例を図面により説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明を実施した場合の粒子の断面を示し、S
iCでなる粒子1の表面に、Tiを蒸着等により被覆し
、該Tiを炭化することにより、TiC被覆層2を形成
したものである。
FIG. 1 shows a cross section of particles when the present invention is implemented, and S
A TiC coating layer 2 is formed by coating the surface of particles 1 made of iC with Ti by vapor deposition or the like and carbonizing the Ti.

具体的には、粒子径が40〜loOILm程度の粒子l
の表面に、スパッタによりTiを平均厚さ10pm程度
に被覆し、その後、得られた粒子に対し1粒子lの粒径
よりも数分の一程度の粒径を有する炭素粉を混合し、加
熱して1.5時間炭化反応を行なわせることにより、T
iCの被覆層2を形成した。
Specifically, particles l with a particle diameter of about 40 to loOILm
The surface of the particles is coated with Ti to an average thickness of about 10 pm by sputtering, and then carbon powder having a particle size of about a fraction of the particle size of 1 particle is mixed with the obtained particles and heated. By carrying out the carbonization reaction for 1.5 hours, T
An iC coating layer 2 was formed.

このようにして得られた被覆粒子でなる粉体に対し、フ
リットを、その全体に対する混合割合が15重量%とな
るように混合して加圧成形し、1300℃で焼結して砥
石を得た場合、気孔度32%で、抗張力42 Kg/ 
cs+”のものを得ることができた。また、比抵抗値は
0.4ΩC層であった。一方、同じ材料を使用し、Ti
C被覆を施さなかった場合には、フリットの混合割合を
同じにした場合的lΩc+sの比抵抗値が得られた。ま
た、電解電圧4vで電流密度5A/c+s2で6%のC
Oを含むWC材を加工した場合、加工速度は1 、2 
g/sinとなった。一方、同じ条件下において、前記
TiC被覆層2のない場合は、加工速度は0.7g/腸
inであった。
The thus obtained coated particle powder is mixed with frit at a mixing ratio of 15% by weight, pressure molded, and sintered at 1300°C to obtain a grindstone. In this case, the porosity is 32% and the tensile strength is 42 Kg/
cs+" was able to be obtained. Also, the specific resistance value was 0.4ΩC layer. On the other hand, using the same material, Ti
When the C coating was not applied, a specific resistance value of 1Ωc+s was obtained when the mixing ratio of frits was kept the same. In addition, at an electrolytic voltage of 4 V and a current density of 5 A/c + s2, 6% C
When machining WC material containing O, the machining speed is 1 or 2.
g/sin. On the other hand, under the same conditions, in the case without the TiC coating layer 2, the processing speed was 0.7 g/in.

このように、TiCを被覆することにより、電導度がS
IC単独の場合よりも高く、硬度の面においも遜色のな
い粒子を得ることができる。また、TiCは単独では比
較的小径の粒子しか得られないが、これを被覆層とした
粒子とすることにより、SiC粒子として得られる粒径
のTiC被覆粒子、すなわち特性がTiCに近い粒子が
得られる。また、電導度と熱伝導度はいずれか一方が高
ければ他方も高いという対応関係にあるので、SiC単
独を用いた場合に比較し、熱伝導度の高い砥石を得るこ
とが可能となる。
In this way, by coating TiC, the electrical conductivity is increased to S
It is possible to obtain particles with higher hardness and comparable hardness than when using IC alone. In addition, TiC alone can only yield particles with a relatively small diameter, but by using TiC as a coating layer, TiC-coated particles with a particle size that can be obtained as SiC particles, that is, particles with properties close to those of TiC, can be obtained. It will be done. Furthermore, since there is a correspondence between electrical conductivity and thermal conductivity, if one is high, the other is also high, so it is possible to obtain a grindstone with higher thermal conductivity than when using SiC alone.

第1図において、TiCの代わりにTiNを形成するこ
ともできる。この場合には、前記のようにTi被覆層を
形成した後、N、ガスやNH3ガス雰囲気中にてグロー
放電によって加熱することにより、窒化することができ
る*TiNはTICに比較して比抵抗値がさらに小さい
ので、電解研削する上で有利である。
In FIG. 1, TiN can also be formed instead of TiC. In this case, after forming the Ti coating layer as described above, it can be nitrided by heating by glow discharge in an N, gas, or NH3 gas atmosphere. *TiN has a specific resistance compared to TIC. Since the value is even smaller, it is advantageous for electrolytic grinding.

第2図および第3図は本発明の他の実施例により得られ
た粒子の断面を示すものである。これらの例は、いずれ
も、第1図に関して説明した方法により、Ti0層2の
他にTEN層3を多重に形成したもので、第2図の例は
TIC@2を下層に、TiN層3を表層とし、第3図の
例はその反対にTEN層3を下層に、Ti0層2を表層
としている。
FIGS. 2 and 3 show cross sections of particles obtained according to other examples of the present invention. In all of these examples, the TEN layer 3 is formed in addition to the Ti0 layer 2 in multiple layers using the method explained in connection with FIG. 1. In the example shown in FIG. In the example shown in FIG. 3, the TEN layer 3 is the lower layer and the Ti0 layer 2 is the surface layer.

第2図および第3図のように、被m層を多層に形成すれ
ば、これらを組合わせた中間的な特性の粒子が得られ、
その比率を変化させることにより、特性を種々に変化さ
せることができる。
As shown in FIGS. 2 and 3, if the m-layer is formed into multiple layers, particles with intermediate characteristics can be obtained by combining these layers,
By changing the ratio, the characteristics can be varied in various ways.

勿論これらの他に1例えばTiCまたはTiN粒子にS
iC層を被覆したものや、前記従来の技術の項で説明し
たダイヤモンド、A4120g。
Of course, in addition to these, for example, TiC or TiN particles may have S
Those coated with an iC layer, and the diamond A4120g described in the prior art section.

S i 02等の不良導体、またはT i B2 、 
B4 C等の他の半導体粒子に対して金属炭化物あるい
は窒化物を被覆層として形成することもできる。また、
下地となる粒子は、1つの種類ではなく、複数種類のも
のを混合したものや、下地材としての粒子にY、Sm、
La、Ce等の希土類を合金化したものを用いることも
できる。
Bad conductor such as S i 02, or T i B2,
Metal carbide or nitride can also be formed as a coating layer on other semiconductor particles such as B4C. Also,
The particles that serve as the base material are not of one type, but are a mixture of multiple types, or the particles that serve as the base material include Y, Sm,
An alloy of rare earth elements such as La and Ce can also be used.

また、本発明により得られる砥粒を砥石として使用する
場合には、結合材として、従来通常の磁器質材や金属系
結合材の外に1例えばエポキシ樹脂、フェノール樹脂等
の樹脂や、ゴムを用いることができ、また、前記のよう
にして被覆層を形成したものと、被覆層を形成しないか
あるいは形成した他の砥粒とを結合材と共に混合して砥
石を得ることもできる。
In addition, when the abrasive grains obtained according to the present invention are used as a grinding wheel, in addition to conventional porcelain materials and metal-based binders, resins such as epoxy resins and phenol resins, or rubber may be used as the bonding material. Alternatively, a grindstone can be obtained by mixing the abrasive grains with a coating layer formed as described above and other abrasive grains with or without a coating layer together with a binder.

(発明の効果) 以上述べたように、本発明による砥粒の製造方法は、下
地となる粒子の表面に金属′を蒸着等により被覆し、該
金属を炭化あるいは窒化することによって、電導度ない
しは熱伝導度が高く、かつ高硬度を有する単層または多
層の炭化物あるいは窒化物被覆層を得る方法であるから
、下地材として種々の粒径のものが得られる材料を選択
し、被覆層として粒径が選択しにくいものを被着するこ
とにより、その任意の粒径が選択しにくい材料において
も、最適の粒径を容易に得ることができる。
(Effects of the Invention) As described above, the method for producing abrasive grains according to the present invention coats the surface of the underlying particles with a metal by vapor deposition or the like, and carbonizes or nitrides the metal, thereby increasing the electrical conductivity or Since this is a method of obtaining a single or multilayer carbide or nitride coating layer with high thermal conductivity and high hardness, a material that can be obtained with various particle sizes is selected as the base material, and the coating layer is made of grains. By depositing particles whose diameter is difficult to select, the optimum particle size can be easily obtained even for materials whose arbitrary particle size is difficult to select.

また、Tiのように高価な物質を被覆層として用いるこ
とにより、全体として砥粒価格を低減することができる
。また、下地材と被覆層の材質を選択することによって
電導度、硬度、熱伝導度等を任意に得ることができる。
Furthermore, by using an expensive substance such as Ti for the coating layer, the overall cost of the abrasive grain can be reduced. Further, by selecting the materials of the base material and the covering layer, electrical conductivity, hardness, thermal conductivity, etc. can be arbitrarily obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第3図は本発明の方法により得られる砥粒
の例をそれぞれ示す断面図である。
1 to 3 are cross-sectional views showing examples of abrasive grains obtained by the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims]  不良導体もしくは半導体の粒子の表面に金属を被覆し
、該金属を炭化あるいは窒化することによって、電導度
が高くかつ高硬度を有する単層または多層の炭化物ある
いは窒化物被覆層を形成させることを特徴とする砥粒の
製造方法。
It is characterized by coating the surface of a defective conductor or semiconductor particle with a metal and carbonizing or nitriding the metal to form a single or multilayer carbide or nitride coating layer with high conductivity and high hardness. A method for producing abrasive grains.
JP9073585A 1985-04-26 1985-04-26 Manufacture of abrasive grain Pending JPS61249275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9073585A JPS61249275A (en) 1985-04-26 1985-04-26 Manufacture of abrasive grain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9073585A JPS61249275A (en) 1985-04-26 1985-04-26 Manufacture of abrasive grain

Publications (1)

Publication Number Publication Date
JPS61249275A true JPS61249275A (en) 1986-11-06

Family

ID=14006827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9073585A Pending JPS61249275A (en) 1985-04-26 1985-04-26 Manufacture of abrasive grain

Country Status (1)

Country Link
JP (1) JPS61249275A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103266A (en) * 1986-10-16 1989-04-20 General Electric Co <Ge> Coated oxidation-resistant porous abrasive molded form and manufacture thereof
JP2005144653A (en) * 2003-11-19 2005-06-09 Fuji Dies Kk Resin bond diamond grinding wheel
JP2007024042A (en) * 2005-07-14 2007-02-01 Sulzer Metco (Us) Inc Method of treating tip of turbine blade and turbine blade treated by the method
JP2016221651A (en) * 2015-06-02 2016-12-28 株式会社クリスタル光学 Abrasive grain
JP2018079552A (en) * 2016-11-18 2018-05-24 株式会社クリスタル光学 Abrasive grain, electrodeposition tool and method for manufacturing abrasive grain

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01103266A (en) * 1986-10-16 1989-04-20 General Electric Co <Ge> Coated oxidation-resistant porous abrasive molded form and manufacture thereof
JP2616936B2 (en) * 1986-10-16 1997-06-04 ゼネラル・エレクトリック・カンパニイ Coated oxidation-resistant porous abrasive moldings and process for producing the same
JP2005144653A (en) * 2003-11-19 2005-06-09 Fuji Dies Kk Resin bond diamond grinding wheel
JP2007024042A (en) * 2005-07-14 2007-02-01 Sulzer Metco (Us) Inc Method of treating tip of turbine blade and turbine blade treated by the method
JP2016221651A (en) * 2015-06-02 2016-12-28 株式会社クリスタル光学 Abrasive grain
JP2018079552A (en) * 2016-11-18 2018-05-24 株式会社クリスタル光学 Abrasive grain, electrodeposition tool and method for manufacturing abrasive grain

Similar Documents

Publication Publication Date Title
US5606484A (en) Ceramic electrostatic chuck with built-in heater
US6264882B1 (en) Process for fabricating composite material having high thermal conductivity
KR910002563A (en) Thermally stable superabrasive product and its manufacturing method
JPH062001A (en) Production of molded multigrain abrasive material, and product produced thereby
CN107406971A (en) For the coating source for the carbon-coating for manufacturing doping
Abyzov et al. Filler-matrix thermal boundary resistance of diamond-copper composite with high thermal conductivity
JPS61249275A (en) Manufacture of abrasive grain
US5350720A (en) Triple-layered ceramic heater
JP2000141230A (en) Metal bond grindstone and its manufacture
JP2005276962A (en) Semiconductor devices and substrate thereof
JP3469310B2 (en) Ceramic base material for diamond coating and method for producing coating material
JPH03199172A (en) Coated carbon fiber reinforced composite material
JPH08206962A (en) Conductive grinding wheel and its manufacture
JP2801485B2 (en) Composite and method for producing the same
JPH05238856A (en) Method for forming coating film of metal carbide
JPS5855562A (en) Polishing dish and manufacture thereof
JP3600279B2 (en) Alumina-based composite ceramics with controlled specific resistance and method for producing the same
JPS61261480A (en) Diamond coated member
JP3600278B2 (en) Conductive alumina-based composite ceramics and method for producing the same
JPS6257871A (en) Manufacture for metal bond grinding wheel
JPS58197203A (en) Formation of wear resistant coating layer
JPH03260069A (en) Artificial diamond-coated hard sintered tool member having high adhesive strength
JP2652190B2 (en) Abrasive particles and method for producing the same
JP2003277929A (en) Heat- and oxidation resistant material and method for manufacturing the same, and heating element using the same
JPH04331798A (en) Method of forming diamond film