JPH04331798A - Method of forming diamond film - Google Patents
Method of forming diamond filmInfo
- Publication number
- JPH04331798A JPH04331798A JP13067691A JP13067691A JPH04331798A JP H04331798 A JPH04331798 A JP H04331798A JP 13067691 A JP13067691 A JP 13067691A JP 13067691 A JP13067691 A JP 13067691A JP H04331798 A JPH04331798 A JP H04331798A
- Authority
- JP
- Japan
- Prior art keywords
- diamond film
- diamond
- substrate
- powder layer
- forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010432 diamond Substances 0.000 title claims abstract description 130
- 229910003460 diamond Inorganic materials 0.000 title claims abstract description 128
- 238000000034 method Methods 0.000 title claims abstract description 53
- 239000000843 powder Substances 0.000 claims abstract description 83
- 239000000758 substrate Substances 0.000 claims abstract description 46
- 238000005219 brazing Methods 0.000 claims abstract description 27
- 239000012808 vapor phase Substances 0.000 claims abstract description 9
- 229920003002 synthetic resin Polymers 0.000 claims abstract description 5
- 239000000057 synthetic resin Substances 0.000 claims abstract description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 4
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 4
- 150000001875 compounds Chemical class 0.000 claims abstract description 3
- 238000005304 joining Methods 0.000 claims description 2
- 239000010410 layer Substances 0.000 description 66
- 239000000463 material Substances 0.000 description 21
- 239000002245 particle Substances 0.000 description 12
- 238000005498 polishing Methods 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 11
- 230000003746 surface roughness Effects 0.000 description 11
- 229910052581 Si3N4 Inorganic materials 0.000 description 8
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 239000000919 ceramic Substances 0.000 description 6
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 6
- 229910010271 silicon carbide Inorganic materials 0.000 description 6
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 229910001220 stainless steel Inorganic materials 0.000 description 5
- 239000010935 stainless steel Substances 0.000 description 5
- 229910052582 BN Inorganic materials 0.000 description 4
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 235000019441 ethanol Nutrition 0.000 description 4
- 238000000227 grinding Methods 0.000 description 4
- 238000003754 machining Methods 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 3
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 239000004372 Polyvinyl alcohol Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 229920002451 polyvinyl alcohol Polymers 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910000679 solder Inorganic materials 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000006911 nucleation Effects 0.000 description 2
- 238000010899 nucleation Methods 0.000 description 2
- 238000003825 pressing Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000007790 scraping Methods 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229910052580 B4C Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910017770 Cu—Ag Inorganic materials 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 239000006061 abrasive grain Substances 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- INAHAJYZKVIDIZ-UHFFFAOYSA-N boron carbide Chemical compound B12B3B4C32B41 INAHAJYZKVIDIZ-UHFFFAOYSA-N 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000009841 combustion method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010981 drying operation Methods 0.000 description 1
- 238000009760 electrical discharge machining Methods 0.000 description 1
- 229910001651 emery Inorganic materials 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000004050 hot filament vapor deposition Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 239000010955 niobium Substances 0.000 description 1
- GUCVJGMIXFAOAE-UHFFFAOYSA-N niobium atom Chemical compound [Nb] GUCVJGMIXFAOAE-UHFFFAOYSA-N 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
【0001】0001
【産業上の利用分野】本発明は、低摩擦・耐磨耗摺動部
品や切削工具などの表面に強い密着力と優れた面粗度を
有するダイヤモンド膜を気相法によって簡易に形成する
方法に関するものである。[Industrial Application Field] The present invention is a method for easily forming a diamond film with strong adhesion and excellent surface roughness on the surfaces of low-friction, wear-resistant sliding parts and cutting tools by a vapor phase method. It is related to.
【0002】0002
【従来の技術】ダイヤモンドは極めて硬く優れた耐磨耗
性を有するとともに、摩擦係数が低いという優れた特性
を有するため、摺動部品や切削工具に適用する試みが従
来からなされてきた。BACKGROUND OF THE INVENTION Since diamond is extremely hard and has excellent wear resistance as well as a low coefficient of friction, attempts have been made to apply it to sliding parts and cutting tools.
【0003】ダイヤモンド膜を摺動部品等に用いる場合
の問題点として膜の基体に対する密着力が低く、使用条
件が厳しい場合、使用中に膜が剥離してしまうことがあ
ること、また、最も一般的なダイヤモンド膜形成方法で
ある気相法によって形成したダイヤモンド膜は、面粗度
が悪く、膜表面の凹凸によって逆に相手材を傷つけたり
、研削してしまうことがしばしばあった。[0003] A problem when using a diamond film for sliding parts, etc. is that the adhesion of the film to the substrate is low, and if the usage conditions are severe, the film may peel off during use. Diamond films formed by the vapor phase method, which is a traditional diamond film formation method, have poor surface roughness, and the unevenness of the film surface often damages or grinds the mating material.
【0004】基体との密着力を高めるための試みとして
ダイヤモンドが比較的析出しやすいシリコン等の基体に
気相法によってダイヤモンド膜を析出形成し、このダイ
ヤモンド膜の表面側を基体の表面にろう付けし、その後
、該基体を削り取るなどの方法(以下ろう付け法)が提
案されている。(特開平1−15328)。この方法は
ダイヤモンドの析出しにくいFe、Co、Niを含む部
品の表面にダイヤモンド膜を形成しようとする場合に有
効である。しかし、一旦シリコン等の基体の表面に形成
させたダイヤモンド膜をろう付けし、その後基体を削り
取る等の方法は、研削の精度、膜の強度などからダイヤ
モンド膜の厚さが10μm以上必要であり、研削自体が
厄介で多大な労力、時間を必要とするという問題があっ
た。[0004] In an attempt to increase the adhesion to the substrate, a diamond film is deposited on a substrate such as silicon, on which diamond is relatively easy to precipitate, by a vapor phase method, and the surface side of this diamond film is brazed to the surface of the substrate. However, a method has been proposed in which the substrate is then scraped off (hereinafter referred to as a brazing method). (Unexamined Japanese Patent Publication No. 1-15328). This method is effective when attempting to form a diamond film on the surface of a component containing Fe, Co, or Ni, which is difficult to deposit diamond on. However, methods such as brazing a diamond film formed on the surface of a substrate such as silicon and then scraping off the substrate require a diamond film thickness of 10 μm or more due to grinding accuracy and film strength. There was a problem in that the grinding itself was troublesome and required a great deal of labor and time.
【0005】一方ダイヤモンド膜表面の面粗度を高める
ため、これまでは研摩などが行われてきた。ダイヤモン
ド膜はその膜形成速度が速い程、また、結晶性の良好な
良質な膜を作る程、自形面(晶癖面)のよく発達した膜
となり、表面の面粗度が粗くなる。On the other hand, in order to increase the surface roughness of the surface of the diamond film, polishing and the like have hitherto been carried out. The faster the diamond film is formed, and the higher the quality of the film with good crystallinity, the more well-developed euhedral planes (crystal habit planes) become, and the rougher the surface becomes.
【0006】このため、表面を平滑にするためにはかな
りの厚さを研摩やレーザー等によって除去しなければな
らない。[0006] Therefore, in order to make the surface smooth, a considerable thickness must be removed by polishing, laser, or the like.
【0007】しかし、ダイヤモンドは極めて硬いため、
その研摩等には多大の時間と労力を必要とした。特に、
複雑な曲面の連続からなるカム等の形状物の表面にダイ
ヤモンド膜を形成した部品を低コストで量産するという
ことになると、研摩等により削除する部分を極力少なく
しなければならない。However, since diamond is extremely hard,
The polishing etc. required a great deal of time and effort. especially,
When it comes to mass producing parts with a diamond film formed on the surface of a shaped object such as a cam consisting of a series of complex curved surfaces at a low cost, it is necessary to minimize the amount of parts removed by polishing or the like.
【0008】また、電気燃料噴射ノズル等のように細い
管状の形状物の内側の先端部分に目的とする耐磨耗性ダ
イヤモンド・コーティング層を施すような場合、成膜手
段も研摩手段も無いのが現状である。[0008] Furthermore, when applying a desired abrasion-resistant diamond coating layer to the inner tip of a thin tubular object such as an electric fuel injection nozzle, there is no means for forming the film or for polishing it. is the current situation.
【0009】[0009]
【発明が解決しようとする課題】本発明は、上記した問
題を解決することを課題とし、基体との密着力が強く、
表面の面粗度に優れたダイヤモンド膜を簡易に形成する
方法を提供することにある。[Problems to be Solved by the Invention] It is an object of the present invention to solve the above-mentioned problems.
An object of the present invention is to provide a method for easily forming a diamond film with excellent surface roughness.
【0010】0010
【課題を解決するための手段】本発明者等は、上記従来
技術の問題点に関し、以下のことに着目した。[Means for Solving the Problems] The present inventors have focused on the following points regarding the problems of the above-mentioned prior art.
【0011】(1) ダイヤモンドの基体上への析出は
基体上に多数の核の発生があり、その核を中心に横方向
及び縦方向に成長するため、基体との密着面は基体の面
の形状そのもののレプリカとなる点に着目し、基体に複
雑な形状を与えておくと同じ形状になるのと同時に、基
体の面を平滑にしておけばこの面に接して形成されるダ
イヤモンド膜の表面も基体面と同様な平滑な面が得られ
、この平滑なダイヤモンド膜の表面を実際の摺動部品の
表面として利用するようにすれば、膜表面の研摩する部
分の著しい低減を図ることができると考えた。(1) When diamond is deposited on a substrate, a large number of nuclei are generated on the substrate, and the diamond grows horizontally and vertically around the nuclei. Focusing on the fact that it becomes a replica of the shape itself, if you give the substrate a complex shape, it will become the same shape, and at the same time, if you make the surface of the substrate smooth, the surface of the diamond film that will be formed in contact with this surface. A smooth surface similar to the base surface can be obtained, and if this smooth diamond film surface is used as the surface of an actual sliding part, the area of the film surface that needs to be polished can be significantly reduced. I thought.
【0012】(2) また、ダイヤモンドは窒化ホウ素
、窒化珪素、炭化珪素などのセラミックスの粉体の上に
も析出し得る点に着目し、基体の表面に上記のセラミッ
クスの微細な粉末の層を介在させその上にダイヤモンド
を析出させると、該ダイヤモンド膜を前記セラミックス
粉体の部分から容易に分離することができ、この方法を
利用すれば前記ろう付け法における基体の削り取りとい
う厄介な問題を解決できると考えた。(2) We also focused on the fact that diamond can be deposited on powders of ceramics such as boron nitride, silicon nitride, and silicon carbide, and created a layer of fine powders of the above ceramics on the surface of the substrate. By intervening and depositing diamond thereon, the diamond film can be easily separated from the ceramic powder portion, and this method can solve the troublesome problem of scraping off the substrate in the brazing method. I thought it could be done.
【0013】発明者等は、従来ダイヤモンド膜と基体と
の密着性を高めるために行われてきた前記ろう付け法を
改良するために、上記着眼点に基づき研究を重ね、本発
明をなすに至ったものである。[0013] In order to improve the brazing method, which has conventionally been used to improve the adhesion between the diamond film and the substrate, the inventors have conducted research based on the above-mentioned points of view, and have completed the present invention. It is something that
【0014】本発明のダイヤモンド膜形成方法は、基体
のダイヤモンド膜を形成しようとする面の形状と逆形状
の平滑な面を有する逆型を形成する工程と、該逆形状の
面にカーボンと反応し難い化合物よりなる微細な硬質粉
体層を形成する工程と、該硬質粉体層表面に気相法によ
ってダイヤモンド膜を形成する工程と、該ダイヤモンド
膜を基体のダイヤモンド膜を形成しようとする面にろう
付けあるいは合成樹脂による接着によって接合する工程
と、基体と逆型とを硬質粉体層から分離する工程とから
なることを特徴とする。The diamond film forming method of the present invention includes the steps of forming an inverted mold having a smooth surface that is in the opposite shape to the shape of the surface of the substrate on which the diamond film is to be formed, and reacting the oppositely shaped surface with carbon. a step of forming a fine hard powder layer made of a compound that is difficult to absorb; a step of forming a diamond film on the surface of the hard powder layer by a vapor phase method; and a step of forming a diamond film on the surface of the substrate. It is characterized by comprising a step of joining by brazing or adhesion with synthetic resin, and a step of separating the base and the reverse mold from the hard powder layer.
【0015】[0015]
【発明の効果】本発明のダイヤモンド膜形成方法によれ
ば、ダイヤモンド膜が基体にろう付けあるいは合成樹脂
による接着によって強固に接合されているので、ダイヤ
モンド膜の分離等の問題がない。According to the method for forming a diamond film of the present invention, since the diamond film is firmly bonded to the substrate by brazing or adhesion using synthetic resin, there is no problem such as separation of the diamond film.
【0016】また、本方法によって形成されたダイヤモ
ンド膜の表面は極めて平滑であり、従来の方法に比べ表
面研摩等の作業を著しく軽減できる。この理由は、次の
ようである。本方法が基体の表面の形状と逆形状の逆型
を用い、該逆型の表面に微細な硬質粉体からなる層を形
成し、この平滑な面を有する粉体層上にダイヤモンド膜
を形成する。その後、前記硬質粉体層の部分から逆型を
除去し、前記硬質粉体層の平滑な面に接していたダイヤ
モンド膜面を基体の表面とすることができるためである
。Furthermore, the surface of the diamond film formed by this method is extremely smooth, and operations such as surface polishing can be significantly reduced compared to conventional methods. The reason for this is as follows. This method uses an inverted mold with an inverse shape to the surface of the substrate, forms a layer of fine hard powder on the surface of the inverted mold, and forms a diamond film on this powder layer with a smooth surface. do. This is because the reverse mold can then be removed from the hard powder layer portion, and the diamond film surface that was in contact with the smooth surface of the hard powder layer can be used as the surface of the base body.
【0017】また、基体の逆型からの分離は、硬質粉体
層の部分から機械的に簡単にでき、従来のように逆型の
研摩等を必要としないため、該逆型を何度も利用でき、
特に複雑な形状物の場合、前記した表面研摩の低減によ
る効果と併せて低コストで実施が可能となる。Furthermore, the substrate can be easily separated from the inverted mold mechanically from the hard powder layer, and there is no need to polish the inverted mold as in the conventional method, so the inverted mold can be separated many times. available,
Particularly in the case of objects with complex shapes, this method can be implemented at low cost in addition to the effect of reducing surface abrasion as described above.
【0018】しかも、この方法によって従来不可能であ
った鉄系の部品の表面に、また深く奥まった従来ダイヤ
モンド膜を形成することが不可能であった部分等にダイ
ヤモンド膜を形成することが可能である。Moreover, by this method, it is possible to form a diamond film on the surface of iron-based parts, which was previously impossible, and in deep areas where it was previously impossible to form a diamond film. It is.
【0019】[0019]
(本発明の具体例)本具体例に係るダイヤモンド膜の形
成方法を、工程に従って説明する。(Specific Example of the Present Invention) A method for forming a diamond film according to this specific example will be explained step by step.
【0020】(1) 逆型の形成工程
逆型の形状及び寸法は基体の形状にほぼ等しいか、仕上
げ研摩加工時の取りしろをわずかに控えた大きさとする
。即ち、基体のダイヤモンド膜を形成したい部分が凸の
場合には、凹の逆型の凹部を硬質粉体層の厚さと、仕上
げ加工の取りしろを考慮してやや大き目にする(図1)
。逆に基体の膜を形成したい部分が、凹の場合には、逆
型の凸を同様な理由によりやや小さ目に加工する。(1) Step of forming the reverse mold The shape and dimensions of the reverse mold are approximately equal to the shape of the base body, or have a size slightly smaller than the allowance for finishing polishing. In other words, if the part of the substrate where you want to form a diamond film is convex, make the concave part, which is the opposite of the concave part, a little larger considering the thickness of the hard powder layer and the allowance for finishing (Figure 1).
. On the other hand, if the portion of the substrate on which the film is to be formed is concave, the convex portion of the reverse mold is processed to be slightly smaller for the same reason.
【0021】逆型の材料は目的とする基体の形状にもよ
るが、いずれにしてもダイヤモンド膜をその表面に析出
させる場合に必要な基板温度の制御が可能なように、熱
伝導率の大きな材料が好ましく、金属であれば銅、タン
グステンやモリブデンが、セラミックスであれば炭化珪
素、窒化アルミニウム及び炭化ホウ素などの焼結体が好
ましい。これらの逆型はでき得る限りダイヤモンドを析
出させる面の壁厚は均等な厚さとし、その裏側に冷却水
を流して析出面の温度を均一に、しかもある一定の温度
にコントロールする必要がある。The material for the reverse type depends on the shape of the target substrate, but in any case, it is necessary to use a material with high thermal conductivity so that it is possible to control the substrate temperature necessary when depositing a diamond film on the surface. The material is preferably copper, tungsten, or molybdenum for metals, and sintered bodies of silicon carbide, aluminum nitride, boron carbide, etc. for ceramics. For these inverted molds, it is necessary to make the wall thickness of the surface on which diamond is deposited as uniform as possible, and to control the temperature of the deposition surface to be uniform and at a certain level by flowing cooling water on the back side.
【0022】しかし、マイクロ波プラズマ法や、熱フィ
ラメント法などの方法による場合には、基板の温度上昇
はそれ程問題ではなく、上記の基板となる逆型の材料お
よび冷却構造にそれ程配慮する必要はない。However, when methods such as the microwave plasma method and the hot filament method are used, the temperature rise of the substrate is not so much of a problem, and there is no need to pay much attention to the inverted material and cooling structure that will become the substrate. do not have.
【0023】逆型の成形、加工は、一般的な方法で行え
ば良く、電気伝導性の材料であれば最終仕上げには放電
加工、電解研摩などを用いることもでき、一方セラミッ
クスなどでは一般的に行われている方法で逆型を粉末を
ニヤネットシェープに成形して焼結し、研削などの方法
によって加工し仕上げれば良い。[0023] The molding and processing of the reverse mold can be carried out by a general method, and if the material is electrically conductive, electric discharge machining, electrolytic polishing, etc. can be used for the final finishing, while for ceramics etc. The powder can be formed into a near-net shape using a reverse mold, sintered, and then processed and finished using methods such as grinding.
【0024】逆型の面の寸法精度はできる限り高める必
要がある。これは最終的に目的とする形状物にダイヤモ
ンド膜をろう付けによって形成した後、加工仕上げする
際の取りしろを少なくするために必要なことである。[0024] It is necessary to increase the dimensional accuracy of the reverse mold surface as much as possible. This is necessary in order to reduce the allowance for machining and finishing after the diamond film is finally formed on the desired shape by brazing.
【0025】一方、面粗さはそれ程高い平滑度を要求し
ない。これはこの逆型の表面に形成する硬質粉体層を保
持するためにある程度の粗さを有しておれば良い。On the other hand, the surface roughness does not require such high smoothness. It is sufficient that it has a certain degree of roughness in order to maintain the hard powder layer formed on the surface of this inverted mold.
【0026】(2) 硬質粉体層の形成工程(図1)硬
質粉体層の表面にダイヤモンドを析出させるために、析
出した硬質粉体層に接触するダイヤモンド膜の面粗度は
、該硬質粉体層の表面の面粗度によって決定される。
このため、硬質粉体層を構成する粉体の粒度は、微細な
程、高い面粗度のダイヤモンドの接触面が得られる。従
って粒径としては少なくとも1μm以下であることが必
要であり、好ましくは0.1μm以下が望ましい。(2) Step of forming a hard powder layer (FIG. 1) In order to deposit diamond on the surface of the hard powder layer, the surface roughness of the diamond film in contact with the precipitated hard powder layer is It is determined by the surface roughness of the powder layer. Therefore, the finer the particle size of the powder constituting the hard powder layer, the higher the surface roughness of the diamond contact surface. Therefore, the particle size must be at least 1 μm or less, preferably 0.1 μm or less.
【0027】該硬質粉体層を構成する粉体材料としては
、従来から知られている気相法ダイヤモンド膜の基板材
料として用いられるものであれば基本的に問題がない。
シリコン、タングステン、モリブデン、ニオブなどの金
属類、炭化珪素、炭化タングステンなどの炭化物、窒化
アルミニウム、窒化珪素、窒化チタン、窒化ホウ素等の
ホウ化物、酸化アルミニウム、酸化珪素などの酸化物並
びにホウ化炭素等のいわゆるセラミックス類が使用でき
る。また、衝撃法によって合成した平均粒径が5nmの
ダイヤモンド粉(商品名:クラスター・ダイヤモンド)
を使用することもできる。しかしダイヤモンド膜の形成
時において基板となる逆型の温度が高くなったり、また
その雰囲気下で熱分解、溶融、焼結あるいは逆型の材料
と化学反応などが進行するような物質は好ましくない。There is basically no problem with the powder material constituting the hard powder layer as long as it is used as a substrate material for conventionally known vapor-phase diamond films. Metals such as silicon, tungsten, molybdenum, and niobium; carbides such as silicon carbide and tungsten carbide; borides such as aluminum nitride, silicon nitride, titanium nitride, and boron nitride; oxides such as aluminum oxide and silicon oxide; and carbon borides. So-called ceramics such as can be used. In addition, diamond powder with an average particle size of 5 nm synthesized by the impact method (product name: Cluster Diamond)
You can also use However, it is undesirable to use a substance that increases the temperature of the inverted mold serving as a substrate during the formation of a diamond film, or that causes thermal decomposition, melting, sintering, or chemical reaction with the material of the inverted mold in that atmosphere.
【0028】前記したように、硬質粉体層に用いる粉体
はサブミクロンの非常に微細なものを用いるために凝集
性は非常によく、特別な場合を除いて特にバインダーな
どを必要とせずに粉体層を形成することができる。As mentioned above, since the powder used for the hard powder layer is very fine, submicron, it has very good cohesiveness and does not require a binder except in special cases. A powder layer can be formed.
【0029】通常、硬質粉体層の形成は、該粉体をアル
コール等の揮発性の溶媒に分散させてスラリー状にした
ものをスプレー等の方法、あるいは塗布などの方法によ
ってコートし、乾燥させることによって形成する。Usually, the hard powder layer is formed by dispersing the powder in a volatile solvent such as alcohol to form a slurry, coating it by spraying or coating, and drying it. form by
【0030】また、乾燥後のひび割れの防止や、逆型と
の濡れ性等を改良するために、界面活性材、あるいはご
く微量のポリビニルアルコール(PVA)等の有機質の
バインダーを添加しても良い。[0030] Furthermore, in order to prevent cracks after drying and improve wettability with the reverse mold, a surfactant or a very small amount of an organic binder such as polyvinyl alcohol (PVA) may be added. .
【0031】塗布法等による場合、該粉体層の表面の面
の精度が充分に得られない場合には、表面を鏡面仕上げ
した逆型の逆型(ダイヤモンド膜を形成した基体の表面
形状、寸法を有する)によって軽くプレスし、鏡面の構
造を転写することによって面の精度を上げることが好ま
しい。When using a coating method or the like, if the surface precision of the powder layer cannot be obtained sufficiently, an inverted mold with a mirror-finished surface (the surface shape of the substrate on which the diamond film is formed, It is preferable to improve the precision of the surface by lightly pressing the surface (having dimensions) and transferring the mirror structure.
【0032】この場合に用いる逆型の逆型の材料は、特
に規定する必要がなく、耐磨耗性があればむしろ機械加
工、放電加工、電解研摩などによって容易に平滑で、寸
法精度の良い面が得られる材料という観点から選択すれ
ば良い。The material for the reverse mold used in this case does not need to be specified in particular, and as long as it has wear resistance, it can be easily made smooth and with good dimensional accuracy by machining, electrical discharge machining, electrolytic polishing, etc. The material may be selected from the viewpoint of the material from which the surface can be obtained.
【0033】また、逆型の三次元形状によっては、逆型
の表面に直接粉体をのせ、その上から鏡面研摩を施した
逆型の逆形状をもつ面を持った、パンチでプレス成形を
施して粉体層を形成することもできる。[0033] Depending on the three-dimensional shape of the inverted mold, powder may be placed directly on the surface of the inverted mold, and then press molding may be performed using a punch with a surface having the inverted shape of the inverted mold, which is mirror polished. It is also possible to form a powder layer by applying a powder layer.
【0034】前記硬質粉体層の機械的な強度を上げる必
要がある場合には、珪素、アルミニウムなどのアルコオ
キシドのアルコール等の溶媒などに溶かしたものをスプ
レー等の方法によって含浸させ、加水分解させその生成
物によって強化することも有効である。When it is necessary to increase the mechanical strength of the hard powder layer, it is impregnated with an alkoxide such as silicon or aluminum dissolved in a solvent such as alcohol by a method such as spraying, and then hydrolyzed. It is also effective to fortify it with its products.
【0035】但し、上記の処理によって平滑な表面形状
を有する硬質粉体層を形成する際に用いた各種の有機材
料は、ダイヤモンド膜を形成する際に有害になる場合も
あるので、形成後空気中で約500℃程度の温度で加熱
し、分解除去することが望ましい。However, the various organic materials used to form the hard powder layer with a smooth surface by the above treatment may be harmful when forming the diamond film, so it should be kept in the air after formation. It is desirable to decompose and remove it by heating it at a temperature of about 500°C.
【0036】該硬質粉体層の厚さは、寸法精度上1mm
以下が望ましく、一方ダイヤモンド膜の形成時に冷却を
施す必要性からはできる限り薄くした方がよい。従って
、粉体層の厚さは用いる微粉体の粒度と熱伝導によって
も左右されるが、好ましくは100μm以下が良い。
下限は微粉体の粒度とその粒子を構成する化学組成によ
って層の機械的強度が変化するため一概には特定できな
いが、粉体の平均粒子径の約5倍以上の厚さが必要で、
これ以下だと良好な粉体層が得られない。[0036] The thickness of the hard powder layer is 1 mm due to dimensional accuracy.
The following is desirable, and on the other hand, it is better to make it as thin as possible due to the necessity of cooling during formation of the diamond film. Therefore, although the thickness of the powder layer depends on the particle size and thermal conductivity of the fine powder used, it is preferably 100 μm or less. The lower limit cannot be determined unambiguously because the mechanical strength of the layer changes depending on the particle size of the fine powder and the chemical composition that makes up the particles, but the thickness must be approximately 5 times or more the average particle diameter of the powder.
If it is less than this, a good powder layer cannot be obtained.
【0037】(3) ダイヤモンド膜の形成工程(図2
)逆型の表面に形成した硬質粉体層の表面にダイヤモン
ド膜を気相法によって形成する方法は、従来から提案さ
れているいかなる方法によっても基本的には問題ない。(3) Diamond film formation process (Fig. 2
) The method of forming a diamond film on the surface of a hard powder layer formed on the surface of an inverted mold by a vapor phase method basically has no problem with any conventionally proposed method.
【0038】敢えて問題とするなら硬質粉体層や後に詳
しく述べる核となるダイヤモンドの微粉体が速いガスの
流れによって吹きとばされる恐れのあるDCプラズマジ
ェット法、燃焼法などは余り好ましくないが、粉体層の
形成の仕方あるいは微粉ダイヤモンドの付着の処理を上
手く行えばその限りでは無い。If this were to be considered a problem, the DC plasma jet method, combustion method, etc., where there is a risk that the hard powder layer and the fine diamond powder that forms the nucleus, which will be described in detail later, may be blown away by the fast gas flow, are not very preferable, but the powder This may not be the case if the formation of the body layer or the adhesion of fine diamond powder is done well.
【0039】また、前記したように、気相法によるダイ
ヤモンド膜の形成はダイヤモンド単結晶やc−BNなど
の極く一部の基板の上にはエピタクシャル成長をするこ
とが知られているが、一般的には、核発生と粒成長のメ
カニズムによって多結晶膜として析出・成長する。従っ
て、基板との接触面を平滑にしようとすると、平滑な基
板面に多数の核を発生させることが望ましく、核の発生
数を増加させるためにいろいろな手段が提案されている
。ここでは粉体を固めて形成した層の上に核を高密度に
作成するために超微粉のダイヤモンド層を薄く均一に形
成する方法が好ましい。具体的にはクラスター・ダイヤ
モンドをアルコール等に分散してスラリー状にしたもの
をスプレーして該硬質粉体層の表面に少なくとも一層の
ダイヤモンド粒子が覆うようにダイヤモンド層を形成す
る。Furthermore, as mentioned above, it is known that diamond film formation by the vapor phase method involves epitaxial growth on very few substrates such as diamond single crystals and c-BN. Generally, it precipitates and grows as a polycrystalline film through the mechanisms of nucleation and grain growth. Therefore, in order to smooth the contact surface with the substrate, it is desirable to generate a large number of nuclei on the smooth substrate surface, and various means have been proposed to increase the number of nuclei generated. Here, it is preferable to form a thin and uniform layer of ultra-fine diamond powder on a layer formed by solidifying powder in order to create a high density of nuclei. Specifically, a diamond layer is formed by spraying a slurry of cluster diamond dispersed in alcohol or the like so that the surface of the hard powder layer is covered with at least one layer of diamond particles.
【0040】この目的のために用いる超微粉ダイヤモン
ドは上記のクラスター・ダイヤモンドに限定されず、細
かいものが得られれば天然産、あるいは人工的に合成し
たものを粉砕したものでも何ら影響しない。この場合に
用いるダイヤモンドは粉砕後水篩などで分離し、その粒
径としては少なくとも硬質粉体層に用いた粉体の粒径よ
り微細なものが好ましい。The ultrafine diamond used for this purpose is not limited to the above-mentioned cluster diamond, and as long as it is fine, it may be naturally produced or artificially synthesized and crushed without any effect. The diamond used in this case is separated by a water sieve after being crushed, and its particle size is preferably at least finer than the particle size of the powder used for the hard powder layer.
【0041】また、核となるダイヤモンド層と硬質粉体
層の界面を硬質粉体層の表面構造になじませるために再
度逆型の逆型で軽くプレスするなどの方法によって平滑
度を上げるなどの方法を講じることも有効である。[0041] In addition, in order to make the interface between the core diamond layer and the hard powder layer conform to the surface structure of the hard powder layer, the smoothness can be increased by lightly pressing again with an inverted mold. It is also effective to take measures.
【0042】逆型の表面に硬質粉体層と核となるダイヤ
モンド超微粉体層を形成したものの表面に析出させるダ
イヤモンド膜の厚さは最終的な製品の用途によって異な
り、特に限定しない。本発明の方法では、数μm以上の
厚さがあれば問題はない。厚いほうは数百μm以上にな
っても、硬質粉体層を構成する粉体の材質及び粒径を選
定すれば成膜時の分離は防止が可能で特に問題はない。
この場合、できるだけダイヤモンドの熱膨張率に近い値
を持つ、例えば窒化珪素等を用いれば良く、また粉体層
が応力を緩和させるので比較的容易に厚い膜が形成でき
るのも特徴の一つである。[0042] The thickness of the diamond film deposited on the surface of the inverted mold having a hard powder layer and a core diamond ultrafine powder layer is not particularly limited and varies depending on the use of the final product. In the method of the present invention, there is no problem as long as the thickness is several μm or more. Even if the thickness is several hundred μm or more, separation during film formation can be prevented by selecting the material and particle size of the powder constituting the hard powder layer, and there is no particular problem. In this case, it is best to use a material with a coefficient of thermal expansion as close as possible to that of diamond, such as silicon nitride, and one of the characteristics is that a thick film can be formed relatively easily because the powder layer relieves stress. be.
【0043】(4) ろう付け工程(図3)ダイヤモン
ド膜を表面に形成した逆型をダイヤモンドの表面側で基
体の表面にろう付け等を行う。ここに用いるろう材は従
来ダイヤモンドの工具などに接合する場合に用いたろう
材であれば特に問題は無い。(4) Brazing step (FIG. 3) The inverted mold with the diamond film formed on its surface is brazed to the surface of the substrate on the diamond surface side. There is no particular problem with the brazing material used here as long as it is a brazing material conventionally used for bonding to diamond tools.
【0044】例えば、Ti−Cu−Ag系等のろう材で
問題はなく、場合によっては用途に応じて温度や応力の
作用しない部位には低温のはんだやエポキシ系の合成樹
脂による接合も可能である。For example, there is no problem with brazing fillers such as Ti-Cu-Ag, and depending on the application, it is also possible to bond with low-temperature solder or epoxy-based synthetic resin in areas where temperature and stress do not apply. be.
【0045】また、ろう材の形態としては、最終的にダ
イヤモンド膜を形成する部品の形状に応じて箔状、粉体
を問わず用いることができる。特に複雑形状の表面にろ
う付けを行う場合には、予め箔をその形状に成形してお
くと扱いが容易である。[0045] The form of the brazing material may be either foil or powder depending on the shape of the part on which the diamond film will ultimately be formed. In particular, when brazing a surface with a complex shape, it is easier to handle the foil if it is shaped into the shape in advance.
【0046】この基体にろう付けなどを実施する際に面
の精度を高めるため、基体及び逆型に位置決めの為の部
位を付けたり、あるいは別に位置決めのための治具など
を作り、ろう材を溶かしながら加圧して所定の位置にろ
う付けをすることが重要である。このろう付けの際の位
置決めは非常に重要であり、この工程での精度は、最終
仕上げのダイヤモンド面の加工時の取りしろに大きく影
響し、場合によってはダイヤモンド膜を析出させる際の
膜厚を厚くしなければならない等の問題を生じる。In order to improve the surface accuracy when performing brazing on this base, positioning parts are attached to the base and the reverse mold, or a separate jig for positioning is made, and the brazing material is It is important to apply pressure while melting and brazing it in place. Positioning during this brazing is very important, and the accuracy in this process greatly affects the machining allowance for the final diamond surface, and in some cases, the thickness of the diamond film when deposited. Problems arise such as having to make the film thicker.
【0047】(5) 分離工程(図4)ろう付けを行っ
た後、基体と逆型とを硬質粉体層より分離させ、ダイヤ
モンド表面に残る粉体を機械的に削除し、ダイヤモンド
表面に仕上げ加工を施すことにより目的とする基体にダ
イヤモンド膜を形成することができる。(5) Separation step (Figure 4) After brazing, the base and the reverse mold are separated through the hard powder layer, the powder remaining on the diamond surface is mechanically removed, and the diamond surface is finished. By processing, a diamond film can be formed on the target substrate.
【0048】硬質粉体層は引っ張り応力を加えることに
より容易に破壊するため、基体と逆型との分離のために
特に特殊な装置を必要としない。Since the hard powder layer is easily destroyed by applying tensile stress, no special equipment is required to separate the base and the reverse mold.
【0049】ろう付けしたダイヤモンドの表面は、硬質
粉体層の表面の形状を転写しており、成長している側の
自形を持った面と異なって、非常に滑らかな面をしてお
り、仕上げ加工が非常に容易である。機械的な研削、研
摩、熱化学的手法あるいはレーザー等を組み合わせた方
法のいずれを用いてもよい。The surface of the brazed diamond has the shape of the surface of the hard powder layer transferred to it, and unlike the euhedral surface on the growing side, it has a very smooth surface. , finishing processing is very easy. Any method combining mechanical grinding, polishing, thermochemical methods, laser, etc. may be used.
【0050】(実施例1)カム形状の部品の摺動面に強
固にダイヤモンド膜を形成した部品を想定して鋼製のφ
20mm、厚さ10mmの円板状の外周の曲面の一部に
ダイヤモンド膜を形成することを試みた(図5)。(Example 1) Assuming a part with a strong diamond film formed on the sliding surface of a cam-shaped part, a
An attempt was made to form a diamond film on a part of the curved surface of the outer periphery of a 20 mm and 10 mm thick disk (FIG. 5).
【0051】最終形状より150μm大きい半径の凹型
の曲面を持つ厚さ10mmの逆型をステンレス鋼(SU
S304)により製作した。該逆型の凹面の面粗度は、
0.3μmRzであった。[0051] An inverted mold with a thickness of 10 mm and a concave curved surface with a radius 150 μm larger than the final shape was made of stainless steel (SU
S304). The surface roughness of the inverted concave surface is
It was 0.3 μmRz.
【0052】この凹面に剥離剤として市販されているス
プレー状の窒化ホウ素(商品名:ボロンスプレー)を吹
きつけ、約20μmの厚さの硬質粉体層を形成した。A commercially available spray of boron nitride (trade name: Boron Spray) as a release agent was sprayed onto this concave surface to form a hard powder layer with a thickness of about 20 μm.
【0053】この逆型を熱フィラメント法CVD装置の
チャンバーに入れ、該逆型に付けたφ20mmの半円状
の凹部の中心付近にモリブデンのフィラメントが位置す
るように設置した。[0053] This inverted mold was placed in a chamber of a hot filament CVD apparatus, and the molybdenum filament was placed in the vicinity of the center of a semicircular recess with a diameter of 20 mm provided in the inverted mold.
【0054】ダイヤモンド成膜は以下の条件下で行った
。Diamond film formation was carried out under the following conditions.
【0055】CH4 /H2 比:0.5、トータル流
量:200sccm、フィラメント温度:2100℃、
逆型の表面温度:750〜800℃、圧力:50Tor
r.、成膜時間:90時間[0055] CH4/H2 ratio: 0.5, total flow rate: 200 sccm, filament temperature: 2100°C,
Reverse mold surface temperature: 750-800℃, pressure: 50 Tor
r. , Film formation time: 90 hours
【0056】この条件で行ったダイヤモンドの多結晶膜
の膜厚は約100μmで、表面はダイヤモンドの(11
1)面が良く発達していた。The thickness of the polycrystalline diamond film obtained under these conditions was approximately 100 μm, and the surface was (11
1) The surface was well developed.
【0057】ろう付けはJIS規格BAG−8のCu−
Ag系の厚さ50μmの箔状ろう材の片側面にTiを1
〜2wt.%程度になるようにスパッタリングし、この
面がダイヤモンド膜に接触するようにセットした。[0057] For brazing, use JIS standard BAG-8 Cu-
One side of Ti is placed on one side of an Ag-based brazing filler metal with a thickness of 50 μm.
~2wt. %, and the diamond film was set so that this surface was in contact with the diamond film.
【0058】真空炉の中へ逆型が下に、ろう材を介して
鋼製の円板が上に来るようにセットし、10−5Tor
r.の真空に引いた後、950℃まで加熱してろう付け
を行った。[0058] Set the inverted mold at the bottom and the steel disk at the top through the brazing material in a vacuum furnace, and heat to 10-5 Torr.
r. After evacuating to a vacuum, brazing was performed by heating to 950°C.
【0059】冷却後、逆型とダイヤモンド膜を窒化ホウ
素の層で分離し、エメリー紙で研摩したところ、非常に
平滑な面を持ったダイヤモンドの面が現れた。After cooling, the inverted mold and the diamond film were separated by a layer of boron nitride and polished with emery paper, revealing a diamond surface with a very smooth surface.
【0060】この実施例のような場合には、適当な見切
り線で分割した複数の逆型を用い、同時にろう付けを実
施することによって一度に全周に膜を形成することがで
きる。
(実施例2)In a case like this embodiment, a film can be formed all around at once by using a plurality of inverted molds divided at appropriate parting lines and performing brazing at the same time. (Example 2)
【0061】EFI方式エンジン用の燃料インジェクタ
ーのノズル内面へのダイヤモンド膜の形成を想定して、
内径φ5mm、長さ100mmの円筒状の内側の先端部
がコーン状に尖った部分に高い面粗度を持つダイヤモン
ド膜の形成を試みた(図6、7)。Assuming the formation of a diamond film on the inner surface of the nozzle of a fuel injector for an EFI engine,
An attempt was made to form a diamond film with high surface roughness on the inner tip of a cylindrical tube with an inner diameter of φ5 mm and a length of 100 mm that had a cone-like point (FIGS. 6 and 7).
【0062】この場合の逆型はφ4.5mm、長さ15
0mmの先端を尖らせた炭化珪素焼結体を用いた。この
先端のコーン状に尖った部分の面粗度を1.0μmRz
に仕上げた。[0062] In this case, the reverse mold has a diameter of 4.5 mm and a length of 15 mm.
A silicon carbide sintered body with a sharpened tip of 0 mm was used. The surface roughness of the cone-shaped portion at the tip is 1.0μmRz
Finished.
【0063】別にエチルアルコールに極微量のPVAを
添加し、そこへ、粗度0.3μmの窒化珪素を分散させ
たスラリーを用意した。Separately, a slurry was prepared in which a very small amount of PVA was added to ethyl alcohol and silicon nitride having a roughness of 0.3 μm was dispersed therein.
【0064】このスラリーに逆型の先端部をディップし
、引き上げて乾燥させた。次に、ステンレス鋼(SUS
304)からなり、前記基体である円筒状の内側の先端
部のコーン状に尖った部分に相当する形状を有し、ダイ
ヤモンド膜とろう付け厚さを見込んだ寸法の逆型の逆型
を電解研摩によって製造した。前記逆型に塗布したスラ
リーがほぼ完全に乾燥した時点で、その表面を鏡面に仕
上げたステンレス製(SUS304)の逆型の逆型に挿
入し、乾燥したスラリー部分を押しつけることによって
、窒化珪素粉体層を圧縮するのと同時にその表面に逆型
の逆型の平滑な表面形状を転写させることにより、硬質
粉体層を形成した。[0064] The tip of the inverted mold was dipped in this slurry, pulled up and dried. Next, stainless steel
304), which has a shape corresponding to the cone-shaped inner tip of the cylindrical base, and whose dimensions take into account the diamond film and brazing thickness, is electrolyzed. Manufactured by polishing. When the slurry applied to the inverted mold has almost completely dried, it is inserted into the inverted mold made of stainless steel (SUS304) with a mirror-finished surface and pressed against the dried slurry to form silicon nitride powder. A hard powder layer was formed by compressing the body layer and at the same time transferring a smooth surface shape of an inverted shape to the surface of the body layer.
【0065】一方、衝撃法で合成したクラスター・ダイ
ヤモンドをシクロヘキサンに分散させたサスペンジョン
を用意しておき、これを窒化珪素粉体層の表面にスプレ
ーし、その後、乾燥の操作を3度繰り返し、一応全面に
ダイヤモンドの超微粒子が覆うようにした。On the other hand, a suspension in which cluster diamonds synthesized by the impact method were dispersed in cyclohexane was prepared, and this was sprayed onto the surface of the silicon nitride powder layer. After that, the drying operation was repeated three times to temporarily remove the suspension. The entire surface was covered with ultrafine diamond particles.
【0066】以上の処理を施した該逆型の先端部のコー
ン状の部分に熱フィラメント法によって実施例1と同じ
条件で、90時間、10rpm の速度で回転させなが
ら成膜した。因みに、同じ条件で成膜した別のサンプル
で測定したダイヤモンド膜の厚さはおよそ120μmで
あった。(図6)A film was formed on the cone-shaped portion of the tip of the inverted mold subjected to the above treatment under the same conditions as in Example 1 for 90 hours by the hot filament method while rotating at a speed of 10 rpm. Incidentally, the thickness of the diamond film measured on another sample formed under the same conditions was approximately 120 μm. (Figure 6)
【0067】余分な部分に析出したダイヤモンド膜を機
械的に取り除き、ダイヤモンド膜を形成した逆型を完成
させた。[0067] The diamond film deposited on the excess portion was mechanically removed to complete a reverse mold with a diamond film formed thereon.
【0068】一方基体であるステンレス製(SUS30
4)で製作した先端がコーン状に細くなった内径φ5m
m、長さ100mmのパイプ状形状物の先端部に1%の
チタンを含む銀ろう粉を入れておき、さらに先のダイヤ
モンド膜を成膜した棒状の逆型を挿入し、さらに該棒状
の逆型の上に約200gの鋼製の錘を乗せた。On the other hand, the base material is made of stainless steel (SUS30
Inner diameter φ5m with tapered cone-shaped tip made in step 4)
Silver solder powder containing 1% titanium is placed in the tip of a pipe-shaped object with a length of 100 mm, and then a rod-shaped inverted mold with a diamond film formed thereon is inserted, and then the rod-shaped inverted mold is A steel weight of approximately 200 g was placed on top of the mold.
【0069】全体を真空炉の中へ立て950℃に加熱し
、銀ろうを完全に溶融した後冷却した。The whole was placed in a vacuum furnace and heated to 950° C. to completely melt the silver solder, and then cooled.
【0070】冷却後、逆型を窒化珪素粉体層から引き剥
がして引き抜いた。(図7)After cooling, the inverted mold was peeled off from the silicon nitride powder layer and pulled out. (Figure 7)
【0071】ダイヤモンド膜は目的とする位置にろう付
けされていた。その後この目的のために特別に作成した
総型のダイヤモンド砥石を用いて研摩し仕上げた。[0071] The diamond film was brazed at the desired location. It was then polished and finished using a full-sized diamond whetstone made specifically for this purpose.
【0072】本実施例では、テーパー形状のコーン型の
もので実施したが、基本的には朝顔形状の形態のもので
もこのように奥深い部分にダイヤモンドの膜を形成でき
る点に本実施例の効果がある。In this example, a tapered cone type was used, but the effect of this example is that a diamond film can be formed in such a deep part even with a morning glory-shaped type. There is.
【0073】(実施例3)実施例2と同様の形状物にダ
イヤモンド膜を形成することを試みた。(Example 3) An attempt was made to form a diamond film on an object having the same shape as in Example 2.
【0074】この場合の炭化珪素製の逆型の先端のコー
ン部はダイヤモンド砥粒により鏡面状に仕上げた。逆型
の表面に形成した窒化珪素からなる硬質粉体層の代わり
に、クラスター・ダイヤモンドをシクロヘキサンに濃厚
に分散させたスラリーに該逆型の先端のダイヤモンド膜
を成膜させたい部位をディップし、ダイヤモンド超微粉
による層を作った。この場合のダイヤモンド超微粉体の
層の厚さは、基板となる逆型が露出しない程度の厚さに
した。[0074] In this case, the cone portion at the tip of the inverted mold made of silicon carbide was finished to a mirror finish with diamond abrasive grains. Instead of the hard powder layer made of silicon nitride formed on the surface of the inverted mold, dip the part on the tip of the inverted mold where you want to form a diamond film into a slurry in which cluster diamonds are concentratedly dispersed in cyclohexane. A layer of ultra-fine diamond powder was created. In this case, the thickness of the ultrafine diamond powder layer was set to such a level that the inverted mold serving as the substrate was not exposed.
【0075】充分に乾燥してシクロヘキサンを除去後、
実施例2と同様に熱フィラメント法によって90時間ダ
イヤモンド膜を形成した。After sufficiently drying and removing cyclohexane,
As in Example 2, a diamond film was formed for 90 hours by the hot filament method.
【0076】以後の操作は実施例2と同様にステンレス
製(SUS304)の、パイプにろう付けを行い、逆型
を引き抜いた。この場合もクラスター・ダイヤモンド層
の層間ないし逆型の表面で容易に分離し、その後膜を形
成した部分を切り出して調べたところ、簡単な表面研摩
によって容易に平滑な表面となるダイヤモンド膜が目的
とする形状物上に形成することができることが分かった
。[0076] In the subsequent operations, a stainless steel (SUS304) pipe was brazed in the same manner as in Example 2, and the reverse mold was pulled out. In this case as well, when we cut out and examine the part where the cluster diamond layer was easily separated between the layers or on the reverse-shaped surface, and then the film was formed, we found that the diamond film was the target because the surface could be easily smoothed by simple surface polishing. It has been found that it is possible to form on a shaped object.
【0077】このように硬質粉体層の材料として微細な
ダイヤモンド粉を用いることも可能で、この場合、該ダ
イヤモンド粉は硬質粉体層とダイヤモンドの核発生層と
しての役割を果たすものである。As described above, it is also possible to use fine diamond powder as the material for the hard powder layer, and in this case, the diamond powder serves as the hard powder layer and the diamond nucleation layer.
【0078】またここで用いた炭化珪素の逆型は何ら変
化しておらず、再度繰り返した使用をするのに支障は無
かった。[0078] Furthermore, the inverse type of silicon carbide used here did not change at all, and there was no problem in repeated use.
【図1】 基体と硬質粉体層を形成した逆型を示した
概略図[Figure 1] Schematic diagram showing an inverted mold with a substrate and hard powder layer formed
【図2】 基体とダイヤモンド膜を形成した逆型を示
した概略図[Figure 2] Schematic diagram showing an inverted mold with a substrate and diamond film formed
【図3】 ろう付けによって接合した基体と逆型を示
した概略図[Figure 3] Schematic diagram showing the base joined by brazing and the reverse mold
【図4】 基体から逆型を分離した状態を示した概略
図[Figure 4] Schematic diagram showing the inverted mold separated from the base
【図5】 カムを想定した基体へのダイヤモンド膜
形成方法を示した概略図[Figure 5] Schematic diagram showing the method of forming a diamond film on a substrate assuming a cam
【図6】 パイプ状基体先端部へのダイヤモンド膜形
成方法を示した概略図[Figure 6] Schematic diagram showing the method of forming a diamond film on the tip of a pipe-shaped substrate
【図7】 パイプ状基体先端部へのダイヤモンド膜形
成方法を示した概略図[Figure 7] Schematic diagram showing the method of forming a diamond film on the tip of a pipe-shaped substrate
1 基体 2 逆型 3 硬質粉体層 4 ダイヤモンド膜 5 ろう付け部 6 超微粒ダイヤモンド層 1 Base 2 Reverse type 3 Hard powder layer 4 Diamond film 5 Brazed part 6 Ultra-fine diamond layer
Claims (1)
する面の形状と逆形状の平滑な面を有する逆型を形成す
る工程と、該逆形状の面にカーボンと反応し難い化合物
よりなる平滑な硬質粉体層を形成する工程と、該硬質粉
体層表面に気相法によってダイヤモンド膜を形成する工
程と、該ダイヤモンド膜を基体のダイヤモンド膜を形成
しようとする面にろう付けあるいは合成樹脂による接着
によって接合する工程と、基体と逆型とを硬質粉体層か
ら分離する工程とからなるダイヤモンド膜形成方法。1. A step of forming an inverted mold having a smooth surface with an inverse shape to that of the surface on which a diamond film is to be formed on the substrate, and forming a smooth surface made of a compound that does not easily react with carbon on the inversely shaped surface. A step of forming a hard powder layer, a step of forming a diamond film on the surface of the hard powder layer by a vapor phase method, and a step of applying the diamond film to the surface of the substrate on which the diamond film is to be formed by brazing or using synthetic resin. A diamond film forming method comprising a step of joining by adhesion and a step of separating a substrate and an inverted mold from a hard powder layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03130676A JP3123117B2 (en) | 1991-05-02 | 1991-05-02 | Diamond film formation method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP03130676A JP3123117B2 (en) | 1991-05-02 | 1991-05-02 | Diamond film formation method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH04331798A true JPH04331798A (en) | 1992-11-19 |
JP3123117B2 JP3123117B2 (en) | 2001-01-09 |
Family
ID=15039953
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP03130676A Expired - Fee Related JP3123117B2 (en) | 1991-05-02 | 1991-05-02 | Diamond film formation method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP3123117B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07138093A (en) * | 1993-09-23 | 1995-05-30 | Toyota Central Res & Dev Lab Inc | Diamond filmy material and production of the same and diamond-coated material |
CN100370060C (en) * | 2004-06-07 | 2008-02-20 | 鸿富锦精密工业(深圳)有限公司 | Mold with super hard coating |
JP2012047625A (en) * | 2010-08-27 | 2012-03-08 | Toyama Prefecture | Indenter for nano indentation test and manufacturing method thereof |
JP2014240851A (en) * | 2014-10-03 | 2014-12-25 | 富山県 | Indenter for nano indentation test and manufacturing method thereof |
US9194189B2 (en) | 2011-09-19 | 2015-11-24 | Baker Hughes Incorporated | Methods of forming a cutting element for an earth-boring tool, a related cutting element, and an earth-boring tool including such a cutting element |
-
1991
- 1991-05-02 JP JP03130676A patent/JP3123117B2/en not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07138093A (en) * | 1993-09-23 | 1995-05-30 | Toyota Central Res & Dev Lab Inc | Diamond filmy material and production of the same and diamond-coated material |
CN100370060C (en) * | 2004-06-07 | 2008-02-20 | 鸿富锦精密工业(深圳)有限公司 | Mold with super hard coating |
JP2012047625A (en) * | 2010-08-27 | 2012-03-08 | Toyama Prefecture | Indenter for nano indentation test and manufacturing method thereof |
US9194189B2 (en) | 2011-09-19 | 2015-11-24 | Baker Hughes Incorporated | Methods of forming a cutting element for an earth-boring tool, a related cutting element, and an earth-boring tool including such a cutting element |
US9771497B2 (en) | 2011-09-19 | 2017-09-26 | Baker Hughes, A Ge Company, Llc | Methods of forming earth-boring tools |
JP2014240851A (en) * | 2014-10-03 | 2014-12-25 | 富山県 | Indenter for nano indentation test and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP3123117B2 (en) | 2001-01-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101065572B1 (en) | Diamond film coated tool and process for producing the same | |
EP0500119B1 (en) | CVD diamond coated cutting tools and method of manufacture | |
JPH01153228A (en) | Vapor phase composite method for producing diamond tool | |
US5718736A (en) | Porous ultrafine grinder | |
WO2000035615A1 (en) | Method of bonding a particle material to near theoretical density | |
US20070157670A1 (en) | Superhard mold face for forming ele | |
JP2000246512A (en) | Diamond coating cutting tool | |
WO1994013852A1 (en) | Superhard film-coated material and method of producing the same | |
GB2366804A (en) | Cast diamond tools and their formation by chemical vapor deposition; diamond hoses | |
JP3123117B2 (en) | Diamond film formation method | |
JP2001502382A (en) | Cutting insert honed by powder compaction and method for producing the same | |
EP0721998A1 (en) | Method and apparatus for vapour deposition of diamond film | |
JPH0672302B2 (en) | Manufacturing method of hard carbon film coated cemented carbide | |
JP3469310B2 (en) | Ceramic base material for diamond coating and method for producing coating material | |
JP3575540B2 (en) | Numerical control polishing method | |
JP2797612B2 (en) | Artificial diamond coated hard sintering tool member with high adhesion strength | |
JPH0665745A (en) | Diamond-coated hard material and its production | |
JPH0634936Y2 (en) | Water jet nozzle | |
JPH04129622A (en) | Manufacture of diamond-coated tool | |
JPH11172361A (en) | Surface-coated cemented carbide and its production | |
JP5919343B2 (en) | Method of forming a precipitation surface in a substrate for diamond precipitation | |
JP4047940B2 (en) | Ceramic substrate for diamond coating | |
JPH0623431B2 (en) | Hard coating coated cutting tool parts | |
JPH10180635A (en) | Super-abrasive resinoid bond wheel | |
JP2772494B2 (en) | Super hard film coated member and method of manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |