JP3469310B2 - Ceramic base material for diamond coating and method for producing coating material - Google Patents

Ceramic base material for diamond coating and method for producing coating material

Info

Publication number
JP3469310B2
JP3469310B2 JP09393694A JP9393694A JP3469310B2 JP 3469310 B2 JP3469310 B2 JP 3469310B2 JP 09393694 A JP09393694 A JP 09393694A JP 9393694 A JP9393694 A JP 9393694A JP 3469310 B2 JP3469310 B2 JP 3469310B2
Authority
JP
Japan
Prior art keywords
coating
base material
cemented carbide
uneven surface
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09393694A
Other languages
Japanese (ja)
Other versions
JPH0797603A (en
Inventor
貴久 牛田
聡 飯尾
隆志 岡村
正一 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP09393694A priority Critical patent/JP3469310B2/en
Priority to DE1994625459 priority patent/DE69425459T2/en
Priority to EP19940108083 priority patent/EP0627498B1/en
Priority to US08/249,039 priority patent/US5725932A/en
Publication of JPH0797603A publication Critical patent/JPH0797603A/en
Priority to US08/718,183 priority patent/US5858480A/en
Application granted granted Critical
Publication of JP3469310B2 publication Critical patent/JP3469310B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、被覆用セラミック基基
材、より詳細には硬質被膜、特にダイヤモンド膜及びc
BN(立方晶窒化ホウ素)膜等を被覆するためのセラミ
ック基基材に関する。本発明のセラミック基基材にダイ
ヤモンド又はcBN等の硬質被膜を被覆したものは、バ
イト、エンドミル、カッター若しくはドリル等の各種切
削工具、各種耐摩耗部材又はヒートシンク等の電子用部
材として用いることができる。
FIELD OF THE INVENTION This invention relates to coating ceramic base substrates, more particularly hard coatings, especially diamond coatings and c.
The present invention relates to a ceramic base material for coating a BN (cubic boron nitride) film or the like. The ceramic base material of the present invention coated with a hard coating such as diamond or cBN can be used as various cutting tools such as a bite, end mill, cutter or drill, various wear resistant members or electronic members such as heat sinks. .

【0002】[0002]

【従来の技術】基材にダイヤモンドを被覆して成るダイ
ヤモンド被覆硬質材料は、基材へのダイヤモンド被覆層
の付着強度が弱く、ダイヤモンド被覆層は基材から剥離
しやすかった。そのため、基材へのダイヤモンド被覆層
の付着強度を向上させることを目的とした種々の技術が
知られている。それらのいくつかを示せば次のとおりで
ある。
2. Description of the Related Art A diamond-coated hard material obtained by coating a substrate with diamond has a weak adhesion strength of the diamond coating layer to the substrate, and the diamond coating layer is easily peeled from the substrate. Therefore, various techniques are known for the purpose of improving the adhesion strength of the diamond coating layer to the base material. Some of them are:

【0003】特開平1−246361号公報には、特定
組成の焼結合金の加熱処理面に特定の被覆膜を形成した
焼結合金について開示されている。
Japanese Unexamined Patent Publication No. 1-246361 discloses a sintered alloy having a specific coating film formed on the heat-treated surface of a sintered alloy having a specific composition.

【0004】特開平4−231428号公報には、特定
組成の超硬合金工具を特定条件で二次焼結し、さらに化
学エッチングと超音波研磨を行なってダイヤモンド被覆
層を形成する切削工具の製造法が開示されている。
Japanese Unexamined Patent Publication (Kokai) No. 4-231428 discloses the production of a cutting tool in which a cemented carbide tool having a specific composition is secondarily sintered under specific conditions, and further chemically etched and ultrasonically polished to form a diamond coating layer. The law is disclosed.

【0005】特開平4−263074号及び特開平4−
263075号の各公報には、特定の凹凸を有する基材
表面にダイヤモンド被覆層を形成して成る硬質材料が記
載されている。
JP-A-4-263074 and JP-A-4-263074
Japanese Patent No. 263075 describes a hard material formed by forming a diamond coating layer on the surface of a base material having specific irregularities.

【0006】これら以前の技術としては、特開昭54−
87719号、特開昭58−126972号(特公昭6
2−7267号)の各公報に記載のものが知られてい
る。
As a technique before these, Japanese Patent Laid-Open No. 54-
87719, JP-A-58-126972 (JP-B-6-6)
2-7267) are known.

【0007】なお、「粉体および粉末冶金」第29巻第
5号の第159〜163頁は、WC−β−Co合金
(β:WC−TiC固溶体)表面への硬質層形成につい
て報告されており、前記合金を5.1kPa(5×10-2
気圧)のN2中において1673Kで加熱すると凹凸の
激しい硬質層が表面に形成される点、硬質層の形成はN
2圧力が約0.7kPa(約7×10-3気圧)以上で見られ
る点、N2圧力を高くして長時間加熱を行う程WC−T
iC−TiN固溶体(β(N))粒子が粗大化して表面
部の凹凸が著しくなると共に表面部にCoプールが生じ
る点が記載されている。
[0007] Pages 159 to 163 of "Powder and Powder Metallurgy" Vol. 29, No. 5 report on the formation of a hard layer on the surface of a WC-β-Co alloy (β: WC-TiC solid solution). The above alloy at 5.1 kPa (5 × 10 -2
When heated at 1673 K in N 2 ( atmospheric pressure), a hard layer with severe irregularities is formed on the surface.
2 The point where the pressure is about 0.7 kPa (about 7 × 10 -3 atm) or more, and the WC-T increases as the N 2 pressure is increased and heating is continued for a long time.
It is described that the iC-TiN solid solution (β (N)) particles are coarsened and the surface unevenness becomes remarkable and a Co pool is generated on the surface.

【0008】[0008]

【発明が解決しようとする課題】上記従来の技術によっ
ても、基材へのダイヤモンド被覆層の付着強度は、なお
不十分であり、ダイヤモンド被覆層は基材から剥離しや
すいので、耐久性が不十分であった。
Even with the above-mentioned conventional techniques, the adhesion strength of the diamond coating layer to the substrate is still insufficient, and the diamond coating layer easily peels from the substrate, resulting in poor durability. Was enough.

【0009】また、前記「粉体および粉末冶金」に記載
の方法は、そもそもダイヤモンド膜を被覆するための基
材の製法として開示されたものではなく、ダイヤモンド
膜を良好に被覆しうるか否かは不明であると共に、減圧
下で加熱するので加熱条件の制御が困難で安定した量産
が困難である。
The method described in the above "Powder and powder metallurgy" is not originally disclosed as a method for producing a base material for coating a diamond film, and whether or not a diamond film can be well coated is determined. Besides, it is unknown, and since heating is performed under reduced pressure, it is difficult to control heating conditions and stable mass production is difficult.

【0010】本発明は従来技術のかかる問題点を解消す
る被覆用基材、被覆基材及び被覆用基材の製造方法を提
供することを目的とする。
It is an object of the present invention to provide a coating base material, a coating base material and a method for producing a coating base material, which solves the problems of the prior art.

【0011】[0011]

【課題を解決するための手段】本発明によれば、次の被
覆用基材、被覆基材及び被覆用基材の製造方法により上
記目的を達成することができる。
According to the present invention, the above object can be achieved by the following coating substrate, coating substrate and method for producing a coating substrate.

【0012】 表面粗さ(Rz)2〜20μmの基凹
凸面を有し、角部の表面粗さ(Rz)は角部以外の表面
粗さ(Rz)の40%以上である被覆用セラミック基基
材。
[0012] A coating ceramic base having a base uneven surface having a surface roughness (Rz) of 2 to 20 μm, and the surface roughness (Rz) of the corner portion is 40% or more of the surface roughness (Rz) other than the corner portion. Base material.

【0013】 上記被覆用セラミック基基材に硬質被
膜を被覆して成る被覆基材。
A coated substrate obtained by coating the above ceramic base substrate for coating with a hard coating.

【0014】(a)WCを主成分とするWC基超硬合
金の角部を、角部断面における輪郭線が曲率半径R 0.0
05 mm以上の曲線を含むように面取りされた形状と
し、(b)前記(a)の工程で得られたWC基超硬合金
を、0.05〜5容量%のN2ガスを含有する0.5〜1.
5気圧の雰囲気下、前記WC基超硬合金の液相が発生す
る温度以上焼成温度以下で熱処理し、(c)前記WC基
超硬合金の表面にN含有凹凸表面層を形成する被覆用基
材の製造方法。
(A) A contour line in a cross section of a corner of a WC-based cemented carbide containing WC as a main component has a radius of curvature R 0.0.
A chamfered shape including a curve of 05 mm or more, and (b) 0.5 wt % of the WC-based cemented carbide obtained in the step (a) containing 0.05 to 5% by volume of N 2 gas. ~ 1.
In an atmosphere of 5 atm , heat treatment is performed at a temperature not lower than the temperature at which the liquid phase of the WC-based cemented carbide is generated and not higher than the firing temperature, and (c) a coating base for forming an N-containing uneven surface layer on the surface of the WC-based cemented carbide. Method of manufacturing wood.

【0015】上記被覆用セラミック基基材の基凹凸面
は、好ましくは、最表面を構成する結晶粒子の大きさ程
度(0.5〜10μm)の微小凹凸(より好ましくは、1
〜5μmで且つ基凹凸面の粗さよりも小さい値の微小凹
凸)を前記基凹凸面に対し有して成る二重凹凸面構造を
有する。
The base irregular surface of the above-mentioned ceramic base substrate for coating is preferably minute irregularities (more preferably 1 to 10 μm) of the size of the crystal grains constituting the outermost surface (0.5 to 10 μm).
It has a double concavo-convex surface structure in which minute concavities and convexities of 5 μm and a value smaller than the roughness of the concavo-convex surface are provided on the concavo-convex surface.

【0016】かかる微小凹凸の方向は、前記基凹凸面に
対したて方向のみならず、ななめ方向、横方向のものも
ある。
The direction of such minute unevenness is not only the vertical direction with respect to the base uneven surface, but also the licking direction and the lateral direction.

【0017】上記被覆用セラミック基基材が、ダイヤモ
ンド被覆用であること、また、セラミック基基材本体
と、前記基材本体を被覆する被覆層から成り、前記二重
凹凸面構造を有する被覆層が最外層であることは、それ
ぞれ好ましい。
The coating ceramic base material is for diamond coating, and comprises a ceramic base material body and a coating layer for coating the base material body, and the coating layer has the double concavo-convex surface structure. Is preferably the outermost layer.

【0018】セラミック基基材本体は、好ましくは、W
Cを主成分とし、Ti又はこれとTaと、Co及びNi
の少なくとも1種を含有してなるWC基超硬合金であ
る。
The ceramic base substrate body is preferably W
C as a main component, Ti or Ta and Ta, Co and Ni
Is a WC-based cemented carbide.

【0019】被覆層は、好ましくは、W−Ti−C−N
固溶体及びW−Ti−Ta−C−N固溶体の少なくとも
1種を主体として成る。
The coating layer is preferably W-Ti-C-N.
It is composed mainly of at least one of a solid solution and a W-Ti-Ta-CN solid solution.

【0020】被覆基材の硬質被膜は、好ましくはダイヤ
モンドから成るものにする。
The hard coating of the coated substrate preferably comprises diamond.

【0021】上記被覆用セラミック基基材の製造方法に
おいて、好ましくは、表面粗さ(Rz)2〜20μmの
基凹凸面を有するN含有凹凸表面層を前記WC基超硬合
金の表面に形成する。
In the above-mentioned method for producing a ceramic base material for coating, preferably, an N-containing uneven surface layer having a base uneven surface having a surface roughness (Rz) of 2 to 20 μm is formed on the surface of the WC-based cemented carbide. .

【0022】より好ましくは、前記基凹凸面が、最表面
を構成する結晶粒子の大きさ程度(0.5〜10μm)の
微小凹凸(さらに好ましくは、1〜5μmで且つ基凹凸
面の粗さよりも小さい値の微小凹凸)を前記基凹凸面に
対し有して成る二重凹凸面構造を有するN含有凹凸表面
層を、WC基超硬合金の表面に形成する。
More preferably, the base uneven surface has minute unevenness (more preferably 1 to 5 μm and smaller than the roughness of the base uneven surface) of about the size of crystal grains (0.5 to 10 μm) forming the outermost surface. A N-containing uneven surface layer having a double uneven surface structure having minute unevenness of a value) is formed on the surface of the WC-based cemented carbide.

【0023】また、好ましくは、WC基超硬合金とし
て、WCを主体とし、Ti又はこれとTaと、Co及び
Niの少なくとも1種を含有してなる超硬合金を用い
る。
Further, preferably, as the WC-based cemented carbide, a cemented carbide mainly containing WC and containing Ti or Ti and Ta and at least one of Co and Ni is used.

【0024】また、好ましくは、W−Ti−C−N固溶
体及びW−Ti−Ta−C−N固溶体の少なくとも1種
を主体として成るN含有凹凸表面層を形成する。
Further, preferably, the N-containing uneven surface layer mainly composed of at least one of W-Ti-CN solid solution and W-Ti-Ta-CN solid solution is formed.

【0025】本発明の被覆用セラミック基基材におい
て、基凹凸面の表面粗さ(Rz)が2μm未満では、付
着性を高めることができず、20μmを越えると基材強
度が低下する。角部の表面粗さ(Rz)は角部以外の表
面粗さ(Rz)の40%以上なので、被膜を被覆した場
合に被膜が剥離しにくい。ここで角部以外の表面粗さ
(Rz)とは、角部から離れた部分の表面粗さ(Rz)
のことであり、好ましくは、被覆用セラミック基基材を
構成する面のほぼ中央部ないしその周囲の表面粗さ(R
z)である。
In the ceramic base material for coating of the present invention, if the surface roughness (Rz) of the uneven surface of the base is less than 2 μm, the adhesiveness cannot be improved, and if it exceeds 20 μm, the strength of the base material decreases. Since the surface roughness (Rz) of the corners is 40% or more of the surface roughness (Rz) other than the corners, the coating is difficult to peel off when the coating is applied. Here, the surface roughness (Rz) other than the corner portion is the surface roughness (Rz) of the portion apart from the corner portion.
It is preferable that the surface roughness (R
z).

【0026】また、基凹凸面に対する微小凹凸が0.5μ
m以上の場合には、ダイヤモンド等の硬質被膜被覆時の
付着性をより一層高めることができるが、10μmを越
えても10μm未満の場合の付着性を上まわる付着性は
得られない。表面粗さ(Rz)は、JISB0601に
規定する十点平均粗さである。
Further, the fine unevenness of the base uneven surface is 0.5 μ.
When it is m or more, the adhesiveness when coating a hard film such as diamond can be further enhanced, but even when it exceeds 10 μm, the adhesiveness exceeding the adhesiveness when it is less than 10 μm cannot be obtained. The surface roughness (Rz) is a ten-point average roughness defined in JISB0601.

【0027】本発明の製造方法において、常圧の熱処理
雰囲気中のN2ガスが0.05容量%未満の場合には、雰囲
気中のNの量が少ないのでN含有凹凸表面層の形成が困
難であり、5容量%を越える場合にはWC基超硬合金に
含まれる結合相(例えばCo)が表面に多量に析出し、
ダイヤモンド被覆時の付着性を低下させる。
In the manufacturing method of the present invention, when the N 2 gas in the atmospheric pressure heat treatment atmosphere is less than 0.05% by volume, the amount of N in the atmosphere is small and it is difficult to form the N-containing uneven surface layer. If it exceeds 5% by volume, a large amount of the binder phase (for example, Co) contained in the WC-based cemented carbide precipitates on the surface,
It reduces the adhesion when coated with diamond.

【0028】熱処理温度がWC基超硬合金の液相生成温
度未満の場合には、N含有凹凸表面層の凹凸が不十分で
あり、ダイヤモンド被覆時の付着性が不十分になり、焼
成温度を越える場合には、前記超硬合金を構成する粒子
が成長し、強度等の特性が低下する場合がある。熱処理
を常圧下で行うので、バッチ炉だけでなくトンネル炉な
どの連続処理が可能となり、コスト、生産性の点におい
て大きなメリットがある。
When the heat treatment temperature is lower than the liquid phase formation temperature of the WC-based cemented carbide, the unevenness of the N-containing uneven surface layer is insufficient, the adhesion at the time of diamond coating is insufficient, and the firing temperature is If it exceeds, the particles constituting the cemented carbide may grow and the properties such as strength may deteriorate. Since the heat treatment is carried out under normal pressure, not only batch furnaces but also tunnel furnaces or the like can be continuously processed, which is a great advantage in terms of cost and productivity.

【0029】また、前記曲率半径Rが0.005mm未満の
場合には、熱処理後に角部に形成されるN含有凹凸表面
層の凹凸の程度が角部以外の部分(例えば、被覆用基材
を構成する面のほぼ中央部ないしその周囲)に比較して
小さいので、被膜を被覆した場合に被膜の付着性が低下
する。
When the radius of curvature R is less than 0.005 mm, the degree of unevenness of the N-containing uneven surface layer formed at the corners after the heat treatment is a portion other than the corners (for example, the coating base material is formed. Since it is smaller than the central part of the surface to be treated or its periphery), the adhesion of the coating decreases when the coating is applied.

【0030】本発明の製造方法により得られた被覆用基
材にダイヤモンド等の硬質被膜を被覆したものは、硬質
被膜とN含有凹凸表面層が嵌合しており、且つ、N含有
凹凸表面層とWC基超硬合金も嵌合していて、これら両
方の嵌合のアンカー効果によりより一層高い付着性が得
られる。
The coating substrate obtained by the manufacturing method of the present invention coated with a hard coating such as diamond has a hard coating and an N-containing uneven surface layer fitted together, and an N-containing uneven surface layer. And WC-based cemented carbide are also fitted, and even higher adhesion is obtained due to the anchoring effect of both fittings.

【0031】本発明の被覆用基材の製造方法で用いるW
C基超硬合金の角部を、角部断面における輪郭線が曲率
半径R0.005〜0.10 mmの曲線を含むように面取りされた
形状にすることは、切削工具の製造に用いる基材として
特に好ましい。
W used in the method for producing a coating substrate of the present invention
Making the corner of the C-based cemented carbide chamfered so that the contour line in the corner cross section includes a curve with a radius of curvature R0.005 to 0.10 mm is particularly useful as a base material used for manufacturing a cutting tool. preferable.

【0032】即ち、切削工具は、すくい面と逃げ面の交
差により規定される角部である刃先部分を有する。すく
い面又は逃げ面に対して直角方向の刃先部分断面(角部
断面)における輪郭線が、曲率半径R0.005 mm未満の曲
線又は直線から成る場合は、角部の基材肉厚が薄く、熱
処理によって形成されるN含有凹凸表面層の厚さが薄く
なるので、角部以外のN含有凹凸表面層よりも表面凹凸
が小さくなる。そのため、被覆層を形成すると、角部の
被覆層の密着性は、角部以外の密着性に比較して劣る傾
向にある。
That is, the cutting tool has a cutting edge portion which is a corner defined by the intersection of the rake face and the flank face. When the contour line in the blade edge partial cross section (corner cross section) in the direction perpendicular to the rake face or the flank is composed of a curve or a straight line with a radius of curvature of less than R 0.005 mm, the corner portion has a thin base material thickness, Since the thickness of the N-containing uneven surface layer formed by the heat treatment is thin, the surface unevenness is smaller than that of the N-containing uneven surface layer other than the corners. Therefore, when the coating layer is formed, the adhesiveness of the coating layer at the corners tends to be inferior to the adhesiveness other than at the corners.

【0033】なお、熱処理によって角部に形成されるN
含有凹凸表面層の厚さが薄くなる理由は、例えば、WC
基超硬合金として、WCを主体としTiを含有するもの
を用いた場合には、角部の肉厚が薄いので、熱処理によ
ってWC基超硬合金表面側に移動するTi成分量が少い
ためと考えられる。
The N formed at the corners by heat treatment
The reason why the thickness of the uneven surface layer containing is reduced is, for example, WC.
When the base cemented carbide containing WC as a main component and containing Ti is used, the thickness of the corners is thin, and the amount of Ti component transferred to the WC-based cemented carbide surface side by heat treatment is small. Conceivable.

【0034】一方、前記輪郭線が曲率半径R0.10 mm を
越える曲線を含む場合は、熱処理によって形成されるN
含有凹凸表面層の表面凹凸の程度は十分であり、角部と
被覆層との密着性は、角部以外での密着性と同等であ
る。しかし、被覆後の角部を切削工具の刃先部分として
用いる場合には、切削抵抗が増加し過ぎて切り粉の溶着
が生じたり、切削後の被切削材の表面仕上げ状態が粗く
なる傾向がある。
On the other hand, when the contour line includes a curve having a radius of curvature of more than R0.10 mm, N formed by heat treatment is used.
The surface irregularity of the containing irregular surface layer has a sufficient degree of surface irregularity, and the adhesiveness between the corner portion and the coating layer is the same as the adhesiveness other than the corner portion. However, when the corner after coating is used as the cutting edge portion of the cutting tool, cutting resistance increases excessively and welding of cutting chips occurs, or the surface finish state of the work material after cutting tends to be rough. .

【0035】前記角部を、上記のように面取りされた形
状にするには、例えば丸ホーニング等のホーニング加工
等により行うことができる。
The chamfered shape of the corners can be performed by honing such as round honing.

【0036】なお、本願明細書においてセラミック基基
材とは、特に超硬質のセラミック質物質(炭化物、窒化
物、ホウ化物及びこれらの複合化合物ないし酸化物との
複合化合物、金属化合物等)を主成分とする硬質基材で
あり、基本的に焼結によって得られ、高融点金属の炭化
物を主要成分とし金属相を結合相とする超硬合金やサー
メット等も含まれる。なお、基材自体が被覆層を有する
複合構造体であってもよい。また、基凹凸面は、JIS
B0601に規定する十点平均粗さが2〜20μmであ
る面である。常圧とは0.5〜1.5気圧のことをいう。
In the present specification, the ceramic base material mainly refers to an ultra-hard ceramic material (carbide, nitride, boride and a compound compound of these compound compounds or oxides, a metal compound, etc.). It is a hard base material as a component, and basically includes cemented carbide, cermet, etc., which is obtained by sintering and has a carbide of a high melting point metal as a main component and a metal phase as a binder phase. The base material itself may be a composite structure having a coating layer. Also, the base uneven surface is JIS
It is a surface having a ten-point average roughness defined in B0601 of 2 to 20 μm. Normal pressure means 0.5 to 1.5 atmospheres.

【0037】[0037]

【好適な実施態様】Preferred Embodiment

(被覆用セラミック基基材)本発明の被覆用セラミック
基基材は、基材本体とこれを被覆する被覆層から成るも
のにすることができ、被覆層は1層以上設けることがで
きる。基材本体と被覆層の間が嵌合したものは好まし
い。
(Ceramic base substrate for coating) The ceramic base substrate for coating of the present invention can be composed of a substrate main body and a coating layer for coating the same, and one or more coating layers can be provided. It is preferable that the base body and the coating layer are fitted together.

【0038】基材本体は、好ましくは超硬合金等の硬質
材料であり、例えば、TiC又はこれとTaCを含んだ
WC−Co系の超硬合金にすることができる。TaCを
含む場合は、Taの一部ないし全部をV、Zr、Nb、
Hfの少なくとも1種で置き換えてもよい。
The base material body is preferably made of a hard material such as cemented carbide, and can be, for example, WC—Co type cemented carbide containing TiC or TaC. When TaC is included, a part or all of Ta is V, Zr, Nb,
It may be replaced with at least one of Hf.

【0039】被覆層は、好ましくは、W−Ti−C−N
固溶体及びW−Ti−Ta−C−N固溶体の少なくとも
1種を主体とする。
The coating layer is preferably W--Ti--C--N.
Mainly comprises at least one of a solid solution and a W-Ti-Ta-CN solid solution.

【0040】(被覆基材)本発明の被覆基材は、本発明
の被覆用セラミック基基材に硬質被膜を被覆して成るも
のであり、硬質被膜の材料としてダイヤモンド又はcB
Nを用いることができる。
(Coated Substrate) The coated substrate of the present invention comprises the ceramic base substrate for coating of the present invention coated with a hard coating, and the material of the hard coating is diamond or cB.
N can be used.

【0041】(ダイヤモンド被覆用基材の製造方法)W
C基超硬合金は、WCを主成分としたものであり、他の
成分として好ましくは、Ti又はこれとTaと、結合相
としてCo及びNiの少なくとも1種を含むものを用い
ることができる。この場合のWC基超硬合金の好ましい
組成は、Ti又はこれとTaは、炭化物換算で0.2〜2
0重量%(好ましくは0.5〜10重量%、より好ましく
は1〜5重量%)であり、Co及びNiの少なくとも1
種は、2〜15重量%(好ましくは、3〜10重量%、
より好ましくは4〜7重量%)であり、前記合金はW−
Ti−C固溶体(β相)及びW−Ti−Ta−C固溶体
(βt相)の少なくとも1種を有する。前記β相及びβt
相の好ましい平均結晶粒径は、0.5〜10μm(より好
ましくは1〜5μm)である。
(Method for producing base material for diamond coating) W
The C-based cemented carbide contains WC as a main component, and as other components, preferably, one containing Ti or Ta and Ta and at least one of Co and Ni as a binder phase can be used. In this case, the preferred composition of the WC-based cemented carbide is Ti or Ta and Ta in terms of carbide of 0.2 to 2
0% by weight (preferably 0.5 to 10% by weight, more preferably 1 to 5% by weight), and at least one of Co and Ni.
The seed is 2 to 15% by weight (preferably 3 to 10% by weight,
More preferably 4 to 7% by weight), and the alloy is W-
It has at least one of a Ti—C solid solution (β phase) and a W—Ti—Ta—C solid solution (β t phase). The β phase and β t
The preferable average crystal grain size of the phase is 0.5 to 10 μm (more preferably 1 to 5 μm).

【0042】Tiが炭化物換算で0.2重量%未満の場合
には、熱処理によってN含有凹凸表面層が形成しにく
く、また、熱処理後の表面層自体が剥離しやすくなる。
剥離しやすくなる理由は、熱処理によって、Ti成分の
ほとんどが表面に移動してW−Ti−C−N固溶体(β
(N)相)が表面に形成されて、Ti成分と他の合金成
分とが分離し嵌合状態が低下してしまうからである。ま
たTiが炭化物換算で20重量%を越える場合には、熱
処理前において既に脆く、また、熱膨張係数が大きくな
るので、ダイヤモンドのそれとの差が大きくなり、ダイ
ヤモンド被覆後の冷却中に基材とダイヤモンド膜界面に
せん断応力が生じ膜剥離の原因となりやすい。
When Ti is less than 0.2% by weight in terms of carbide, it is difficult to form the N-containing uneven surface layer by heat treatment, and the surface layer itself after heat treatment is easily peeled off.
The reason why it becomes easy to peel off is that most of the Ti component moves to the surface by heat treatment and W-Ti-CN solid solution (β
This is because the (N) phase) is formed on the surface, the Ti component and other alloy components are separated, and the fitting state is deteriorated. Further, when Ti exceeds 20% by weight in terms of carbide, it is already brittle before heat treatment, and the coefficient of thermal expansion becomes large, so that the difference from that of diamond becomes large, and it becomes difficult to form the base material during cooling after coating with diamond. Shear stress is likely to occur at the diamond film interface, causing film peeling.

【0043】Tiの他にTaを含有させた場合の好まし
い上限値が20重量%である理由も上記と同様である。
The reason why the preferable upper limit value when Ta is contained in addition to Ti is 20% by weight is the same as above.

【0044】なお、前記熱処理に悪影響を与えない範囲
でTaの一部ないし全部をV、Zr、Nb、Hfの少な
くとも1種で置き換えることができる。また、WC、T
iC、TaC、Co等の各粉末を粉末冶金法で緻密に焼
結して得られるWC基超硬合金は、前記炭化物結晶相が
焼結中に粒成長すると強度が低下するので、焼結中の粒
成長を抑制するCr及びMoの少なくとも1種を通常は
炭化物として、本発明における熱処理に悪影響を及ぼさ
ない範囲で含有させることができる。
Incidentally, part or all of Ta can be replaced with at least one of V, Zr, Nb and Hf within a range that does not adversely affect the heat treatment. Also, WC, T
The WC-based cemented carbide obtained by densely sintering powders of iC, TaC, Co, etc. by a powder metallurgy method has low strength when the carbide crystal phase grows during the sintering, At least one of Cr and Mo that suppresses the grain growth can be contained as a carbide in a range that does not adversely affect the heat treatment in the present invention.

【0045】結合相としてのCo及びNiの少なくとも
1種の含有量が2重量%未満の場合には、WC基超硬合
金製造の際の焼結による緻密化が困難であり、基材とし
て要求される強度等の特性が不十分である。一方、15
重量%を越える場合には、本発明における熱処理時やダ
イヤモンド被膜形成時にこれらの成分が基材表面に現わ
れやすく、ダイヤモンド被膜形成に対して悪影響を及ぼ
す場合があり、また、ダイヤモンド被膜の熱膨張係数と
の差が大きくなり膜剥離の原因となることがある。
When the content of at least one of Co and Ni as the binder phase is less than 2% by weight, it is difficult to densify by sintering during the production of WC-based cemented carbide, and it is required as a base material. The properties such as strength are insufficient. On the other hand, 15
If the content exceeds 10% by weight, these components are likely to appear on the surface of the substrate during the heat treatment or the diamond film formation in the present invention, which may adversely affect the diamond film formation. May be large and may cause film peeling.

【0046】β相又はβt相の平均粒径が0.5μm未満の
場合には、熱処理後に形成されるN含有表面層の凹凸が
小さくなったり、N含有表面層とWC基超硬合金内層と
の嵌合が十分に得られない場合があり、10μmを越え
ると前記嵌合が不十分になったり、熱処理前におけるW
C基超硬合金としての強度が得られないことがある。
When the average particle size of the β phase or β t phase is less than 0.5 μm, the unevenness of the N-containing surface layer formed after heat treatment becomes small, and the N-containing surface layer and the WC-based cemented carbide inner layer are In some cases, the mating may not be obtained sufficiently. If it exceeds 10 μm, the mating may be insufficient, or the W
The strength as a C-based cemented carbide may not be obtained in some cases.

【0047】なお、TiNやTiC−TiN固溶体等の
Nを含む粉末の添加による焼結、窒素原子を含む雰囲気
中での焼結により、あらかじめβ(N)相を含有するN
入り超硬合金やサーメットの場合には、本発明における
熱処理によっても表面層に凹凸ができにくくなったり、
熱処理雰囲気による凹凸状態の制御が困難あるいは不安
定になる場合がある。
Note that N containing a β (N) phase in advance is obtained by sintering by adding powder containing N such as TiN or TiC-TiN solid solution or sintering in an atmosphere containing nitrogen atoms.
In the case of containing cemented carbide or cermet, it becomes difficult to form irregularities in the surface layer even by the heat treatment in the present invention,
It may be difficult or unstable to control the unevenness due to the heat treatment atmosphere.

【0048】WC基超硬合金の熱処理の雰囲気中のN2
含有量を正確に制御するため、熱処理に使用する炉は、
雰囲気中のN2含有量に影響を及ぼさない耐火物で構成
し、BN等の耐火物からなる炉は用いない。
N 2 in the atmosphere for heat treatment of WC-based cemented carbide
To control the content accurately, the furnace used for heat treatment
It is composed of refractory materials that do not affect the N 2 content in the atmosphere, and a furnace composed of refractory materials such as BN is not used.

【0049】WC基超硬合金の好ましい熱処理温度は1
350〜1450℃であるが、合金中の炭素量やCoと
Niの量比によって下限温度は異なる。
The preferred heat treatment temperature for WC-based cemented carbide is 1
Although the temperature is 350 to 1450 ° C., the lower limit temperature varies depending on the amount of carbon in the alloy and the amount ratio of Co and Ni.

【0050】熱処理時間は、N含有表面層の凹凸の度合
に最も影響を及ぼす因子であり、これを調整することで
任意の凹凸を有するN含有表面層を形成することができ
る。効率よく、安定的にN含有層を得るには、熱処理温
度や雰囲気中のN2含有量を調整し、熱処理時間を好ま
しくは0.5〜5時間にする。
The heat treatment time is a factor that most affects the degree of unevenness of the N-containing surface layer, and by adjusting this, an N-containing surface layer having arbitrary unevenness can be formed. In order to efficiently and stably obtain the N-containing layer, the heat treatment temperature and the N 2 content in the atmosphere are adjusted, and the heat treatment time is preferably 0.5 to 5 hours.

【0051】熱処理時の雰囲気は、常圧においてN2
0.05〜5容量%含有するが、好ましくは0.5〜3容量%
含有させ、残部はAr等の不活性ガスにする。
The atmosphere during the heat treatment is N 2 at atmospheric pressure.
0.05 to 5% by volume, preferably 0.5 to 3% by volume
It is contained, and the balance is an inert gas such as Ar.

【0052】本発明の被覆用基材の製造方法によって、
N含有凹凸表面層を形成した後に、前記表面層の膜付着
性を変化させない範囲でアルゴン等の不活性雰囲気中で
再熱処理を行ない、前記表面層からNを放出してもよ
い。
By the method for producing a coating base material of the present invention,
After the N-containing uneven surface layer is formed, N may be released from the surface layer by performing a heat treatment again in an inert atmosphere such as argon within a range that does not change the film adhesion of the surface layer.

【0053】また、上記の再熱処理と同等の効果(最表
面にNが含まれないようにする)を得る他の方法とし
て、CVD、PVD等の周知の方法によりTiC等の硬
質被膜を凹凸表面層の表面形状がさほど変化しない程度
の厚みで被覆しても良い。
As another method of obtaining the same effect as the above-mentioned reheat treatment (making sure that N is not included in the outermost surface), a hard coating such as TiC is formed on the uneven surface by a known method such as CVD or PVD. You may coat by the thickness which does not change the surface shape of a layer so much.

【0054】ダイヤモンドを被覆する方法としては、炭
素源ガスと水素ガスの混合ガスを励起したガスを基材に
接触させる、いわゆるCVD法を用いることができる。
なかでも、合成条件を精度よく制御できる手段としてマ
イクロ波プラズマCVD法が好ましい。
As a method for coating the diamond, a so-called CVD method can be used in which a gas obtained by exciting a mixed gas of a carbon source gas and a hydrogen gas is brought into contact with a base material.
Among them, the microwave plasma CVD method is preferable as a means for accurately controlling the synthesis conditions.

【0055】ダイヤモンドの被覆は2以上の工程にわけ
て行ない、2以上の被覆層を形成してもよい。
The diamond coating may be performed in two or more steps to form two or more coating layers.

【0056】[0056]

【実施例】【Example】

(参考例)原料粉末として、平均粒径2μmのWC粉
末、TiC−WC固溶体粉末、平均粒径1μmのTaC
粉末及びCo粉末を用意し、これら原料粉末をWC、T
iC、TaC、Coに換算して表1に示される割合とな
るように配合し、この混合粉末を湿式混合し、乾燥した
後1.5ton/cm2の圧力で圧粉体にプレス成形し、この圧粉
体を真空中、1400〜1450℃で1時間焼結し、上
記配合組成とほぼ同一の成分組成をもつ焼結体を製造し
た。これらの焼結体の表面を研削加工し、ISO規格S
PGN120308の形状のチップに成形した。
(Reference Example) As raw material powder, WC powder having an average particle diameter of 2 μm, TiC-WC solid solution powder, TaC having an average particle diameter of 1 μm
Powder and Co powder are prepared, and these raw material powders are used as WC and T
iC, TaC, and Co were converted into the proportions shown in Table 1, and the mixed powders were wet mixed, dried, and then pressed into a green compact at a pressure of 1.5 ton / cm 2. The green compact was sintered in a vacuum at 1400 to 1450 ° C. for 1 hour to produce a sintered body having the same composition as the above-mentioned composition. The surface of these sintered bodies is ground to ISO standard S
It was molded into a chip having the shape of PGN120308.

【0057】これらのチップをカーボンケースに入れ、
ヒーター、断熱材など高温に曝される部分が全てカーボ
ンからなる電気炉を用いて、表2に示される条件で熱処
理を施し、表2〜3に示す特性の表面変質層を形成し
た。
Put these chips in a carbon case,
Heat treatment was performed under the conditions shown in Table 2 using an electric furnace in which all parts exposed to high temperatures such as a heater and a heat insulating material were made of carbon to form surface-altered layers having the characteristics shown in Tables 2 and 3.

【0058】得られた表面変質層を有する基体(試料番
号2〜40)及び熱処理を施していないチップ(試料番
号1)を平均粒径10μmのダイヤモンド微粉末が浮遊
分離している溶媒中に浸漬し超音波処理を施すことによ
り表面を活性化した。
The obtained substrate (Sample Nos. 2 to 40) having the surface-altered layer and the chip not subjected to the heat treatment (Sample No. 1) were immersed in a solvent in which diamond fine powder having an average particle diameter of 10 μm was separated by floating. Then, ultrasonic treatment was applied to activate the surface.

【0059】このようにして得られたチップを2.45GH
zのマイクロ波プラズマCVD装置内に設置し、850
℃に加熱し、全圧を50TorrとしたH2−2%CH4
の混合プラズマ中にて10時間保持し、膜厚約10μm
のダイヤモンド被覆切削チップを作製した。なお、本試
験において、基体の表面に析出した被覆層はラマン分光
分析法によってダイヤモンド被覆層であることを確認し
た。
The thus obtained chip is 2.45 GH
850 in a microwave plasma CVD apparatus
H 2 -2% CH 4 heated to ℃ and total pressure 50 Torr
10 hours in the mixed plasma of
A diamond-coated cutting tip was manufactured. In this test, it was confirmed by Raman spectroscopy that the coating layer deposited on the surface of the substrate was a diamond coating layer.

【0060】これらの切削チップを用いて、下記条件で
切削テストを行なった結果を表2〜3に示す。
Tables 2 and 3 show the results of a cutting test conducted under the following conditions using these cutting chips.

【0061】連続切削:旋削(直径約150mm、長さ
約200mmの円筒被削材の外周を加工する。) 被削材:A1−18wt%Si合金 切削速度:800m/min 送り:0.15mm/rev 切込み:0.5mm 断続切削:フライス(約150×150mmで厚さ約5
0mmの角板被削材の表面を加工する。) 被削材:A1−18wt%Si合金 切削速度:600m/min 送り:0.1mm/tooth 切込み:0.5mm
Continuous cutting: Turning (processing the outer circumference of a cylindrical work material having a diameter of about 150 mm and a length of about 200 mm) Work material: A1-18 wt% Si alloy Cutting speed: 800 m / min Feed: 0.15 mm / rev Depth of cut: 0.5 mm Intermittent cutting: Milling (approximately 150 x 150 mm and thickness of approximately 5
The surface of a 0 mm square plate work material is processed. ) Work material: A1-18wt% Si alloy Cutting speed: 600m / min Feed: 0.1mm / tooth Depth of cut: 0.5mm

【0062】[0062]

【表1】 [Table 1]

【0063】[0063]

【表2】 [Table 2]

【0064】[0064]

【表3】 [Table 3]

【0065】なお、表2〜3中のα、β、γは結晶相を
示す記号であり、それぞれ次のものを示す。 α:WC β:β相、βt相及びそれらにNが固溶したβ(N)相
等の何れか γ:Co及び/又はNiを主体とする結合相 また、表面変質層の有無については、電子線マイクロプ
ローブ分析(EPMA)による基材の厚さ方向断面の元
素分析により、表面近傍にTi及び/又はTa成分が偏
析し且つCoを全く含有しない部分が観察されたものを
表面変質層有り、Ti及び/又はTaを含有する粒子や
Coを含有する結合相の分散状態が表面及び内部に於い
て差が無く、比較的均一であるものを表面変質層無しと
判断した。
In Tables 2 and 3, α, β, and γ are symbols showing crystal phases, and have the following meanings. α: WC β: β phase, β t phase and β (N) phase in which N is solid-solved therein, etc. γ: Co and / or Ni-bonded phase as a main component By the elemental analysis of the cross-section in the thickness direction of the base material by electron beam microprobe analysis (EPMA), it was observed that a Ti and / or Ta component segregated near the surface and a portion containing no Co was observed. When the particles containing Ti, Ti and / or Ta or the binder-containing phase containing Co showed no difference on the surface and inside and were relatively uniform, it was judged that there was no surface alteration layer.

【0066】(電子線マイクロプローブ分析)試料番号
11の基材と試料番号1の基材の各々について、電子線
マイクロプローブ分析(EPMA)による基材の厚さ方
向断面の元素分析を行った。その結果、試料番号1の基
材はTi及びTaを含有する粒子(βt相)やCoを含
有する結合相が比較的均一に分散し、また、表面に変質
層を有さない組織から成るものであることが分かった。
これに対し試料番号11の基材は表面にTi及びTaを
含有する表面変質層を有し、この変質層はCoを全く含
有しないものであることが分かった。また、上記の表面
変質層中には窒素(N)が含まれていることも確認し
た。これらの結果を図5及び図7に示す。
(Electron Beam Microprobe Analysis) With respect to each of the base material of Sample No. 11 and the base material of Sample No. 1, elemental analysis of a cross section in the thickness direction of the base material was performed by electron beam microprobe analysis (EPMA). As a result, the base material of Sample No. 1 has a structure in which particles (β t phase) containing Ti and Ta and a binder phase containing Co are dispersed relatively uniformly, and the surface does not have an altered layer. It turned out to be a thing.
On the other hand, it was found that the base material of Sample No. 11 had a surface-altered layer containing Ti and Ta on the surface, and this altered layer did not contain Co at all. It was also confirmed that nitrogen (N) was contained in the surface-altered layer. The results are shown in FIGS. 5 and 7.

【0067】(実施例)上記参考例と同様にして表1の
材質Fの焼結体を製造し、この焼結体を研削加工してI
SO規格SPGN120308形状の超硬合金チップを
得た。このチップの刃先に、すくい面に対して直角方向
の刃先断面における輪郭線が表4に示した曲率半径
(R)の線又は曲線を含むようにホーニング加工を施
し、これらのチップをカーボンケース(厚さ4mm、内
のりφ92×31mm)に入れ、ヒータ、断熱材など高
温に曝される部分が全てカーボンから成る電気炉を用い
て、1375℃、3時間、1%N2−Ar雰囲気、1atm
中で熱処理を施し、表面変質層(N含有凹凸表面層)を
形成した。これらのチップのうち試料番号41、44及
び46について、図14、15、16にチップの刃先部
分のすくい面に対して直角方向の断面の様子を、図1
7、18、19に表面状態を示す。表面変質層の厚み分
布、表面凹凸分布を表4に示す。
(Example) A sintered body of the material F shown in Table 1 was manufactured in the same manner as in the above-mentioned reference example, and this sintered body was ground to produce I
A cemented carbide chip of SO standard SPGN120308 shape was obtained. The cutting edge of this tip is subjected to honing so that the contour line in the cross section of the cutting edge in the direction perpendicular to the rake face includes the line or curve of the radius of curvature (R) shown in Table 4, and these tips are cut into a carbon case ( The thickness is 4 mm, the inner diameter is φ92 × 31 mm), and an electric furnace in which all parts exposed to high temperature such as heater and heat insulating material are made of carbon is used at 1375 ° C. for 3 hours, 1% N 2 -Ar atmosphere, 1 atm
A heat treatment was performed therein to form a surface-altered layer (N-containing uneven surface layer). Sample numbers 41, 44, and 46 of these chips are shown in FIGS. 14, 15, and 16 as a cross-sectional view in a direction perpendicular to the rake face of the tip of the chip.
Surface conditions are shown in 7, 18, and 19. Table 4 shows the thickness distribution and surface unevenness distribution of the surface-altered layer.

【0068】上記ホーニング加工は、遊離ダイヤモンド
砥石を油に分散させた液をチップに供給し、円盤状のブ
ラシを回転させながらチップに接触させる「ブラシ研磨
機」を用いて行った。加工条件としてはブラシ回転数:
300〜600回転/分、遊離ダイヤモンド砥石の番
手:300〜1000番、処理時間:1〜10分で刃先
が所定の曲率半径になるようにした。被削材の表面状態
は、被削材の表面粗さRz(JISB0601に規定す
る十点平均粗さ)により次の判定基準で定めた。 良 :Rz≦6μm やや良:6μm<Rz≦12μm 悪 :Rz>12μm 膜剥離に至る切削時間として好ましい範囲は、連続切削
の場合には60分を越える範囲(より好ましくは120
分を越える範囲)であり、断続切削の場合には40分を
越える範囲(より好ましくは70分を越える範囲)であ
る。
The honing process was carried out by using a "brush grinder" in which a liquid in which a free diamond grindstone was dispersed in oil was supplied to the tip and the disc-shaped brush was rotated to contact the tip. The number of brush rotations is as processing conditions:
The cutting edge was made to have a predetermined radius of curvature at 300 to 600 rpm, the free diamond grindstone number: 300 to 1000, and the processing time: 1 to 10 minutes. The surface condition of the work material was determined by the following criteria based on the surface roughness Rz of the work material (10-point average roughness specified in JIS B0601). Good: Rz ≦ 6 μm Fair: 6 μm <Rz ≦ 12 μm Poor: Rz> 12 μm A preferable cutting time range for film peeling is over 60 minutes (more preferably 120 mm) in the case of continuous cutting.
In the case of intermittent cutting, it is in the range of more than 40 minutes (more preferably in the range of more than 70 minutes).

【0069】[0069]

【表4】 [Table 4]

【0070】この様にして得られたチップを2.45 GHz
のマイクロ波プラズマCVD装置内に設置し、850℃
に加熱し、全圧を50 Torr とした98体積%H2−2
体積%CH4の混合プラズマ中にて10時間保持し、膜
厚約10μmのダイヤモンド被覆切削チップを作製し
た。
The chip thus obtained is set to 2.45 GHz.
Installed in the microwave plasma CVD device at 850 ° C
98% by volume H 2 -2 by heating to a total pressure of 50 Torr
It was kept in a mixed plasma of volume% CH 4 for 10 hours to prepare a diamond-coated cutting tip with a film thickness of about 10 μm.

【0071】これらの切削チップを用いて下記条件で切
削テストを行ったところ、表4に示したように、本発明
のダイヤモンド被覆チップは厳しい切削条件下でもダイ
ヤモンド膜が剥離することなく被削材を良好な面粗度で
切削できる時間が長く、比較例ではダイヤモンド膜の密
着強度が不十分なために剥離し易く、また、被削材を良
好な面粗度で切削できる時間が短いことがわかる。 連続切削:旋削(直径約150mm、長さ約200mm
の円筒被削材の外周を加工する。) 被削材 :Al−18wt%Si合金 切削速度:1500m/min 送り :0.15mm/rev 切込み :0.5mm 断続切削:フライス(約150×150mmで厚さ約5
0mmの角板被削材の表面を加工する。) 被削材 :Al−18wt%Si合金 切削速度:1000m/min 送り :0.1mm/tooth 切込み :0.5mm
A cutting test was carried out using these cutting chips under the following conditions. As shown in Table 4, the diamond-coated chips of the present invention showed that the diamond film was not peeled off even under severe cutting conditions and the work material was cut. Can be cut with good surface roughness for a long time, in the comparative example the adhesion strength of the diamond film is insufficient, so it is easy to peel off, and the time for cutting the work material with good surface roughness may be short. Recognize. Continuous cutting: Turning (diameter about 150mm, length about 200mm
The outer circumference of the cylindrical work material is processed. ) Work material: Al-18 wt% Si alloy Cutting speed: 1500 m / min Feed: 0.15 mm / rev Depth of cut: 0.5 mm Interrupted cutting: Milling cutter (about 150 x 150 mm and thickness about 5)
The surface of a 0 mm square plate work material is processed. ) Work material: Al-18wt% Si alloy Cutting speed: 1000m / min Feed: 0.1mm / tooth Depth of cut: 0.5mm

【0072】表面凹凸(表面粗さRz)は、走査型電子
顕微鏡(SEM)に三次元形状解析装置(有限会社電子
光学研究所製RD−500形)を取り付けて測定を行っ
た。この装置はSEMの反射電子検出器を4分割にして
表面形状による電子線散乱方向の変化を測定し、コンピ
ューターによるデータ解析を行うことで三次元形状測定
を可能にするものであり、通常の表面粗度などの表面形
状測定に用いられている接触子を用いた接触式では接触
子の先端半径が5〜10μm程度あるため測定が困難な
微小凹凸の測定を可能にするものである。
The surface irregularities (surface roughness Rz) were measured by attaching a three-dimensional shape analyzer (RD-500 manufactured by Electron Optical Laboratory Co., Ltd.) to a scanning electron microscope (SEM). This device divides the backscattered electron detector of the SEM into four and measures changes in the electron beam scattering direction due to the surface shape, and makes it possible to perform three-dimensional shape measurement by performing data analysis by a computer. In the contact type using a contactor used for measuring the surface shape such as roughness, the tip radius of the contactor is about 5 to 10 μm, which makes it possible to measure minute irregularities that are difficult to measure.

【0073】得られた表面形状のデータから断面の凹凸
波形を求め、それをフーリエ変換し、周期が25μm以
上の成分をフィルターにより除去後、逆フーリエ変換し
て得られた凹凸波型についてJISB0601に規定す
る十点平均粗さ(Rz)を求める。この方法により周期
が25μm以下の凹凸成分についてのRzが得られる。
The uneven waveform of the cross section is obtained from the obtained surface shape data, Fourier-transformed, the component having a period of 25 μm or more is removed by a filter, and then the inverse Fourier transform is performed. The prescribed ten-point average roughness (Rz) is calculated. By this method, Rz can be obtained for the uneven component having a period of 25 μm or less.

【0074】なお、表4における試料番号41〜46の
各チップの角部である刃先の表面粗さ(Rz)は、中央
の表面粗さ(Rz)の約31%(試料番号41〜4
2)、約47%(試料番号43)、約69%(試料番号
44)、約84%(試料番号45)、100%(試料番
号46)である。
The surface roughness (Rz) of the cutting edge, which is the corner of each tip of sample numbers 41 to 46 in Table 4, is about 31% of the center surface roughness (Rz) (sample numbers 41 to 4).
2), about 47% (Sample No. 43), about 69% (Sample No. 44), about 84% (Sample No. 45), 100% (Sample No. 46).

【0075】[0075]

【発明の効果】本発明の被覆用セラミック基基材は、前
記特定の基凹凸面を有し、角部の表面粗さ(Rz)は角
部以外の表面粗さ(Rz)の40%以上であるので、表
面にダイヤモンド等の硬質被覆層を形成した場合に、被
覆層が基材表面へ強力に付着し、剥離しにくい。
The ceramic base material for coating of the present invention has the above-mentioned specific base uneven surface, and the surface roughness (Rz) of the corner portion is 40% or more of the surface roughness (Rz) other than the corner portion. Therefore, when a hard coating layer such as diamond is formed on the surface, the coating layer strongly adheres to the surface of the substrate and is difficult to peel off.

【0076】本発明の被覆用基材の製造方法は、(a)
WCを主成分とするWC基超硬合金の角部を、角部断面
における輪郭線が曲率半径R 0.005 mm以上の曲線を
含むように面取りされた形状とし、(b)前記(a)の
工程で得られたWC基超硬合金を、0.05〜5容量%のN
2ガスを含有する常圧雰囲気下、前記WC基超硬合金の
液相が発生する温度以上焼成温度以下で熱処理し、
(c)前記WC基超硬合金の表面にN含有凹凸表面層を
形成するので、N含有凹凸表面層の表面にダイヤモンド
等の硬質被覆層を形成した場合に、被覆層が前記表面層
へ強力に付着し剥離しにくい被覆用基材を製造すること
ができる。
The method for producing a coating base material of the present invention comprises (a)
The corner of the WC-based cemented carbide containing WC as a main component is chamfered so that the contour line in the corner cross section includes a curve having a radius of curvature R 0.005 mm or more, and (b) the step (a) above. The WC-based cemented carbide obtained in
Heat treatment at a temperature higher than the temperature at which the liquid phase of the WC-based cemented carbide is generated and at a temperature lower than or equal to the firing temperature in a normal pressure atmosphere containing 2 gases,
(C) Since the N-containing uneven surface layer is formed on the surface of the WC-based cemented carbide, when a hard coating layer such as diamond is formed on the surface of the N-containing uneven surface layer, the coating layer has a strong effect on the surface layer. It is possible to manufacture a coating base material that adheres to and is difficult to peel off.

【0077】従って、本発明により、ダイヤモンド等の
硬質被覆層が剥離しにくく耐用期間の長い各種切削工
具、耐摩耗部材、電子用部材を製造することができる。
Therefore, according to the present invention, it is possible to manufacture various cutting tools, wear resistant members, and electronic members in which the hard coating layer of diamond or the like is less likely to peel off and which has a long service life.

【図面の簡単な説明】[Brief description of drawings]

【図1】参考例の基材(試料番号10)の表面の微細組
織を示すセラミック材料の組織の写真。
FIG. 1 is a photograph of a structure of a ceramic material showing a fine structure of the surface of a base material (Sample No. 10) of a reference example.

【図2】参考例の基材(試料番号10)にダイヤモンド
を被覆した後の断面の微細組織を示すセラミック材料の
組織の写真。
FIG. 2 is a photograph of the structure of a ceramic material showing the microstructure of the cross section after coating the base material (Sample No. 10) of the reference example with diamond.

【図3】参考例の基材(試料番号10)にダイヤモンド
を被覆した後の刃先断面の微細組織を示すセラミック材
料の組織の写真。
FIG. 3 is a photograph of a microstructure of a ceramic material showing a microstructure of a cross section of a cutting edge after coating a base material (Sample No. 10) of Reference Example with diamond.

【図4】参考例の基材(試料番号10)にダイヤモンド
を被覆した後の中央断面の微細組織を示すセラミック材
料の組織の写真。
FIG. 4 is a photograph of the structure of a ceramic material showing the microstructure of the central cross section after coating the base material (Sample No. 10) of the reference example with diamond.

【図5】参考例の基材(試料番号11)の断面の微細組
織(左側の上部)を示すセラミック材料の組織の写真と
製図法に従って作図することが極めて困難な電子線マイ
クロプローブ分析(EPMA)による元素分析結果(左
側の中央部はW、左側の下部はTa、右側の中央部はT
i、右側の下部はCo)を示すX線写真。
FIG. 5 is a photograph of the structure of the ceramic material showing the microstructure (upper left side) of the cross section of the base material (Sample No. 11) of the reference example and electron beam microprobe analysis (EPMA) which is extremely difficult to draw according to the drawing method. ) Elemental analysis results (the left central part is W, the lower left part is Ta, the right central part is T
i, the lower part on the right is an X-ray photograph showing Co).

【図6】試料番号1(比較例)の表面の微細組織を示す
セラミック材料の組織の写真。
FIG. 6 is a photograph of the structure of a ceramic material showing the fine structure of the surface of sample number 1 (comparative example).

【図7】試料番号1(比較例)の断面の微細組織(左側
の上部、中央の上部)を示すセラミック材料の組織の写
真と製図法に従って作図することが極めて困難なEPM
Aによる元素分析結果(左側の中央部はW、左側の下部
はTa、中央の中央部はTi、中央の下部はCo、右側
の中央部はC、右側の下部はN)を示すX線写真(な
お、各部の縮尺は同じ)。
7 is a photograph of a microstructure of a ceramic material showing a microstructure (upper left side, upper central part) of a cross section of Sample No. 1 (comparative example) and an EPM which is extremely difficult to draw according to a drawing method.
An X-ray photograph showing the result of elemental analysis by A (W on the left side, Ta on the left side, Ta on the left side, Ti on the center side, Co on the center side, C on the right side, and C on the right side) (The scale of each part is the same).

【図8】ダイヤモンド膜を被覆した試料番号1(比較
例)のダイヤモンド膜が一部剥離して露出した基材の表
面(金属組織)を示す金属組織の写真。
FIG. 8 is a photograph of a metallographic structure showing the surface (metallographic structure) of the substrate where the diamond film of Sample No. 1 (Comparative Example) coated with the diamond film is partially peeled and exposed.

【図9】試料番号2(比較例)の表面の微細組織を示す
セラミック材料の組織の写真。
FIG. 9 is a photograph of the structure of a ceramic material showing the fine structure of the surface of sample No. 2 (comparative example).

【図10】試料番号30(比較例)の表面の微細組織を
示すセラミック材料の組織の写真。
FIG. 10 is a photograph of the structure of a ceramic material showing the fine structure of the surface of sample No. 30 (comparative example).

【図11】試料番号32(比較例)の表面の微細組織を
示すセラミック材料の組織の写真。
FIG. 11 is a photograph of the structure of a ceramic material showing the fine structure of the surface of sample number 32 (comparative example).

【図12】本発明の基材にダイヤモンドを被覆した後の
断面の微細組織を示す模式図。
FIG. 12 is a schematic view showing a microstructure of a cross section after coating a base material of the present invention with diamond.

【図13】本発明の熱処理条件の概念図。FIG. 13 is a conceptual diagram of heat treatment conditions of the present invention.

【図14】試料番号41のチップの刃先部分の断面図。FIG. 14 is a cross-sectional view of a blade edge portion of a chip of sample number 41.

【図15】試料番号44のチップの刃先部分の断面図。FIG. 15 is a cross-sectional view of a cutting edge portion of a chip of sample number 44.

【図16】試料番号46のチップの刃先部分の断面図。FIG. 16 is a cross-sectional view of the tip portion of the chip of sample number 46.

【図17】試料番号41のチップの表面凹凸を示すセラ
ミック材料の組織の写真。
FIG. 17 is a photograph of the structure of a ceramic material showing the surface irregularities of the chip of sample No. 41.

【図18】試料番号44のチップの表面凹凸を示すセラ
ミック材料の組織の写真。
FIG. 18 is a photograph of the structure of a ceramic material showing the surface irregularities of the chip of sample number 44.

【図19】試料番号46のチップの表面凹凸を示すセラ
ミック材料の組織の写真。
FIG. 19 is a photograph of the structure of a ceramic material showing the surface irregularities of the sample No. 46 chip.

【符号の説明】[Explanation of symbols]

1…超硬母材 2…表面変質層 1 ... Carbide base material 2… Surface alteration layer

フロントページの続き (72)発明者 渡辺 正一 名古屋市瑞穂区高辻町14番18号 日本特 殊陶業株式会社内 (56)参考文献 特開 平3−86403(JP,A) 国際公開93/002022(WO,A1) (58)調査した分野(Int.Cl.7,DB名) B22F 3/24 C23C 8/24,16/02,26/00 B23B 27/14 Front page continuation (72) Inventor Shoichi Watanabe 14-18 Takatsuji-cho, Mizuho-ku, Nagoya City Japan Special Ceramics Co., Ltd. (56) Reference JP-A-3-86403 (JP, A) International Publication 93/002022 (WO, A1) (58) Fields investigated (Int.Cl. 7 , DB name) B22F 3/24 C23C 8 / 24,16 / 02,26 / 00 B23B 27/14

Claims (13)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】表面粗さ(Rz)2〜20μmの基凹凸面
を有し、角部の表面粗さ(Rz)は角部以外の表面粗さ
(Rz)の40%以上であることを特徴とする被覆用セ
ラミック基基材。
1. A surface roughness (Rz) having a base uneven surface of 2 to 20 μm, and the surface roughness (Rz) of the corner portion is 40% or more of the surface roughness (Rz) other than the corner portion. A characteristic ceramic base material for coating.
【請求項2】前記基凹凸面は、最表面を構成する結晶粒
子の大きさ程度である0.5〜10μmの微小凹凸を前記
基凹凸面に対し有して成る二重凹凸面構造を有すること
を特徴とする請求項1記載の被覆用セラミック基基材。
Wherein said groups uneven surface is sized extent is 0 .5~10μ m of the fine irregularities made has with respect to the base uneven surface double uneven surface structure of the crystal particles constituting the outermost surface The ceramic base substrate for coating according to claim 1, which comprises:
【請求項3】ダイヤモンド被覆用であることを特徴とす
る請求項1又は2記載の被覆用セラミック基基材。
3. A ceramic base substrate for coating according to claim 1, which is for coating diamond.
【請求項4】セラミック基基材本体と、前記基材本体を
被覆する被覆層から成り、前記基凹凸面を有する被覆層
が最外層であることを特徴とする請求項1〜3の一に記
載の被覆用セラミック基基材。
4. A ceramic base substrate body and a coating layer for coating the substrate body, wherein the coating layer having the base uneven surface is the outermost layer. A ceramic base material for coating according to the description.
【請求項5】前記セラミック基基材本体は、WCを主成
分とし、Ti又はこれとTaと、Co及びNiの少なく
とも1種を含有してなるWC基超硬合金であることを特
徴とする請求項4記載の被覆用セラミック基基材。
5. The ceramic base material body is a WC-based cemented carbide containing WC as a main component and containing Ti or Ti and at least one of Co and Ni. The ceramic base material for coating according to claim 4.
【請求項6】前記被覆層は、W−Ti−C−N固溶体及
びW−Ti−Ta−C−N固溶体の少なくとも1種を主
体として成ることを特徴とする請求項4又は5記載の被
覆用セラミック基基材。
6. The coating according to claim 4, wherein the coating layer is mainly composed of at least one of a W—Ti—C—N solid solution and a W—Ti—Ta—C—N solid solution. Ceramic base material.
【請求項7】請求項1〜6の一に記載の被覆用セラミッ
ク基基材に硬質被膜を被覆して成ることを特徴とする被
覆基材。
7. A coated substrate obtained by coating the coating ceramic base substrate according to claim 1 with a hard coating.
【請求項8】前記硬質被膜はダイヤモンドからなること
を特徴とする請求項7に記載の被覆基材。
8. The coated substrate according to claim 7, wherein the hard coating is made of diamond.
【請求項9】(a)WCを主成分とするWC基超硬合金
の角部を、角部断面における輪郭線が曲率半径R 0.005
mm以上の曲線を含むように面取りされた形状とし、 (b)前記(a)の工程で得られたWC基超硬合金を、
0.05〜5容量%のN2ガスを含有する0.5〜1.5気
圧の雰囲気下、前記WC基超硬合金の液相が発生する温
度以上焼成温度以下で熱処理し、 (c)前記WC基超硬合金の表面にN含有凹凸表面層を
形成することを特徴とする被覆用基材の製造方法。
9. (a) A corner of a WC-based cemented carbide containing WC as a main component has a radius of curvature R 0.005 when the contour line in the cross section of the corner.
a chamfered shape including a curve of mm or more, (b) the WC-based cemented carbide obtained in the step (a),
0.5 to 1.5 gas containing 0.05 to 5% by volume of N 2 gas
In an atmosphere of pressure , heat treatment is performed at a temperature not lower than a temperature at which a liquid phase of the WC-based cemented carbide is generated and not higher than a firing temperature, and (c) an N-containing uneven surface layer is formed on the surface of the WC-based cemented carbide. A method for producing a coating substrate.
【請求項10】表面粗さ(Rz)2〜20μmの基凹凸
面を有するN含有凹凸表面層を前記WC基超硬合金の表
面に形成することを特徴とする請求項9に記載の被覆用
基材の製造方法。
10. The coating according to claim 9, wherein an N-containing uneven surface layer having a basic uneven surface having a surface roughness (Rz) of 2 to 20 μm is formed on the surface of the WC-based cemented carbide. A method for manufacturing a base material.
【請求項11】前記基凹凸面が、最表面を構成する結晶
粒子の大きさ程度である0.5〜10μmの微小凹凸を前
記基凹凸面に対し有して成る二重凹凸面構造を有するN
含有凹凸表面層を、前記WC基超硬合金の表面に形成す
ることを特徴とする請求項10記載の被覆用基材の製造
方法。
Wherein said group uneven surface, sized extent is 0 .5~10μ m of the fine irregularities made has with respect to the base uneven surface double uneven surface structure of the crystal particles constituting the outermost surface With N
The method for producing a coating base material according to claim 10, wherein the containing uneven surface layer is formed on the surface of the WC-based cemented carbide.
【請求項12】前記WC基超硬合金として、WCを主体
とし、Ti又はこれとTaと、Co及びNiの少なくと
も1種を含有してなる超硬合金を用いることを特徴とす
る請求項9〜11の一に記載の被覆用基材の製造方法。
12. The WC-based cemented carbide is a cemented carbide mainly composed of WC and containing Ti or Ti and Ta, and at least one of Co and Ni. 11. The method for producing a coating substrate according to any one of items 1 to 11.
【請求項13】W−Ti−C−N固溶体及びW−Ti−
Ta−C−N固溶体の少なくとも1種を主体として成る
N含有凹凸表面層を形成することを特徴とする請求項9
〜12の一に記載の被覆用基材の製造方法。
13. A W-Ti-C-N solid solution and W-Ti-
10. An N-containing concave-convex surface layer mainly composed of at least one Ta-CN solid solution is formed.
12. The method for producing a coating base material as described in 1 above.
JP09393694A 1993-05-25 1994-04-08 Ceramic base material for diamond coating and method for producing coating material Expired - Fee Related JP3469310B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP09393694A JP3469310B2 (en) 1993-05-25 1994-04-08 Ceramic base material for diamond coating and method for producing coating material
DE1994625459 DE69425459T2 (en) 1993-05-25 1994-05-25 Ceramic-based substrate and process for its manufacture
EP19940108083 EP0627498B1 (en) 1993-05-25 1994-05-25 Ceramic-based substrate, and methods for producing same
US08/249,039 US5725932A (en) 1993-05-25 1994-05-25 Ceramic-based substrate for coating diamond and method for preparing substrate for coating
US08/718,183 US5858480A (en) 1993-05-25 1996-09-19 Ceramic-based substrate for coating diamond and method for preparing substrate for coating

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP14563493 1993-05-25
JP5-145634 1993-05-25
JP09393694A JP3469310B2 (en) 1993-05-25 1994-04-08 Ceramic base material for diamond coating and method for producing coating material

Publications (2)

Publication Number Publication Date
JPH0797603A JPH0797603A (en) 1995-04-11
JP3469310B2 true JP3469310B2 (en) 2003-11-25

Family

ID=26435205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09393694A Expired - Fee Related JP3469310B2 (en) 1993-05-25 1994-04-08 Ceramic base material for diamond coating and method for producing coating material

Country Status (1)

Country Link
JP (1) JP3469310B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6589602B2 (en) 2001-04-17 2003-07-08 Toshiba Tungaloy Co., Ltd. Highly adhesive surface-coated cemented carbide and method for producing the same
JP4831717B2 (en) * 2001-05-11 2011-12-07 日立ツール株式会社 Coated tool
JP2008100300A (en) * 2006-10-17 2008-05-01 Ngk Spark Plug Co Ltd Diamond-coated cutting insert and cutting tool
JP2008100301A (en) * 2006-10-17 2008-05-01 Ngk Spark Plug Co Ltd Diamond coated cutting insert and cutting tool
JP5075652B2 (en) * 2008-01-21 2012-11-21 日本特殊陶業株式会社 Diamond coated cutting insert and cutting tool
JP5286626B2 (en) * 2011-01-31 2013-09-11 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof
JP5286625B2 (en) * 2011-01-31 2013-09-11 住友電工ハードメタル株式会社 Surface-coated cutting tool and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0797603A (en) 1995-04-11

Similar Documents

Publication Publication Date Title
EP0223585B1 (en) A hard sintered compact for a tool
EP2570511A1 (en) Grain boundary engineered alpha-alumina coated cutting tool
EP0503822B2 (en) A diamond- and/or diamond-like carbon-coated hard material
EP0699642A2 (en) Whisker or fiber reinforced polycrystalline cubic boron nitride and diamond
EP2965842A1 (en) Coated cutting tool
EP0675212B1 (en) Method for producing a diamond coated member
US6267867B1 (en) Composite article with adherent CVD diamond coating and method of making
US5858480A (en) Ceramic-based substrate for coating diamond and method for preparing substrate for coating
JP3469310B2 (en) Ceramic base material for diamond coating and method for producing coating material
CN102245801B (en) Method of making cutting tool inserts with high demands on dimensional accuracy
KR100305315B1 (en) Diamond coated cutting tools and manufacturing method thereof
WO2009035404A1 (en) Insert for milling of cast iron
JPH0711051B2 (en) Cemented carbide and coated cemented carbide formed by forming a coating on the surface of the alloy
JPH03115571A (en) Diamond-coated sintered alloy excellent in adhesive strength and its production
JP4047940B2 (en) Ceramic substrate for diamond coating
JP2797612B2 (en) Artificial diamond coated hard sintering tool member with high adhesion strength
JPS5928628B2 (en) Surface coated cemented carbide tools
JP2917555B2 (en) Hard layer coated cemented carbide cutting tool and its manufacturing method
JP2005248309A (en) Cemented carbide and coated cemented carbide
JP3422029B2 (en) Boron nitride coated hard material and method for producing the same
JP3368794B2 (en) Surface-coated cermet throw-away type cutting insert with a hard coating layer with excellent fracture resistance
JP3353335B2 (en) Diamond coated hard material and method for producing the same
JP2970016B2 (en) Hard layer coated cemented carbide cutting tool
JP3422028B2 (en) Boron nitride coated hard material and method for producing the same
EP2201153A1 (en) Insert for milling of cast iron

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030826

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080905

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090905

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100905

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110905

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120905

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees