JP2801485B2 - Composite and method for producing the same - Google Patents

Composite and method for producing the same

Info

Publication number
JP2801485B2
JP2801485B2 JP4342987A JP34298792A JP2801485B2 JP 2801485 B2 JP2801485 B2 JP 2801485B2 JP 4342987 A JP4342987 A JP 4342987A JP 34298792 A JP34298792 A JP 34298792A JP 2801485 B2 JP2801485 B2 JP 2801485B2
Authority
JP
Japan
Prior art keywords
film
composite
particles
substrate
hard particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4342987A
Other languages
Japanese (ja)
Other versions
JPH06184750A (en
Inventor
比呂史 会田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP4342987A priority Critical patent/JP2801485B2/en
Publication of JPH06184750A publication Critical patent/JPH06184750A/en
Application granted granted Critical
Publication of JP2801485B2 publication Critical patent/JP2801485B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Chemical Vapour Deposition (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、ダイヤモンド粒子や立
方晶窒化ホウ素粒子などの硬質粒子を含有する複合膜を
形成した複合体およびその製法に関し、特に切削工具や
耐摩耗材料に適した複合体に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite formed with a composite film containing hard particles such as diamond particles and cubic boron nitride particles and a method for producing the same, and more particularly to a composite suitable for cutting tools and wear-resistant materials. About.

【0002】[0002]

【従来技術】従来より、セラミックスは、所定のセラミ
ック原料粉末を成形し焼成することによって製造され、
そのモノリシック材料の優れた特性を広い分野に適用し
てきたが、さらなる特性の向上を図るために、近年、特
性の異なる物質同士の複合材料が開発されている。
2. Description of the Related Art Conventionally, ceramics have been manufactured by molding and firing predetermined ceramic raw material powder.
Although the excellent properties of the monolithic material have been applied to a wide range of fields, in order to further improve the properties, composite materials having different properties have been developed in recent years.

【0003】代表的な複合材料としては、ウイスカーな
どの繊維体や特殊な粒子(超微粒子を含む)などを所定
の材料中に分散させて機械的特性を高めたものが知られ
ている。また、所定の基板表面に特定のセラミックスか
らなる膜を形成することにより基板材料の表面特性を改
善するなどの試みが行われている。
As a typical composite material, a material in which a fibrous body such as a whisker or special particles (including ultrafine particles) or the like is dispersed in a predetermined material to enhance mechanical properties is known. Attempts have also been made to improve the surface characteristics of a substrate material by forming a film made of a specific ceramic on a predetermined substrate surface.

【0004】一方、セラミックからなる膜を形成する代
表的な方法として、気相成長法(CVD法)が知られて
いる。この気相合成法は、例えば、セラミックを生成可
能な複数種の反応ガスを、内部に基体が設置された所定
の反応炉内に導入し、気相中において反応ガス同士を反
応させて基体表面にセラミック膜をさせるものである。
このような成膜方法によれば、焼結法によるセラミック
スに比較して焼結助剤等を含まないために高純度であ
り、そのセラミックスの本来の特性を引き出すことがで
きることから、その応用研究が進められている。
On the other hand, as a typical method for forming a ceramic film, a vapor phase growth method (CVD method) is known. In this gas phase synthesis method, for example, a plurality of types of reaction gases capable of producing ceramics are introduced into a predetermined reaction furnace in which a substrate is provided, and the reaction gases react with each other in a gas phase to form a substrate surface. A ceramic film.
According to such a film forming method, since it does not contain a sintering aid or the like as compared with ceramics produced by a sintering method, it has a high purity and can bring out the original characteristics of the ceramics. Is being promoted.

【0005】その具体的な例としては、超硬合金やセラ
ミックなどの基体表面に高硬度の材料として知られるダ
イヤモンドを気相成長法により析出させることにより耐
摩耗性を向上させ、切削工具やその他の耐摩耗部品に適
用することが検討されている。その他、立方晶窒化ホウ
素もダイヤモンドと並び高硬度の材料として各種の応用
が進められている。
[0005] As a specific example, abrasion resistance is improved by depositing diamond, which is a material having high hardness, on a substrate surface such as a cemented carbide or ceramic by a vapor phase growth method. To be applied to wear-resistant parts. In addition, various applications of cubic boron nitride have been advanced as a material having high hardness along with diamond.

【0006】[0006]

【発明が解決しようとする問題点】しかしながら、従来
のダイヤモンドや立方晶窒化ホウ素などの硬質膜を被覆
した複合体によれば、硬質膜と基体との密着性が小さい
ために膜剥離が生じやすく、その利用分野が限られるな
どの制約があり、しかも例えば従来の気相成長法によれ
ば、ダイヤモンド膜の成長速度が非常に遅いために量産
性に欠け、コストが高くなるという問題がある。
However, according to the conventional composite coated with a hard film such as diamond or cubic boron nitride, the adhesion between the hard film and the substrate is small, so that the film is easily peeled. However, there is a limitation that the field of use is limited, and, for example, according to the conventional vapor phase growth method, there is a problem that the diamond film growth rate is very slow, so that mass production is lacking and the cost increases.

【0007】また、ダイヤモンドや立方晶窒化ホウ素な
どの膜以外のセラミック膜を形成する場合においても、
高速で成長させることが必要であるが、その場合、膜中
に積層欠陥が大量に形成されるために内部応力が大きく
なり、合成した膜に亀裂が生じるという問題があった。
しかも、気相成長法の特有の性質として、膜生成時の結
晶の配向により結晶が柱状に大きくなり、この結晶の異
常成長粒子により膜自体の強度が低下し、膜中の応力に
より膜が破損する等の問題があった。
In the case of forming a ceramic film other than a film of diamond or cubic boron nitride,
It is necessary to grow the film at a high speed, but in that case, there is a problem that a large number of stacking faults are formed in the film, so that the internal stress increases and a crack occurs in the synthesized film.
Moreover, as a characteristic property of the vapor phase growth method, the crystal grows columnar due to the orientation of the crystal at the time of film formation, the strength of the film itself is reduced by abnormal growth particles of the crystal, and the film is damaged by stress in the film. There was a problem such as doing.

【0008】[0008]

【問題を解決するための手段】本発明者は、上記の問題
点に対して検討を重ねた結果、所定の基体表面にセラミ
ックスを従来法の気相成長法により生成させると同時
に、ダイヤモンド粒子あるいは立方晶窒化ホウ素粒子を
基板に堆積させることにより、セラミック膜中にダイヤ
モンド粒子あるいは立方晶窒化ホウ素粒子からなる硬質
粒子を分散させることができ、それによりマトリックス
を構成する金属又はセラミックスの特性を高めることが
できることを見出した。
Means for Solving the Problems As a result of repeated investigations on the above problems, the present inventors produced ceramics on a predetermined substrate surface by a conventional vapor phase growth method, and simultaneously formed diamond particles or diamond particles. By depositing cubic boron nitride particles on a substrate, it is possible to disperse hard particles composed of diamond particles or cubic boron nitride particles in a ceramic film, thereby improving the properties of the metal or ceramic constituting the matrix. I found that I can do it.

【0009】即ち、本発明は、基体表面に、気相法によ
り生成された金属又はセラミックスまたはそれらの混合
体からなるマトリックス中にダイヤモンド粒子あるいは
立方晶窒化ホウ素粒子からなる硬質粒子を分散含有する
複合膜を被覆するととともに、該複合膜中の前記硬質粒
子を内部より表面に多く存在させたことを特徴とする複
合体であって、かかる複合体の製法として、反応炉内に
基体を設置するとともに、金属又はセラミックス生成用
反応ガスを導入し、前記基体の表面に金属又はセラミッ
クスを析出させると同時に、前記基体表面にダイヤモン
ド粒子あるいは立方晶窒化ホウ素粒子からなる硬質粒子
が内部より表面に多くなるように堆積させたことを特徴
とするものである。
That is, the present invention provides a composite comprising, on a substrate surface, hard particles composed of diamond particles or cubic boron nitride particles dispersed in a matrix composed of a metal or ceramic produced by a gas phase method or a mixture thereof. A composite, which is characterized in that the hard particles in the composite film are present more on the surface than inside the composite film, and as a method for producing the composite, a substrate is placed in a reaction furnace. A reaction gas for generating metal or ceramics is introduced to deposit metal or ceramics on the surface of the substrate, and at the same time, the surface of the substrate has more hard particles composed of diamond particles or cubic boron nitride particles than the inside. Characterized in that they are deposited on

【0010】[0010]

【作用】本発明によれば、反応ガスによりマトリックス
成分を析出させると同時に、基体表面にダイヤモンド粒
子や立方晶窒化ホウ素粒子などの硬質粒子を堆積させる
ことにより、図1に示すように、基体1の表面に、マト
リックス2中にダイヤモンド粒子あるいは立方晶窒化ホ
ウ素粒子の硬質粒子3を分散含有する複合膜を被覆した
複合体を得ることができる。このように膜中に硬質粒子
を含有させることにより、膜自体の特性を向上させると
ともに、その表面にダイヤモンドや立方晶窒化ホウ素の
特性を有した複合体を安価に製造することができる。
According to the present invention, the matrix component is precipitated by the reaction gas and at the same time, hard particles such as diamond particles and cubic boron nitride particles are deposited on the surface of the substrate. A composite having a matrix 2 coated with a composite film containing hard particles 3 of diamond particles or cubic boron nitride particles dispersed in a matrix 2 can be obtained. By including the hard particles in the film as described above, the characteristics of the film itself can be improved, and a composite having the characteristics of diamond or cubic boron nitride on its surface can be manufactured at low cost.

【0011】硬質粒子と基体とは、その熱膨張係数差が
大きいために密着性が低いが、本発明によれば、膜中の
硬質粒子を内部より表面に多く存在させると、複合膜自
体の耐摩耗性を向上させることができるとともに、基体
の熱膨張係数に近似したマトリックスを選択することに
より、膜の基体との密着性を向上することができる。
Although the hard particles and the substrate have low adhesion due to a large difference in the coefficient of thermal expansion between them, according to the present invention, if more hard particles are present on the surface than inside the film, the composite film itself becomes Abrasion resistance can be improved, and the adhesion of the film to the substrate can be improved by selecting a matrix that approximates the coefficient of thermal expansion of the substrate.

【0012】また、ダイヤモンド粒子の分散により膜の
マトリックス成分の結晶成長が抑制され、巨大な柱状結
晶粒の生成を防止し、比較的微細な結晶粒からなるマト
リックスを得ることができる。これにより、巨大な柱状
結晶粒による膜の破壊が防止される。
Further, the crystal growth of the matrix component of the film is suppressed by the dispersion of the diamond particles, the formation of huge columnar crystal grains is prevented, and a matrix composed of relatively fine crystal grains can be obtained. This prevents the destruction of the film due to the huge columnar crystal grains.

【0013】さらに、本発明の方法によれば、マトリッ
クス成分のみの気相成長法による成膜に比較して硬質粒
子が堆積することから膜全体の形成速度を高めることが
できる。
Further, according to the method of the present invention, since the hard particles are deposited as compared with the film formation by the vapor phase growth method using only the matrix component, the formation speed of the entire film can be increased.

【0014】[0014]

【実施例】以下、本発明を図面を参照しつつ説明する。
図1は、本発明の複合体を製造するための膜形成装置の
概略配置図である。図中、4は反応炉、5は基体、6は
膜生成用反応ガス導入管、7は硬質粒子導入管、8は基
体を加熱するためのヒータ、9は硬質粒子の保持容器で
ある。基体5は炉壁よりも70℃低くなるようにガス冷
却をほどこしており、熱泳動によって硬質粒子が効率良
く膜中に取り込まれるようにしている。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.
FIG. 1 is a schematic layout diagram of a film forming apparatus for producing the composite of the present invention. In the figure, 4 is a reaction furnace, 5 is a substrate, 6 is a reaction gas introduction tube for film formation, 7 is a hard particle introduction tube, 8 is a heater for heating the substrate, and 9 is a holding container for hard particles. The substrate 5 is subjected to gas cooling so as to be 70 ° C. lower than the furnace wall, so that hard particles are efficiently taken into the film by thermophoresis.

【0015】本発明によれば、反応炉4内に所定の基体
5を設置し、その反応炉4にマトリックス生成用の反応
ガスをガス導入管6から反応炉4内に導入する。一方、
容器9には粒径が0.01乃至0.1μm程度の超微粒
ダイヤモンド粒子や立方晶窒化ホウ素などの硬質粒子が
設置されており、容器内に間歇的に水素ガスなどのガス
を流すことにより、硬質粒子が導入管7を通って反応炉
4に輸送される。硬質粒子を輸送するためのキャリアガ
スとしては、窒素やAr等の不活性ガスの他に、水素や
マトリックス生成用反応ガスを用いることもできる。
According to the present invention, a predetermined substrate 5 is installed in the reaction furnace 4, and a reaction gas for generating a matrix is introduced into the reaction furnace 4 from the gas introduction pipe 6. on the other hand,
Hard particles such as ultrafine diamond particles and cubic boron nitride having a particle size of about 0.01 to 0.1 μm are installed in the container 9, and by intermittently flowing a gas such as hydrogen gas into the container, The hard particles are transported to the reactor 4 through the inlet tube 7. As a carrier gas for transporting the hard particles, hydrogen or a reactive gas for generating a matrix can be used in addition to an inert gas such as nitrogen or Ar.

【0016】そして、基体5をヒータ8と冷却用のガス
により所定の温度に設定することにより、基体5表面近
傍にて反応ガスの分解および反応により基体表面にマト
リックスが析出する。一方、反応炉内に輸送された硬質
粒子はマトリックス膜の形成と同時に基体表面に堆積
し、これにより硬質粒子は膜中に取り込まれる。膜中の
硬質粒子量を変えるにはキャリアガスの間欠的導入回数
を増やしたり、流量を変えることで任意に制御すること
ができる。
By setting the temperature of the substrate 5 to a predetermined temperature using the heater 8 and the cooling gas, a matrix is deposited on the surface of the substrate 5 by decomposition and reaction of the reaction gas near the surface of the substrate 5. On the other hand, the hard particles transported into the reactor are deposited on the substrate surface at the same time as the formation of the matrix film, whereby the hard particles are taken into the film. The amount of the hard particles in the film can be changed arbitrarily by increasing the number of intermittent introductions of the carrier gas or changing the flow rate.

【0017】例えば、膜の生成初期には硬質粒子を導入
せずに、徐々にキャリアガスの間歇的導入回数を増やす
ことにより、図3の他の実施例を示す断面図に示すよう
に、基体1上にその表面ほどマトリックス2中の硬質粒
子3の含有量の多い複合膜が形成される。
For example, as shown in the cross-sectional view of another embodiment of FIG. 3, by gradually increasing the number of intermittent introductions of the carrier gas without introducing the hard particles in the initial stage of film formation, A composite film having a higher content of the hard particles 3 in the matrix 2 is formed on the surface of the substrate 1.

【0018】得られる複合膜は、基体1の表面に形成し
たままの状態で使用してもよいし、膜厚の大きい複合膜
を形成した後に基体1を除去して複合膜単体として用い
ることも可能である。
The obtained composite film may be used as it is formed on the surface of the substrate 1, or it may be used as a single composite film by removing the substrate 1 after forming a thick composite film. It is possible.

【0019】本発明において、硬質粒子を分散含有する
金属やセラミックスなどのマトリックス成分としては、
窒化珪素、炭化珪素およびアルミナなどのセラミックス
や、タングステンやモリブデンなどの高融点金属、ある
いはその他の金属の酸化物、炭化物、窒化物、炭窒化
物、ホウ化物、ケイ化物等が挙げられ、これらも適宜組
み合わせて用いることもできる。
In the present invention, matrix components such as metals and ceramics containing hard particles dispersed therein include:
Examples include oxides, carbides, nitrides, carbonitrides, borides, and silicides of ceramics such as silicon nitride, silicon carbide, and alumina, and refractory metals such as tungsten and molybdenum, and other metals. They can be used in combination as appropriate.

【0020】本発明における複合膜中の硬質粒子は、複
合膜中に10〜80体積%、好ましくは30〜65体積
%の割合で分散含有されることが望ましく、10体積%
以下では複合体の特性はマトリックス単体膜に比べて大
きな向上はなく、80体積%以上になると硬質粒子が密
集するためにその間隙にボイドが形成されて密着力が低
下する。
The hard particles in the composite film according to the present invention are preferably dispersed and contained in the composite film at a ratio of 10 to 80% by volume, preferably 30 to 65% by volume.
In the following, the characteristics of the composite are not significantly improved as compared with the matrix single film, and when the volume is 80% by volume or more, voids are formed in the gaps due to the denseness of the hard particles, and the adhesion decreases.

【0021】以下、本発明を具体的な例で説明する。 実施例1 図2において、ダイヤモンド粒子(粒径0. 05〜0.
1μm)を入れた容器9にArガスを通過させ、ダイヤ
モンド粒子を不活性ガス中に浮遊させて反応炉4に導入
した。一方、水素ガスをキャリアガスとしてメチルトリ
クロロシランガスを15%の濃度で混合した反応ガスを
反応炉4内に5リットル/minの流量で導入した。そ
して、炭化珪素質焼結体からなる基板5を1500℃に
ヒータ8により加熱し、炭化珪素を15分間析出させる
と同時にダイヤモンドを堆積させ、膜厚36μmの複合
膜を作製した。
Hereinafter, the present invention will be described with reference to specific examples. Example 1 In FIG. 2, diamond particles (particle diameter 0.05 to 0.5) were used.
Ar gas was passed through a container 9 containing 1 μm), and the diamond particles were suspended in an inert gas and introduced into the reaction furnace 4. On the other hand, a reaction gas in which methyltrichlorosilane gas was mixed at a concentration of 15% using hydrogen gas as a carrier gas was introduced into the reaction furnace 4 at a flow rate of 5 liter / min. Then, the substrate 5 made of the silicon carbide-based sintered body was heated to 1500 ° C. by the heater 8 to deposit silicon carbide for 15 minutes and simultaneously deposit diamond to produce a composite film having a thickness of 36 μm.

【0022】得られた複合膜は、ダイヤモンド粒子を1
6体積%の割合で含有していた(試料1)。また、容器
9に流すArガスの量を1/2として同様の条件で膜を
堆積させた。その結果、膜中にダイヤモンドが7体積%
含まれていた(試料2)。さらに、比較のためにダイヤ
モンドを堆積させることなく成膜を行い、35μmの炭
化珪素膜を形成した(試料3)。上記のようにして得ら
れた複合体に対して、ピンオンディスク法を用いて摩耗
テストを測定したところ、試料1の複合体は、炭化珪素
膜を形成した試料3に比べて摩耗量が30%減少した。
また、試料2の複合体では試料3に比較して6%の摩耗
量の減少が見られた。
The obtained composite film is composed of 1 diamond particle.
The content was 6% by volume (Sample 1). Further, a film was deposited under the same conditions with the amount of Ar gas flowing through the container 9 being 1 /. As a result, 7% by volume of diamond was contained in the film.
Included (Sample 2). Further, for comparison, a film was formed without depositing diamond to form a silicon carbide film having a thickness of 35 μm (sample 3). When a wear test was performed on the composite obtained as described above by using a pin-on-disk method, the composite of Sample 1 had a wear amount of 30 compared to Sample 3 on which a silicon carbide film was formed. %Diminished.
Further, in the composite of Sample 2, the wear amount was reduced by 6% as compared with Sample 3.

【0023】実施例2 実施例1と同様に、ダイヤモンド粒子(50体積%)と
立方晶窒化ホウ素粒子(50体積%)の硬質粒子を入れ
た容器9に水素ガスを通過させ、硬質粒子を反応炉4内
に導入した。一方、水素ガスをキャリアガスとしてジク
ロロシランとアンモニアガスをそれぞれキャリアガスに
対して8%の濃度で混合した反応ガスを反応炉4内に3
リットル/minの流量で導入した。そして、窒化珪素
質焼結体からなる基板5を1300℃にヒータ8により
加熱し、窒化珪素を析出させると同時に硬質粒子を堆積
させ、膜厚10μmの窒化珪素をマトリックスとしてダ
イヤモンドおよび立方晶窒化ホウ素の硬質粒子を含む複
合膜を形成した。得られた膜は、硬質粒子を41体積%
の割合で含有していた(試料4)。
Example 2 As in Example 1, hydrogen gas was passed through a container 9 containing hard particles of diamond particles (50% by volume) and cubic boron nitride particles (50% by volume) to react the hard particles. It was introduced into the furnace 4. On the other hand, a reaction gas obtained by mixing dichlorosilane and ammonia gas at a concentration of 8% with respect to the carrier gas using hydrogen gas as a carrier gas is placed in the reaction furnace 4.
It was introduced at a flow rate of liter / min. Then, the substrate 5 made of the silicon nitride sintered body is heated to 1300 ° C. by the heater 8 to deposit silicon nitride and deposit hard particles at the same time, and to form diamond and cubic boron nitride using silicon nitride having a thickness of 10 μm as a matrix. A composite film containing the hard particles was formed. The resulting film contains 41% by volume of hard particles.
(Sample 4).

【0024】また、Arガスの導入回数を2倍にして上
記と同様の条件で合成したところ64体積%の硬質粒子
を含有する複合膜が形成された(試料5)。
When the number of introductions of Ar gas was doubled and the synthesis was performed under the same conditions as above, a composite film containing 64% by volume of hard particles was formed (Sample 5).

【0025】さらに容器9に流すArガスの量を3倍と
したところ75体積%の硬質粒子を含有する複合膜が形
成された(試料6)。
When the amount of Ar gas flowing through the container 9 was tripled, a composite film containing 75% by volume of hard particles was formed (Sample 6).

【0026】また、比較例として硬質粒子を堆積せずに
10μmの厚みの窒化珪素単体膜を形成した(試料
7)。
As a comparative example, a silicon nitride single film having a thickness of 10 μm was formed without depositing hard particles (Sample 7).

【0027】上記のようにして得られた複合材に対して
実施例1と同様にして摩耗テストを実施したところ、試
料4および試料5の複合体では、窒化珪素単体膜の試料
7に比較して摩耗量が52%および67%それぞれ減少
した。また、試料6は、試料7に比較して摩耗量が67
%減少した。
When a wear test was performed on the composite material obtained as described above in the same manner as in Example 1, the composite of Samples 4 and 5 was compared with Sample 7 of a silicon nitride single film. The wear amount was reduced by 52% and 67%, respectively. Further, the wear amount of Sample 6 was 67 compared to that of Sample 7.
%Diminished.

【0028】実施例3 実施例1において、容器9に導入するArガスの導入量
を成膜過程で変化させてダイヤモンドを5体積%含有す
る膜を2μmの厚みで形成した後、その上にダイヤモン
ドを20体積%含有する膜を4μmの厚みで形成し、さ
らにその上にダイヤモンドを60体積%含有する膜を4
μmの厚みで形成した(試料8)。得られた複合体に対
して実施例1と同様にして摩耗テストを実施したとこ
ろ、実施例2における窒化珪素単体膜からなる試料7に
比較して、試料8は、摩耗量が75%減少した。
Example 3 In Example 1, a film containing 5% by volume of diamond was formed at a thickness of 2 μm by changing the amount of Ar gas introduced into the container 9 during the film formation process, and then a diamond film was formed thereon. Is formed at a thickness of 4 μm, and a film containing 60% by volume of diamond is further formed thereon.
It was formed with a thickness of μm (sample 8). When a wear test was performed on the obtained composite in the same manner as in Example 1, the wear amount of Sample 8 was reduced by 75% as compared with Sample 7 of Example 2, which was made of a silicon nitride single film. .

【0029】[0029]

【発明の効果】以上、詳述した通り、本発明によれば、
マトリックス中に熱伝導性、電気絶縁性、硬度等に優れ
るダイヤモンド粒子を分散含有する複合膜を形成するこ
とにより、例えば耐摩耗性などの膜自体の特性を向上さ
せるとともに、その表面にダイヤモンドや立方晶窒化ホ
ウ素特性を有した複合体を安価に製造することができ
る。これにより、かかる複合体を切削工具や各種の耐摩
耗部品に応用することにより摩耗性を向上させることが
できる。しかも、ダイヤモンドの特性を各種の部品に生
かすことができる。
As described above, according to the present invention,
By forming a composite film containing diamond particles with excellent thermal conductivity, electrical insulation, hardness, etc. dispersed in a matrix, the characteristics of the film itself, such as abrasion resistance, can be improved, and diamond or cubic A composite having the properties of polycrystalline boron nitride can be manufactured at low cost. Thereby, the wear property can be improved by applying the composite to a cutting tool and various wear-resistant parts. In addition, the characteristics of diamond can be utilized for various components.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の複合体の一実施例を示すための断面図
を示す。
FIG. 1 is a cross-sectional view showing one embodiment of the composite of the present invention.

【図2】本発明の複合体を製造するための膜形成装置の
概略配置図である。
FIG. 2 is a schematic layout view of a film forming apparatus for producing a composite of the present invention.

【図3】本発明の複合体の他の実施例を示すための断面
図を示す。
FIG. 3 is a sectional view showing another embodiment of the composite of the present invention.

【符号の説明】[Explanation of symbols]

1 基体 2 マトリックス 3 硬質粒子 4 反応炉 5 基体 6 反応ガス導入管 7 硬質粒子導入管 8 ヒータ 9 硬質粒子容器 DESCRIPTION OF SYMBOLS 1 Substrate 2 Matrix 3 Hard particles 4 Reactor 5 Substrate 6 Reaction gas introduction tube 7 Hard particle introduction tube 8 Heater 9 Hard particle container

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C23C 16/00 - 16/56 B23P 15/28 C30B 29/04 B23B 27/14──────────────────────────────────────────────────の Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) C23C 16/00-16/56 B23P 15/28 C30B 29/04 B23B 27/14

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】基体表面に、気相法により生成された金属
又はセラミックスまたはそれらの混合体からなるマトリ
ックス中にダイヤモンド粒子あるいは立方晶窒化ホウ素
粒子からなる硬質粒子を分散含有する複合膜を被覆する
ととともに、該複合膜中の前記硬質粒子を内部より表面
に多く存在させたことを特徴とする複合体。
The present invention relates to a method of coating a substrate surface with a composite film containing diamond particles or hard particles made of cubic boron nitride particles dispersed in a matrix made of a metal or ceramic produced by a gas phase method or a mixture thereof. A composite, wherein the hard particles in the composite film are present more on the surface than on the inside.
【請求項2】反応炉内に基体を設置するとともに、金属
又はセラミックス生成用反応ガスを導入し、前記基体の
表面に金属又はセラミックスを析出させると同時に、前
記基体表面にダイヤモンド粒子あるいは立方晶窒化ホウ
素粒子からなる硬質粒子が内部より表面に多くなるよう
に堆積させたことを特徴とする複合体の製法。
2. A substrate is placed in a reaction furnace, and a reaction gas for generating metal or ceramics is introduced to deposit metal or ceramics on the surface of the substrate. At the same time, diamond particles or cubic nitride are deposited on the surface of the substrate. A method for producing a composite, wherein hard particles composed of boron particles are deposited so as to be more on the surface than on the inside.
JP4342987A 1992-12-24 1992-12-24 Composite and method for producing the same Expired - Fee Related JP2801485B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4342987A JP2801485B2 (en) 1992-12-24 1992-12-24 Composite and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4342987A JP2801485B2 (en) 1992-12-24 1992-12-24 Composite and method for producing the same

Publications (2)

Publication Number Publication Date
JPH06184750A JPH06184750A (en) 1994-07-05
JP2801485B2 true JP2801485B2 (en) 1998-09-21

Family

ID=18358062

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4342987A Expired - Fee Related JP2801485B2 (en) 1992-12-24 1992-12-24 Composite and method for producing the same

Country Status (1)

Country Link
JP (1) JP2801485B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1555333A3 (en) * 2002-04-10 2005-08-03 Siemens Aktiengesellschaft Thermal barrier coating system
KR100572669B1 (en) 2004-02-09 2006-04-24 신한다이아몬드공업 주식회사 Cutting tools with multi layers of abrasive grain and method for fabricating the same
KR100592711B1 (en) * 2004-03-05 2006-06-26 신한다이아몬드공업 주식회사 Cutting tools with separate tip attached and method for fabricating the same
WO2012166745A1 (en) * 2011-05-27 2012-12-06 Nanomech Inc. Thick cubic boron nitride (cbn) layer and manufacturing process therefor
CN105239032A (en) * 2015-10-16 2016-01-13 东华大学 Manufacturing method for gradient cemented carbide matrix of diamond coating
CN105252239A (en) * 2015-10-16 2016-01-20 东华大学 Preparing method of gradient hard alloy cutter

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0623436B2 (en) * 1984-07-31 1994-03-30 住友電気工業株式会社 Composite hard film coated tool
US4787394A (en) * 1986-04-24 1988-11-29 Kabushiki Kaisha Toshiba Ultrasound therapy apparatus
US4927222A (en) * 1986-06-16 1990-05-22 Shiley Incorporated Dual optical fiber device
JP2780100B2 (en) * 1989-03-15 1998-07-23 日本真空技術株式会社 Chemical vapor deposition method and apparatus mixed with magnetic minute objects

Also Published As

Publication number Publication date
JPH06184750A (en) 1994-07-05

Similar Documents

Publication Publication Date Title
US5672382A (en) Composite powder particle, composite body and method of preparation
US4312924A (en) Super hard highly pure silicon nitrides
US7771798B1 (en) Method for producing composite layers using a plasma jet source
US5154862A (en) Method of forming composite articles from CVD gas streams and solid particles of fibers
US3574672A (en) Cvd process for producing tungsten carbide and article of manufacture
JP2801485B2 (en) Composite and method for producing the same
EP0975820A1 (en) Hard material coating of a cemented carbide or carbide containing cermet substrate
JPH0717479B2 (en) Diamond film manufacturing method
US5527747A (en) Rapid process for the preparation of diamond articles
JP2722724B2 (en) Method of coating diamond film
Rozbicki et al. Nucleation and growth of combustion flame deposited diamond on silicon nitride
JPS61261480A (en) Diamond coated member
JP2691220B2 (en) Diamond synthesis
JPH02267284A (en) Polycrystalline diamond object and production thereof by vapor synthesis method
JP3160399B2 (en) Diamond film manufacturing method
JPH05195226A (en) Production of ceramic film
JPH0582474B2 (en)
JPH01145314A (en) Production of super hard polycrystal
Tzeng et al. relatively short-lived excited species such as H0 and CH3". Initial specimens
JP3138222B2 (en) Method for producing free-standing diamond film
JPS63185859A (en) Diamond coating formation for sintered diamond and diamond coated sintered diamond
JPH02217394A (en) Massive body of crystalline silicon nitride
JPS6365081A (en) Surface coating method
JPH02254168A (en) Production of boron nitride
Lavrenko et al. Coating with silicon carbide in high-frequency discharge

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees