JPS6124897B2 - - Google Patents

Info

Publication number
JPS6124897B2
JPS6124897B2 JP51065780A JP6578076A JPS6124897B2 JP S6124897 B2 JPS6124897 B2 JP S6124897B2 JP 51065780 A JP51065780 A JP 51065780A JP 6578076 A JP6578076 A JP 6578076A JP S6124897 B2 JPS6124897 B2 JP S6124897B2
Authority
JP
Japan
Prior art keywords
setting
seconds
relay device
value
timer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP51065780A
Other languages
Japanese (ja)
Other versions
JPS52147746A (en
Inventor
Yoshiji Nii
Mitsuyasu Furuse
Haruo Sasaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Tokyo Electric Power Co Holdings Inc
Original Assignee
Meidensha Corp
Tokyo Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Tokyo Electric Power Co Inc filed Critical Meidensha Corp
Priority to JP6578076A priority Critical patent/JPS52147746A/en
Publication of JPS52147746A publication Critical patent/JPS52147746A/en
Publication of JPS6124897B2 publication Critical patent/JPS6124897B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、電力系統から得られるデジタル情
報を計算機により処理し、この結果により該系統
の保護を行なうデジタル保護継電装置に関し、特
にモーリアクタンス特性の整定値の設定時の誤り
を検出する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a digital protective relay device that uses a computer to process digital information obtained from an electric power system and protects the system based on the results, particularly when setting a set value of Mori reactance characteristics. The present invention relates to a method for detecting errors.

事故検出整定値として、距離継電装置において
は、事故検出距離を定めるインピーダンス値およ
び動作の時間的協調をとる時間があり、また過電
流継電装置では、動作を開始させる臨界電流値が
ある。
As the accident detection set value, in a distance relay device, there is an impedance value that determines the accident detection distance and a time for temporal coordination of operations, and in an overcurrent relay device, there is a critical current value that starts the operation.

これらの値はオペレータが数値を印字したスイ
ツチ(デジタル.スイツチ)や、キーを操作する
ことにより計算機の所定記憶部に書きこまれる。
そして、保護演算はこれらを書きこまれた値と、
サンプリング周期ごとに書きこまれる電流.電圧
変成器よりのデータとで行なわれる。
These values are written into a predetermined storage section of the computer by the operator operating a switch (digital switch) on which numerical values are printed or a key.
Then, the protection operation uses these written values as
Current written every sampling period. This is done using data from a voltage transformer.

デジタル的保護継電装置の演算手段としてミニ
コンピユータやマイクロ.コンピユータを使用す
る点は、複数の保護機能を同一のコンピユータで
処理できる点、また、整定値の設定方法によつて
は、保護継電装置にとつて種々の整定値を任意に
書きこんで多機能で応範囲の整定値を同一のハー
ドで実現できる点等利点であるが、整定値の設定
を人間が行なうという点から見ると誤まつたキー
やスイツチを押す可能性が大であるため欠点であ
る。
A minicomputer or microcomputer is used as a calculation means for a digital protective relay device. The advantage of using a computer is that multiple protection functions can be processed by the same computer, and depending on the setting value setting method, various setting values can be arbitrarily written for the protective relay device. It has the advantage of being able to set a range of settings using the same hardware, but it has the disadvantage of having to set the settings manually because there is a high possibility of pressing the wrong key or switch. It is.

この発明の目的は、前述のコンピユータ処理の
利点を生かすと共にオペレータによる整定値の設
定が誤り易いという欠点を補なう特にモーリアク
タンス特性における事故検出整定値の設定誤り検
出方法を提供するにある。
An object of the present invention is to provide a method for detecting errors in setting of an accident detection set value, particularly in the case of mori reactance characteristics, which takes advantage of the above-mentioned advantages of computer processing and compensates for the drawback that setting of the set value by an operator is likely to be erroneous.

以下、この発明を従来例に応用した場合を図面
について説明する。
Hereinafter, a case where the present invention is applied to a conventional example will be explained with reference to the drawings.

第1図aには従来の保護継電装置の特性が示し
てある。これは、保護継電装置設置点より事故点
までのインピーダンスが送電線路の距離に比例す
ることを応用した距離継電装置の一般的動作特性
をインピーダンス座標(R−X座標)で表わした
ものである。ここでMは事故方向を判別するモー
特性、O1,O2はそれぞれリアクタンスを測定す
るリアクタンス第1段、第2段特性である。
FIG. 1a shows the characteristics of a conventional protective relay device. This is a general operating characteristic of a distance relay device expressed in impedance coordinates (R-X coordinates) based on the fact that the impedance from the protective relay device installation point to the fault point is proportional to the distance of the power transmission line. be. Here, M is the Moh characteristic for determining the accident direction, and O 1 and O 2 are the reactance first stage and second stage characteristics for measuring the reactance, respectively.

これらM,O1,O2の各保護機能を同一のコン
ピユータで演算することは、いずれの保護機能も
送電線路等のインピーダンスを求めていて入力デ
ータが同じであり、相電圧より線間電圧を求め
る、相電流の和で零相電流を求める、電流を移相
することにより基準ベクトルを求めるなどの演算
がM,O1,O2共通であり、各々求めた結果が共
用できるなどのため好都合である。
Calculating each of these M, O 1 , and O 2 protection functions with the same computer means that all protection functions calculate the impedance of the power transmission line, etc., and the input data is the same, so the line voltage is calculated more than the phase voltage. It is convenient because calculations such as calculating the zero-phase current by calculating the sum of the phase currents, and calculating the reference vector by shifting the phase of the current are common to M, O 1 and O 2 , and the results obtained for each can be shared. It is.

この第1図bに示す回路は、第1図aの機能を
有するもので、モー出力Mとリアクタンス第1段
O1出力はAND回路2を通りタイマT1の設定時限
後OR回路3に至り、モー出力Mとリアクタンス
第2段出力O2はAND回路1を通りタイマT2の設
定時限後OR回路3に至り、またモー出力Mは単
独でタイマT3の設定時限後OR回路3に至り、か
くして各信号がOR回路からトリツプ信号となる
限時距離継電装置である。
The circuit shown in Fig. 1b has the functions shown in Fig. 1a, and has a motor output M and a reactance of the first stage.
The O 1 output passes through the AND circuit 2 and reaches the OR circuit 3 after the set time of timer T 1 has expired, and the mo output M and reactance second stage output O 2 pass through the AND circuit 1 and reaches the OR circuit 3 after the set time of timer T 2 has expired. Also, the motor output M alone reaches the OR circuit 3 after the set time of the timer T3 , thus forming a time-limited distance relay device in which each signal becomes a trip signal from the OR circuit.

この場合、インピーダンスの大きさを検出する
機能M,O1,O2の整定値と、動作出力の時間協
調をとる機能T1,T2,T3との整定値が適用系統
に従がいオペレータによりコンピユータに与えら
れる。
In this case, the set values of the functions M, O 1 , O 2 that detect the magnitude of impedance and the set values of the functions T 1 , T 2 , T 3 that coordinate the operation output in time are determined by the operator according to the applied system. is given to the computer by

今、例えば、T1は1秒から3秒まで、T2は2
秒から5秒まで、T3は3から10秒までの整定範
囲をもつているとする。この各タイマの設定は限
時距離継電方式の考え方からT1<T2<T3の関係
にしなければならないのでT1=1.5秒、T2=2.0
秒、T3=4.5秒と決めオペレータがタイマの秒数
を設定するためダイヤルを回転させるとき、何か
の誤りで例えばT1=1.5秒、T2=4.5秒、T3=2.0
秒としてしまう場合がある。
Now, for example, T 1 is from 1 second to 3 seconds, T 2 is 2
Assume that T 3 has a settling range of 3 to 10 seconds. The settings of each timer must be in the relationship T 1 < T 2 < T 3 based on the concept of time-limited distance relay system, so T 1 = 1.5 seconds, T 2 = 2.0
For example, when the operator decides to set T 3 = 4.5 seconds and turns the dial to set the number of seconds on the timer, an error occurs and the result is T 1 = 1.5 seconds, T 2 = 4.5 seconds, T 3 = 2.0.
In some cases, it may take seconds.

この時、 T3−T2>0 (1) T2−T1>0 (2) の式が満足されるか否かを計算機により演算比較
すれば整定値設定の誤りが検出できる。換言すれ
ばT3とT2の設定値の入れ違いは(1)式が成立しな
くなるので検出することができる。
At this time, an error in the setting value setting can be detected by calculating and comparing using a computer whether the following equations are satisfied: T 3 −T 2 >0 (1) T 2 −T 1 >0 (2). In other words, the difference between the set values of T 3 and T 2 can be detected because equation (1) no longer holds true.

また、ダイヤル等の設定機能をもたず最小1秒
から最大10秒までの数字を印字したキー.スイツ
チ等を備えたコンピユータによりT1,T2,T3
各々にそれぞれ1.5秒、2.0秒、4.5秒を設定する場
合、T1=15秒、T2=20秒、T3=45秒と設定した
場合には、最小時限TLと最大時限TMが各タイマ
ごとに決まつているのでオペレータ設定値TS
次の式を満足するか否かを見ればよい。
Also, keys that do not have setting functions such as dials and have numbers printed from a minimum of 1 second to a maximum of 10 seconds. When setting T 1 , T 2 , and T 3 to 1.5 seconds, 2.0 seconds, and 4.5 seconds, respectively, using a computer equipped with a switch, etc., T 1 = 15 seconds, T 2 = 20 seconds, and T 3 = 45 seconds. When set, since the minimum time limit T L and maximum time limit T M are determined for each timer, it is only necessary to check whether the operator set value T S satisfies the following equation.

L≦TS≦TM (3) こうすれば、各設定時間の桁間違いは上式が成
立するか否かを見ることにより防止できる。
T L ≦T S ≦T M (3) In this way, digit errors in each setting time can be prevented by checking whether the above equation holds true.

T1=1.5秒に設定すべきところ、T1=1.7秒や
1.0秒に誤つて設定した場合は本発明によつても
検出できないが、このような誤りは保護継電装置
に致命的な誤動作や誤不動作を生じさせるもので
はない。
Where T 1 should be set to 1.5 seconds, it should be set to T 1 = 1.7 seconds.
Even if the present invention erroneously sets the time to 1.0 seconds, it cannot be detected, but such an error will not cause a fatal malfunction or malfunction of the protective relay device.

以上、タイマの整定値の設定間違いの検出につ
いて述べたが、このことはインピーダンスの整定
値の設定間違いの検出についてもあてはまる。
The above description has been made regarding the detection of an incorrect setting of the timer setting value, but this also applies to the detection of an incorrect setting of the impedance setting value.

例えば、第1図aで、インピーダンスZ1,Z2
Z3の間にはZ1<Z2<Z3の関係が存在するので、設
定されたインピーダンス相互間では次の式が成立
するか否かを演算により検出すればよい。
For example, in Figure 1a, the impedances Z 1 , Z 2 ,
Since the relationship Z 1 <Z 2 <Z 3 exists between Z 3 , it is sufficient to detect by calculation whether or not the following equation holds between the set impedances.

Z3−Z2>0 (4) Z2−Z1>0 (5) また、設定値の桁間違い、あるいは整定値の範
囲を超える設定値は上記タイマの場合と同様に行
なえば検出できる。すなわち、第2図に示すよう
に、モー特性はあらかじめ最大値ZM、最小ZL
範囲しか整定値をもつていないとするとができる
ので、 ZL≦オペレータ設定値≦ZM (6) の関係が成立するか否かを演算し比較すれば所定
限界限にはみでる設定値の検出ができる。
Z 3 −Z 2 >0 (4) Z 2 −Z 1 >0 (5) Furthermore, a wrong digit in the set value or a set value that exceeds the range of the set value can be detected by performing the same procedure as in the case of the timer described above. In other words, as shown in Fig. 2, it can be assumed that the Moh characteristic has a set value only in the range of the maximum value Z M and the minimum Z L , so Z L ≦operator setting value ≦ Z M (6) By calculating and comparing whether or not the relationship holds, it is possible to detect a set value that falls within a predetermined limit.

以上のように本発明においては、電力系統の交
流アナログ量から得られたデジタル量を計算機で
演算して電力系統の保護を行う保護継電装置にお
いて、モーリアクタンス特性における整定値、即
ちモー特性およびリアクタンス特性の各動作イン
ピーダンス値、および動作協調をとるための各タ
イマーの動作時間の設定に際して、設定された各
整定値間の大小の比較を行つており、各動作イン
ピーダンス値間および各タイマーの動作時間間に
は所定の大小関係があるため上記比較の結果が所
定の大小関係と異る場合には設定に誤りがあるこ
とが判明し、正しい整定値に設定し直すことがで
きる。
As described above, in the present invention, in a protective relay device that protects a power system by calculating a digital value obtained from an AC analog value of the power system using a computer, the setting value of the Mohr reactance characteristic, that is, the Mohr characteristic and When setting each operating impedance value of the reactance characteristic and the operating time of each timer for coordination of operations, the set values are compared in size, and the operating impedance values and the operation of each timer are compared. Since there is a predetermined magnitude relationship between times, if the result of the comparison is different from the predetermined magnitude relationship, it is determined that there is an error in the setting, and the setting value can be reset to the correct setting value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは従来のモー特性、リアクタンス特性
のをもつ距離継電装置の一般的動作特性図、第1
図bは第1図aの特性を備えた論理回路図、第2
図はモー特性の整定範囲図である。 M……モー特性、O1,O2……リアクタンス特
性、T1〜T3……タイマ。
Figure 1a is a general operating characteristic diagram of a conventional distance relay device with mho characteristics and reactance characteristics.
Figure b is a logic circuit diagram with the characteristics of Figure 1 a,
The figure is a diagram of the setting range of the Moh characteristic. M...Moh characteristics, O1 , O2 ...Reactance characteristics, T1 to T3 ...Timer.

Claims (1)

【特許請求の範囲】[Claims] 1 電力系統の交流アナログ量から得られたデジ
タル量を計算機で演算して電力系統の保護を行な
う保護継電装置において、モーリアクタンス特性
における整定値の設定に際して、設定された各整
定値間の大小を比較することにより各整定値の設
定の誤りを検出することを特徴とする保護継電装
置における整定値の設定誤り検出方法。
1. In a protective relay device that protects the power system by calculating digital quantities obtained from AC analog quantities of the power system using a computer, when setting the setting value of the Mori reactance characteristic, the magnitude between the set values is A method for detecting setting value setting errors in a protective relay device, the method comprising: detecting a setting error in each setting value by comparing the values.
JP6578076A 1976-06-04 1976-06-04 Method of detecting setting error in fault detection set points Granted JPS52147746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6578076A JPS52147746A (en) 1976-06-04 1976-06-04 Method of detecting setting error in fault detection set points

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6578076A JPS52147746A (en) 1976-06-04 1976-06-04 Method of detecting setting error in fault detection set points

Publications (2)

Publication Number Publication Date
JPS52147746A JPS52147746A (en) 1977-12-08
JPS6124897B2 true JPS6124897B2 (en) 1986-06-13

Family

ID=13296884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6578076A Granted JPS52147746A (en) 1976-06-04 1976-06-04 Method of detecting setting error in fault detection set points

Country Status (1)

Country Link
JP (1) JPS52147746A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03113935U (en) * 1990-03-06 1991-11-21

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106082A (en) * 1973-07-25 1975-08-21
JPS50139285A (en) * 1974-04-26 1975-11-07

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50106082A (en) * 1973-07-25 1975-08-21
JPS50139285A (en) * 1974-04-26 1975-11-07

Also Published As

Publication number Publication date
JPS52147746A (en) 1977-12-08

Similar Documents

Publication Publication Date Title
US4228476A (en) Protective relaying system
US4281386A (en) Systems for detecting faults in electric power systems
US4187525A (en) Ground fault protective apparatus of field windings
JPH0340718A (en) Static tripping device in protective breaker in system of ac power
US20040085074A1 (en) Method for producing a fault signal which indicates a short to ground
US4339802A (en) Digital protective relaying devices
GB1275560A (en) Selector circuit for determining faults in polyphase transmission systems
US3732464A (en) Distance relay system
JPS6124897B2 (en)
JPH0132736B2 (en)
JP2957187B2 (en) Secondary circuit disconnection detector for instrument transformer
JP3792893B2 (en) Busbar protection relay device
JP2005124332A (en) Digital protection relay device
JP2866767B2 (en) AC feeder circuit failure selection relay for railways
JP2703354B2 (en) Digital short-circuit distance relay
JP2986589B2 (en) Automatic setting correction method of digital protection relay
JP3053533B2 (en) Current differential relay
JP3011420B2 (en) Digital bus protection relay
JPH073449B2 (en) Ground fault current direction determination device
JPH0638354A (en) Bus protective relay unit
JPS6220020Y2 (en)
JPH04140016A (en) Method and device for locating ground fault, and ground fault distance relay
JPS5872320A (en) Method of discriminating fault channel of balanced multichannel transmission line
JPH0247169B2 (en)
JPS6027254B2 (en) Digital protection relay method